首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A study was conducted to determine the influence of maize stover and cottonseed cake supplementation on age and live weight at onset of puberty in Bunaji heifers. A total of 49 pre-pubertal Bunaji heifers approximately 12 months of age were allotted randomly to one of two treatments of feed supplementation: (i) supplementation with maize stover and (ii) supplementation with cottonseed cake. The heifers were monitored for a period of 18 months for first observable oestrus or onset of puberty. The maize stover group were given maize stover (crop residue) supplementation ad libitum during the dry season; in the cottonseed cake group each heifer received 500 g of cottonseed cake per day during the dry season. The heifers supplemented with cottonseed cake attained puberty at an earlier age (23.9+/-1.2 months) than the heifers supplemented with maize stover (28.2+/-1.3 months; p<0.05). Similarly, heifers on the cottonseed cake supplementation attained puberty at a live weight of 270.5+/-3.5 kg; while the heifers on maize stover attained puberty at 237.6+/-5.8 kg (p <0.05). The cottonseed cake-supplemented heifers had higher daily gains than the maize stover-supplemented heifers. It is concluded that provision of cottonseed cake as a supplement for heifers hastened the onset of puberty when compared to the maize stover supplemented heifers. Puberty can be achieved at an early age with improved nutrition and this can in turn reduce the generation interval and thus increase the rate of genetic gain of indigenous animals. Provision of protein supplements in cattle is recommended, especially in the tropics where marked seasonality of rainfall results in extremely poor pastures and herbage and low available protein.  相似文献   

2.
Precocious puberty can be induced in a majority of heifers weaned early and fed a high-concentrate diet. The objective of this experiment was to determine whether induction of precocious puberty is associated with an acceleration of ovarian maturation in heifers. Crossbred Angus and Simmental heifer calves were weaned at 104 +/- 2 (n = 18; early weaned) or 208 +/- 3 (n = 10; normal-weaned, NW) d of age. The early weaned heifers were fed a high-concentrate (60% corn; EWH, n = 9) or control diet (30% corn; EWC, n = 9). The NW heifers were also fed the control diet after weaning. Daily transrectal ultrasonography was performed to characterize a complete follicular wave beginning at a mean age of 126, 161, 196, 224, and 252 (EWH and EWC), or 224 and 252 (NW) d. Blood samples were collected daily during periods of ultrasonography to determine estradiol concentrations and weekly beginning at mean ages of 153 (EWH and EWC) or 216 (NW) d to be analyzed for progesterone concentrations. Heifers in the EWH treatment were heavier (P < 0.01) than EWC heifers from a mean age of 175 d through the end of the study (treatment x age; P < 0.05). Body weights did not differ between EWC and NW. At mean ages of 196 and 224 d, the maximum diameter of the dominant follicle (MaxDF) was greater (P < 0.05) in EWH than EWC heifers. At a mean age of 224 d, MaxDF was greater (P < 0.05) in EWC than NW heifers but was not different by a mean age of 252 d. All EWH, 5 of 9 EWC, and 5 of 10 NW heifers attained puberty at less than 300 d of age (precocious puberty). Age at puberty was less (P < 0.05) in EWH (252 +/- 9 d) than in EWC and NW (308 +/- 26 and 330 +/- 25 d, respectively) treatments. Across all heifers, MaxDF and duration of follicular waves increased with age (P < 0.05), mean number of follicles during follicular waves decreased with age (P < 0.05), and peak concentrations of estradiol during follicular waves increased until a mean age of 224 d. To further characterize aspects of precocious puberty, heifers were compared across treatments between those that experienced precocious puberty and those that did not. In heifers that experienced precocious puberty, BW at puberty was less (P < 0.01) and MaxDF, follicular wave duration, and peak estradiol concentrations were greater (P < 0.05) compared with heifers that did not experience precocious puberty. Ovarian maturation was accelerated in heifers that were weaned early and fed a high-concentrate diet and was associated with precocious onset of puberty.  相似文献   

3.
The objective of this study was to determine if alterations in dietary intake of heifers can influence IGF-I concentrations in plasma and(or) follicular fluid (FFL), size of follicles, and steroid concentrations in FFL (as an indicator of steroidogenic capacity). Cyclic heifers [n = 23; mean +/- SE body weight (BW) = 373 +/- 7 kg] were individually fed for 10 weeks either: a) 1.8% of BW in dry matter (DM) per d (GAIN; n = 7), b) 1.1% of BW in DM per d (MAINT; n = 8) or c) 0.7% of BW in DM per d (LOSE; n = 8). After 10 wk of treatment, heifers were ovariectomized 36-40 hr after the second injection of prostaglandin F2 alpha analog (2 injections 11 d apart), and plasma and ovaries were collected. Heifers weighed 444 +/- 13,387 +/- 8 and 349 +/- 9 kg in the GAIN, MAINT and LOSE groups, respectively, at time of ovariectomy. Mean diameter of follicles greater than or equal to 10 mm was greater (P less than .05) for GAIN (15.6 mm) than for MAINT (11.0 mm) or LOSE (12.5 mm) heifers. Numbers of follicles and concentrations of IGF-I in plasma and FFL did not differ (P greater than .20) between LOSE, MAINT and GAIN heifers. Progesterone concentrations were greater (P less than .05) in small and medium follicles of GAIN than MAINT or LOSE heifers, but were unaffected by diet in large follicles. Estradiol concentrations in FFL in small, medium and large follicles were unaffected (P greater than .20) by dietary treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study was conducted on summer anoestrous buffalo heifers to monitor the efficacy of melatonin for induction of ovulation and ovarian cyclicity. During pre‐treatment period of 24 days, the ovarian dynamics of five cycling and 10 summer anoestrous heifers was monitored on each alternate day using a transrectal ultrasound scanner. Thereafter, during treatment period, these 10 anoestrous heifers along with additional seven anoestrous heifers were randomly allocated into non‐implanted (n = 5) and implanted (n = 12, one melatonin implant/50 kg, 18 mg melatonin/implant) group. Non‐implanted heifers were monitored on each alternate day till the confirmation of second‐ovulation in implanted heifers. Pre‐treatment period revealed the presence of dominant follicles in anoestrous heifers which attained the diameter comparable with ovulatory follicles of cycling heifers but failed to ovulate and regressed. Between 6 and 36 days (15.3 ± 2.9 days) post‐treatment, all the implanted heifers (p < 0.05) exhibited ovulation of dominant follicles; however none of the non‐implanted heifers ovulated during the corresponding period. The first‐interovulatory period in implanted heifers ranged between 8 and 28 days (18.0 ± 1.8 days). The implanted heifers with short (≤16 days) interovulatory period had short‐lived corpus luteum (CL) that had smaller diameter and secreted less progesterone (p < 0.05). The diameter of CL was large (p < 0.05) and plasma progesterone was high (p < 0.05) following second‐ovulation compared with first‐ovulation in implanted heifers. In conclusion, using melatonin implants, ovulatory size nonovulatory follicles observed in summer anoestrous buffalo heifers can be successfully ovulated to initiate ovarian cyclicity.  相似文献   

5.
The effects of plasma progesterone concentrations on LH release and ovulation in beef cattle given 100 microg of GnRH im were determined in three experiments. In Experiment 1, heifers were given GnRH 3, 6 or 9 days after ovulation; 8/9, 5/9 and 2/9 ovulated (P<0.02). Mean plasma concentrations of progesterone were lowest (P<0.01) and of LH were highest (P<0.03) in heifers treated 3 days after ovulation. In Experiment 2, heifers received no treatment (Control) or one or two previously used CIDR inserts (Low-P4 and High-P4 groups, respectively) on Day 4 (estrus=Day 0). On Day 5, the Low-P4 group received prostaglandin F(2alpha) (PGF) twice, 12 h apart and on Day 6, all heifers received GnRH. Compared to heifers in the Control and Low-P4 groups, heifers in the High-P4 group had higher (P<0.01) plasma progesterone concentrations on Day 6 (3.0+/-0.3, 3.0+/-0.3 and 5.7+/-0.4 ng/ml, respectively; mean+/-S.E.M.) and a lower (P<0.01) incidence of GnRH-induced ovulation (10/10, 9/10 and 3/10). In Experiment 3, 4-6 days after ovulation, 20 beef heifers and 20 suckled beef cows were given a once-used CIDR, the two largest follicles were ablated, and the cattle were allocated to receive either PGF (repeated 12h later) or no additional treatment (Low-P4 and High-P4, respectively). All cattle received GnRH 6-8 days after follicular ablation. There was no difference between heifers and cows for ovulatory response (77.7 and 78.9%, P<0.9) or the GnRH-induced LH surge (P<0.3). However, the Low-P4 group had a higher (P<0.01) ovulatory response (94.7% versus 61.1%) and a greater LH surge of longer duration (P<0.001). In conclusion, although high plasma progesterone concentrations reduced both GnRH-induced increases in plasma LH concentrations and ovulatory responses in beef cattle, the hypothesis that heifers were more sensitive than cows to the suppressive effects of progesterone was not supported.  相似文献   

6.
The effects of acute nutritional change on endocrine and ovarian characteristics were studied in cyclic (intact; n = 20) and long-term ovariectomized (ovx; n = 18) heifers being fed 1.2 x maintenance (1.2M). On d 7 of an 8-d progesterone and estradiol treatment, intact and ovx heifers were randomly allocated to diets providing .4, 1.2, or 2.0M until emergence of the second follicular wave after ovulation in intact heifers. In intact heifers, two of eight fed .4M failed to ovulate. In the other six, growth rate and maximum diameter (1.1+/-.09 mm/d and 10.1+/-.7 mm, respectively) of the first dominant follicle (DF) postovulation were less (P<.05) than in heifers fed either 1.2 (1.6+/-.18 mm/d; 12.9+/-.44 mm) or 2.0M (1.6+/-.08 mm/d; 12.7+/-.7 mm). In intact heifers, LH pulse frequency and amplitude were not affected by diet (P>.10). In ovx heifers, the frequency of LH pulses was unaffected by diet (P>.10), but heifers fed .4M had a greater pulse amplitude (P<.05) and mean concentration of LH (P<.001) than those fed 1.2 or 2.0M. Plasma concentrations of FSH were greater (P<.05) in ovx heifers fed .4M than in those fed 1.2 or 2.0M and increased linearly with time (P<.01). The FSH concentrations in heifers fed 1.2 and 2.0M were similar (P>.10) and decreased linearly with time (P<.001). In intact heifers, concentrations of FSH preceding follicle wave emergence were greater in heifers fed .4M (P<.001), but basal concentrations were not affected (P>.10). Concentrations of progesterone and estradiol were unaffected by diet (P>.10). Significant diet x ovarian status interactions in plasma IGF-I concentrations existed. Plasma concentrations of insulin increased as the level of nutrition increased, whereas concentrations of NEFA decreased. In conclusion, growth rate and maximum diameter of the DF were decreased by acute nutritional restriction, without affecting the concentration of LH. The magnitude of the FSH increase preceding new follicle wave emergence increased following dietary restriction, but concentrations of FSH were unaffected during the other stages of DF growth. The results of this study may have important implications for the feeding strategies adapted for high-yielding dairy cows in the early postpartum period when feed intake is often physiologically restricted.  相似文献   

7.
The association between conception rate at first service and numbers of follicles developed during a follicular wave was examined in 102 suckled beef cows and 14 heifers. Follicular development was monitored using ultrasonography for either two (trial 1) or three (trial 2) consecutive oestrous cycles (pre-breeding, breeding and post-breeding equivalent). Animals were examined on alternate days from day 6 after first oestrus (day 0) until ovulation and from day 6 after insemination until next ovulation or day 24 of pregnancy and were observed for oestrus twice daily and inseminated artificially at either the second (trial 1) or third oestrus (trial 2). Cows were classified as having two or three waves of follicular development for each oestrous cycle. Numbers of follicles >or=4 mm per wave were determined, and based on the maximum diameter they attained, were classified as small (4-6 mm), medium (7-10 mm) or large (>or=11 mm) follicles. Total numbers of follicles, and primarily numbers of small and medium follicles, were affected by trial and within trial by cow, oestrous cycle and follicular wave. Heifers had more small and total numbers of follicles, but fewer large follicles than cows in trial 1 (p < 0.05). The average number of antral follicles per wave in the breeding cycle or post-breeding period did not affect conception rates, which averaged 84%. Repeatability of the total numbers of antral follicles between and among oestrous cycles and follicular waves ranged from 0.01 to 0.97. In conclusion, fertility was not affected by the numbers of antral follicles >or=4 mm in diameter in a single follicular wave.  相似文献   

8.
AIM: To evaluate the efficacy of a programme using oestradiol benzoate, progesterone and the prostaglandin-F2 (PG) analogue, cloprostenol, to synchronise oestrus and ovulation in dairy cows, compared with a programme using a gonadotropinreleasing hormone (GnRH) agonist, buserelin, and cloprostenol. METHODS: Twenty non-lactating dairy cows, at random stages of the oestrus cycle, were randomly assigned to 1 of 2 treatments. In Treatment 1 ( OPPG; n=10), cows were injected with 2 mg oestradiol benzoate intramuscularly (IM) plus 200 mg progesterone subcutaneously (SC) on Day 0, followed by 500 microg cloprostenol IM on Day 9 and 1 mg oestradiol benzoate on Day 10. In Treatment 2 (GPG; n=10), cows were injected with 10 microg buserelin IM on Day 0, 500 microg cloprostenol IM on Day 7 and 10 microg buserelin on Day 9. The ovaries of all cows were examined by ultrasonography, using an 8 MHz probe, from 5 days before the initial treatment until ovulation. Cows were observed for oestrus 3 times daily for 7 days after cloprostenol treatment. Blood samples were collected daily for determination of progesterone, and 6-hourly for 36 h after the second oestradiol or buserelin injection for the determination of follicle stimulating hormone (FSH) and luteinising hormone (LH) concentrations. RESULTS: The percentage of cows observed in oestrus was higher in the OPPG group than in the GPG group (100% vs 55.6%, p=0.018). Treatment with either short-acting progesterone plus oestradiol benzoate or buserelin was followed by atresia or ovulation of the dominant follicle. Emergence of a new follicular wave occurred earlier (p>0.001) in the GPG group (2.2+/-0.2 days) than in the OPPG group (3.6+/-0.2 days). There was no significant difference between treatment groups in the variation of time of follicular wave emergence or size of the largest follicles at either the time of initial treatment (10.8+/-1.4 mm vs 11.1+/-0.8 mm), cloprostenol treatment (13.8+/-0.7 mm vs 14.0+/-1.3 mm) or of ovulation (15.4+/-0.7 mm vs 17.6+/-1.1 mm; p=0.10). The LH surge occurred sooner after the second injection of buserelin (4.0+/-1.0 h) than after the second injection of oestradiol benzoate (22.8+/-1.2 h; p>0.001). The interval between the second injection of oestradiol benzoate or buserelin and ovulation did not differ significantly between treatment groups (1.7+/-0.3 days vs 1.6+/-0.2 days; p=0.69). CONCLUSIONS: The use of short-term progesterone treatment, combined with oestradiol benzoate for follicular wave synchronisation, and cloprostenol to cause lysis of residual luteal tissue, is a promising alternative to established methods of oestrus synchronisation in cows.  相似文献   

9.
The aims of this study were to evaluate the chronology of periovulatory events (oestrus behaviour, LH surge and ovulation) in 16 superovulated Manchega sheep and to determine whether follicular status at start of the FSH supply might affect their occurrence. Mean timing for onset of oestrus behaviour was detected at 28.1 +/- 0.7 h after sponge withdrawal; the preovulatory LH surge and ovulation started at 37.2 +/- 0.7 h and 65.4 +/- 0.7 h after progestagen withdrawal, respectively. The intervals between oestrus, LH surge and ovulation were affected by a high individual variability, which might be the cause for reported decreased efficiency in embryo production. Current results also addressed the role of follicular status at start of the superovulatory treatment on the preovulatory LH surge and the ovulation. The interval LH surge-ovulation was increased in ewes with a growing dominant follicle at starting the FSH treatment (32.3 +/- 0.9 vs 28.6 +/- 0.5 h, p < 0.05). The developmental stage of the largest follicle at starting the superovulatory treatment also affected occurrence of LH surge and ovulation; follicles in growing phase advanced the occurrence of the LH surge and ovulation when compared to decreasing follicles (33.0 +/- 1.0 vs 43.5 +/- 1.1 h, p < 0.05, for LH peak and 60.7 +/- 1.1 vs 72.8 +/- 1.2 h, p < 0.05, for ovulation). Thus, only ewes with growing follicles ovulated prior to 55 h after sponge withdrawal; conversely, no sheep with decreasing follicles ovulated earlier than 67 h, when an 85.7% of the ewes bearing growing follicles has ovulated at 63 h.  相似文献   

10.
Precocious puberty (<300 d of age) can be successfully induced in a majority of heifers with early weaning and continuous feeding of a high-concentrate diet. The objective of this experiment was to determine the relative effects of timing of feeding a high-concentrate diet on age at puberty in early-weaned heifers. Sixty crossbred Angus and Simmental heifer calves were weaned at 112 +/- 2 d of age and 155 +/- 3 kg of BW and were fed a receiving diet for 2 wk. Heifers were blocked by age and BW, and assigned randomly to receive a high-concentrate (60% corn; H) or control (30% corn; C) diet during phase 1 (mean age 126 to 196 d) and H or C during phase 2 (mean age 196 to 402 d), resulting in 4 treatments (HH, n = 15; HC, n = 15; CH, n = 15; and CC, n = 15). Blood samples were collected weekly beginning at a mean age of 175 d and assayed for progesterone concentration to determine age at puberty. After 56 d on the experimental diets, BW of heifers fed the H diet during phase 1 were greater (P < 0.05) than those of heifers fed the C diet (mean age of 182 d; treatment x mean age, P < 0.01). After 70 d on the new diets (mean age of 266 d), heifers fed the H diet during phase 2 reached heavier BW (P < 0.05) than heifers fed the C diet, when compared within phase 1 diet groups (HH > HC; CH > CC). Body weights in HC and CH treatments differed from a mean age of 169 through 238 d, after which BW did not differ between these treatments. The ADG over the entire experimental period was greatest for the HH treatment (1.2 +/- 0.04 kg/d; P < 0.05), followed by the HC and CH treatments (1.0 +/- 0.03 and 1.0 +/- 0.02 kg/d, respectively), which were not different, and the CC treatment gained the least (0.7 +/- 0.04 kg/d; P < 0.05). Precocious puberty occurred in 67, 47, 47, and 20% of heifers in the HH, HC, CH, and CC treatments, respectively (HH > CC; P < 0.05). Mean age at puberty for the HH and HC treatments (271 +/- 17 and 283 +/- 17 d of age, respectively) was earlier (P < 0.05) than for the CC treatment (331 +/- 11 d of age). Age at puberty in the CH treatment (304 +/- 13 d of age) was intermediate to and not different from the other treatments. Heifers fed the H diet during phase 1 attained puberty earlier (P < 0.05) than heifers fed the C diet during phase 1. In conclusion, increasing dietary energy intake in early-weaned heifers, through feeding a high-concentrate diet from 126 to 196 d of age, decreased age at puberty regardless of the diet fed after 196 d of age.  相似文献   

11.
To determine whether long-term administration of growth hormone (GH)-releasing factor (GRF) and(or) thyrotropin-releasing hormone (TRH) alters ovarian follicular fluid (FFL) concentrations of insulin-like growth factor-I (IGF-I), progesterone, and estradiol (E2), and follicular growth, Friesian x Hereford heifers (n = 47; 346 +/- 3 kg) were divided into the following four groups: control (vehicle; n = 11); 1 micrograms GRF (human [Des NH2 Tyr1, D-Ala2, Ala15] GRF [1-29]-NH2).kg-1 BW.d-1 (n = 12); 1 microgram TRH.kg-1 BW.d-1 (n = 12); or GRF + TRH (n = 12). Daily injections (s.c.) continued for 86 d. On d 89, heifers that had been synchronized were slaughtered and ovaries were removed. Follicles were grouped by magnitude of diameter into the three following sizes: 1 to 3.9 mm (small, n = 55), 4.0 to 7.9 mm (medium, n = 63), and greater than or equal to 8 mm (large, n = 71). Growth hormone-releasing factor and(or) TRH did not affect (P greater than .10) IGF-I concentrations in FFL of any follicle size group. Growth hormone-releasing factor increased (P less than .06) size (means +/- pooled SE) of large follicles (14.7 vs 13.0 +/- .6 mm). Growth hormone-releasing factor also increased (P less than .05) progesterone concentrations 4.4-fold above controls in FFL of medium-sized follicles but had no effect on progesterone in FFL of the small or large follicles. Thyrotropin-releasing hormone did not alter FFL progesterone or E2 concentrations in any follicle size group. We conclude that the GRF and(or) TRH treatments we employed did not affect intra-ovarian IGF-I concentrations, but GRF may alter steroidogenesis of medium-sized follicles and growth of large follicles.  相似文献   

12.
Heifers treated with ivermectin at weaning have been reported to reach puberty at a younger age and lighter weight than untreated heifers. We tested the hypothesis that heifers administered ivermectin would respond with earlier follicular development and a greater LH response to a 1-mg estradiol-17beta challenge (E2C) than untreated heifers. Fall-born Angus heifers (n = 32) were randomly assigned on 284 +/- 9 d of age (215.5 +/- 20.8 kg) to receive ivermectin (IVR) or albendazole (ALB), IVR + ALB, or to remain as untreated controls (CONT). Each group (n = 8) was housed separately in adjacent pens throughout the trial and managed to gain .8 kg/heifer on a ration containing 13.2% CP, 58.8% TDN, and 49.9% DM. The CONT heifers received an additional 2.27 kg/heifer of corn silage and 1.59 kg/heifer of corn daily to maintain ADG at comparable levels. Individual body weight was recorded weekly, and nematode eggs per gram (EPG) of feces were measured every 21 d. Ultrasonography was performed on alternate days starting 2 wk prior to E2C to characterize follicular wave patterns. Follicles were separated into classes (C1 [3 to 5 mm], C2 [6 to 9 mm], and C3 [10 mm]) and sizes (largest [LF], second [SLF], third [TLF], and fourth largest follicles [FLF]). The sizes of the regressing dominant follicle 1 (DF1) and the progressing dominant follicle 2 (DF2) were also determined. Serum concentrations of LH were determined from hourly jugular blood samples collected 8 to 24 h after injection of E2C. The IVR + ALB treatment group had more C3 follicles than ALB and CONT (P < .07). The IVR-treated heifers had larger TLF than ALB and CONT (P < .04). The IVR- and IVR + ALB-treated heifers had larger FLF and DF2 than ALB and CONT (P < .1). Least squares means for DF2 were 9.5 +/- .5, 8.0 +/- .4, 9.5 +/- .3 and 8.3 +/- .3 mm, for IVR, ALB, IVR + ALB and CONT, respectively (P = .02 for treatment effect). The E2C-induced serum LH concentration did not differ with respect to treatment. We conclude that heifers administered IVR display increased follicular development, supporting our earlier investigations regarding reduced age at puberty in heifers treated with IVR near weaning.  相似文献   

13.
Postpubertal beef heifers (n = 55) were used to examine the effects of high-fat diets, independently of energy intake, on nonesterified fatty acid and lipoprotein metabolic patterns, ovarian follicular dynamics, and embryo recovery/viability after FSH superstimulation. High-lipid (HL) diets (5.4% added fat) increased (P < .01) serum concentrations of cholesterol, but not of nonesterified fatty acids, during the 35-d period before FSH treatment. Development of medium-sized (5 to 9.9 mm) follicles was enhanced (P < .05) during this period in heifers fed the HL diet. The HL diet increased total cholesterol (P < .05) and progesterone (P = .14) concentrations in follicular fluid obtained at ovariectomy (n = 10) 60 h after the onset of FSH treatment, but neither estradiol-17 beta nor androstenedione was affected. Granulosa cells recovered from FSH-induced, estrogen-active follicles in heifers fed the HL diet produced greater quantities of progesterone (P = .06) and less estradiol-17 beta (P < .05) in vitro than did granulosa cells from heifers fed the normal lipid diet. Dietary treatment did not influence FSH-stimulated recruitment of medium and large follicles, number of ovulations, embryo recovery, or embryo viability. Data suggest that increments in dietary fat intake can alter specific aspects of ovarian steroidogenic potential and can increase the population of medium-sized follicles theoretically available for maturation and harvest during the estrous cycle. However, conditions that limited the latter process in the current experiment are not understood and require further investigation.  相似文献   

14.
The aim of the study was to compare how different feeding levels affect the ovarian potential of follicular development and oocyte maturation in response to superovulatory treatment in native Mangalica (M, n = 17) compared with Landrace (L, n = 20) pigs. Gilts of both breeds were fed high-energy (HI-2.5 kg) or low-energy (LO - 1.25 kg) feed during oestrus synchronization (15 days of Regumate feeding) till the time of oocyte aspiration (Day 6 after Regumate). Follicular growth was stimulated by the administration of 1000 IU equiue choriou gonadotropiu (eCG) 24 h after Regumate treatment, and ovulation was induced by injection of 750 IU human choriou gonadotropiu (hCG) 80 h after eCG administration. Ultrasound (US) investigation was done three times (4-10 h before, and 40-44 and 72-74 h after eCG administration) for the observation of follicular development. Oocyte and follicular fluid (FF) were collected endoscopically 34 h after hCG injection. Cumulus-oocyte complexes were evaluated, their morphology determined, and thereafter fixed and stained for chromatin evaluation. Oocytes were classified as meiosis-resumed (germinal vesicle breakdown, diakinesis, metaphase I to anaphase I) or matured (telophase I and metaphase II). FF concentrations of oestradiol and progesterone were measured by validated radioimmunoassays. In L gilts, differences were observed between HI and LO in the number of preovulatory follicles (32.3 +/- 10.5 vs 17.1 +/- 12.3, p < 0.05), but not in M (25.3 +/- 2.9 vs 28.8 +/- 7.3, p > 0.05). Initial follicular growth was not affected by feeding levels; however, preovulatory follicle size was larger in M (7.1 +/- 0.9 and 6.9 +/- 1.1 mm vs 5.7 +/- 0.7 and 5.5 +/- 0.8 mm; p < 0.05). No differences were obtained with relation to mature chromatin configuration in both breeds (L gilts: HI - 70% and LO-67% vs M gilts: HI - 67% and LO - 63%). A twofold higher oestradiol concentration was detected in FF of HI-M and LO-M (29.6 +/- 6.8 and 30.9 +/- 10.3 ng/ml respectively) compared with that of L (16.9 +/- 9.7 and 17.9 +/- 3.6 ng/ml, respectively; p < 0.05). The mean FF progesterone level was nearly fivefold higher in M (2020.4 +/- 1056 and 1512.2 +/- 1121.8 ng/ml) compared with L (386.2 +/- 113.7 and 298.8 +/- 125.9 ng/ml, p < 0.05). The results indicate an influence of the feeding of altered energy on the number of recruitable preovulatory follicles in modern Landrace but not in native Mangalica breed. Moreover, the follicular steroid hormone milieu differs between Landrace and Mangalica gilts but not depending on feeding levels. Oocyte maturation was not affected by diet.  相似文献   

15.
Follicular development was examined by transrectal ultrasound scanning in 12 heifers during 51 oestrous cycles. Internal diameters of largest and second largest follicles and the number of smaller ovarian vesicles were determined. Diameters of dominant follicles showed inverse growth pattern to the second largest follicles and numbers of smaller follicles (greater than or equal to 5 mm). There was an increase in diameters of the largest follicles from beginning of dioestrous to day 9 and from time of luteolysis to ovulation, which was coincident which a decrease in diameters of the second largest follicles and numbers of smaller ovarian vesicles. Smaller follicles increased in count and diameter, when the dominant follicle achieved its largest dimension and started to regress. The cyclic corpus luteum had no local influence on diameters of the largest and second largest follicles in the ovary bearing the corpus luteum versus the contralateral ovary. Internal diameters of oestrous follicles measured 14.7 +/- 2.6 mm in heifers and 15.3 +/- 2.9 mm in cows at the day of oestrous (p greater than 0.05; t-test). Dioestrous follicles with similar size were detected during various stages of the oestrous cycle. The diameter of the dominant follicle is not an accurate criterion for determining the stage of the oestrous cycle.  相似文献   

16.
OBJECTIVE: To compare the timing of onset of oestrus and ovulation, characteristics of oestrus, and fertility in Bos indicus heifers synchronised with a progesterone releasing intravaginal insert (IVP4) and administration of oestradiol benzoate (ODB) either at the time of removal of the insert or 24 h later. Design: Cohort study. PROCEDURE: Bos indicus and Bos indicus cross heifers were treated on two farms (Farm A, n = 273; Farm B, n = 47) with an IVP4 for 8 days with 1.0 mg of ODB administered at the time of device insertion and 250 mg of cloprostenol at the time of device removal. Heifers in the ODB-0 group were administered 0.75 mg of ODB at the time of device removal while heifers in the ODB-24 group were administered the same dose of ODB 24 h after device removal. Heifers were inseminated once daily after detection of oestrus. Heifers not detected in oestrus by 72 h after removal of inserts were inseminated at that time. Oestrus was detected in heifers on Farm A using heatmount detectors while on Farm B oestrus in heifers was monitored using radiotelemetry of mounting pressure. Ovarian follicular development was monitored daily in 30 heifers on Farm B from the time of administration of inserts until ovulation to a maximum of 96 h after removal of inserts, and again 11 days after removal of inserts (Day 19). A blood sample was collected from all heifers on Farm B on Day 19 and analysed for plasma concentration of progesterone. Pregnancy was diagnosed 6 to 8 weeks after insemination. RESULTS: Administration of ODB at the time of removal of inserts shortened the time interval to oestrus and ovulation (P < 0.001), increased the number of mounts recorded during oestrus (P = 0.04) and reduced the odds of pregnancy (P = 0.03). The proportion of heifers ovulating on Farm B was 67% and was not affected by treatment group (P = 0.61). The mean diameter of the largest follicle measured in ovaries was greater at the time of removal of inserts (9.1 +/- 0.6 vs 10.7 +/- 0.4; P = 0.03) and at the expected time of the LH surge (8.1 +/- 0.4 vs 11.5 +/- 0.3 mm; P < 0.001) in heifers that ovulated compared to heifers that failed to ovulate, respectively. Emergence of a new follicular wave was not detected during the synchronisation treatment in heifers that failed to ovulate. Concentrations of progesterone in plasma on Day 19 were less in non-pregnant heifers (P = 0.05) compared to heifers subsequently diagnosed as pregnant to insemination and were affected by the diameter of the ovulatory follicle (P = 0.01). CONCLUSION: Administration of ODB at the time of removal of inserts can shorten the time interval to oestrus and ovulation and can reduce fertility when insemination is carried out once daily. Further work is needed to determine if prolonged suppression of follicular development, anovulatory oestrus and premature ovulation occuring in some heifers is associated with administration of ODB.  相似文献   

17.
The two-wave hypothesis for follicular development during the bovine estrous cycle was tested by ultrasonically monitoring individual follicles in 10 heifers during an interovulatory interval. A dominant follicle was defined as one that reached a diameter of at least 11 mm. Subordinate follicles were defined as those that appeared to originate from the same follicular pool as a dominant follicle. A dominant follicle and its cohorts were defined as a wave. Two waves during an interovulatory interval were identified in 9 of 10 heifers. The first wave was first identified, retrospectively, on a mean of Day 0.2 +/- 0.1 (ovulation = Day 0) and gave origin to a dominant anovulatory follicle and a mean of 1.4 +/- 0.3 identified subordinates. The dominant follicle reached maximum diameter (mean, 15.8 +/- 0.8 mm) on an average of Day 7 and then decreased (P less than .04) by Day 11. The subordinate follicles increased in diameter for a few days and then regressed. The second wave was first identified on a mean of Day 10.0 +/- 0.4 and gave origin to the ovulatory follicle and a mean of 0.9 +/- 0.3 subordinates. One of the 10 heifers had 3 waves of follicular activity characterized by an anovulatory wave emerging on Day 0, another anovulatory wave emerging on Day 10, and an ovulatory wave emerging on Day 16. Results strongly supported the two-wave hypothesis but also indicated that a minority of interovulatory intervals in this heifer population may have 3 waves of follicular activity.  相似文献   

18.
In vitro blastocyst production was determined for oocytes recovered postmortem from 48 beef x dairy heifers offered low (Low NH3) or high (High NH3) plasma ammonia-generating diets during the period of late antral follicle development. Following the establishment of a reference estrus (d 0), the experimental diets were offered for an 18-d period starting on d 3 and during which a second estrus was induced (d 16) 4 d before the animals were slaughtered. Blood samples collected at varying intervals were analyzed for ammonia, urea, progesterone, and LH. Ovarian folliculogenesis was monitored daily by transrectal ultrasonography. Ovaries were collected at slaughter and cumulus-oocyte complexes were aspirated from small (1 to 4 mm) and medium-sized (> 4 to 8 mm) sized follicles. In vitro-matured and -fertilized putative d-1 zygotes were cultured for a further 7 d in vitro and embryo development and metabolism were assessed. Relative to the low-NH3-generating diet, the high-NH3-generating diet increased peak postprandial levels of plasma ammonia (326.1 +/- 43.3 vs 52.1 +/- 7.4 micromol/L; P < .001), mean levels of plasma urea (7.0 vs 5.7 mmol/L; SED = .2; P < .001), peak levels of plasma progesterone prior to induced luteolysis (8.9 +/- .4 vs 6.8 +/- .3 microg/L; P < .001), and follicular fluid levels of ammonia (267 +/- 18 vs 205 +/- 20 nmol/mL; P < .05) and progesterone (351 +/- 69 vs 199 +/- 26 ng/mL; P < .05). The timing and level of the preovulatory LH surge was not affected by dietary treatment. Of oocytes cultured, cleavage (47.4 vs 62.4%; P = .02) and blastocyst production (10.9 vs 20.6%; P = .06) rates were reduced when the oocytes were derived from heifers offered the high- rather than the low-NH3-generating diets. There were interactions between dietary treatment and follicle size class, which indicated that fewer blastocysts were produced from cleaved oocytes derived from medium-sized follicles of heifers offered the high-NH3 treatment but that de novo protein synthesis was increased in such embryos. In conclusion, exposure to high levels of ammonia and(or) urea in vivo can significantly compromise the subsequent capacity of oocytes to develop to blastocysts in vitro, and oocytes recovered from medium-sized follicles are particularly sensitive to this effect.  相似文献   

19.
The origin and evolution of preovulatory follicles (POF) in 9 hyperstimulated (polyovulatory) Serrana goats were characterised. After oestrus synchronisation and detection, transrectal ovarian ultrasonography was performed daily during two complete oestrous cycles. Blood samples were taken every 4 h during 24 h after oestrus detection for preovulatory LH peak and twice a week for plasma progesterone determinations. The interovulatory interval of 14 oestrous cycles with double ovulations was 21.1 +/- 0.3 days. The onset of ovulatory follicular wave occurred 4 days (-3.9 +/- 0.3 days, n = 14) prior to the ovulation day (day 0) with a POF size of 6.9 +/- 0.2 mm (n = 28). In goats with ovulations in both ovaries (78.6%), the emergence of the first POF occurred earlier (-4.1 +/- 0.3 days) than the second POF (-3.3 +/- 0.2 days, n = 11, P < 0.05). No differences in the total number of follicles > or = 2 mm were found between the day of POF emergence (4.3 +/- 0.4) and the day before ovulation (3.5 +/- 0.3, P > 0.05). These results showed the existence of a delay between the emergence of first and second POF and suggest a weak dominance effect in goats with double ovulations.  相似文献   

20.
Leptin is mainly synthesised in white adipose tissue. Besides its effects on body weight and metabolic homeostasis, leptin also has effects on puberty, sexual maturation and reproduction. In this study the relationship between leptin, IGF-1, oestradiol (E2) and progesterone levels were investigated in serum and follicular fluid from cows. This study included 72 healthy, Brown Swiss cows aged 4-5 years. Samples from the jugular vein and follicular fluids were collected. Phases of the oestrus cycle of cows were classified according to their serum progesterone levels (< 3.18 nmol/l, follicular phase and the others as luteal phase). Follicles were grouped as large (> or = 8 mm) or small (< 8 mm). Leptin, IGF-1, oestradiol and progesterone levels were measured from serum and follicular fluid. Leptin concentrations were found to be significantly higher in luteal-phase follicular fluid of small follicles (P < 0.05). These were classified as atretic follicles. There was a positive correlation between serum and follicular fluid leptin levels in the luteal phase. Serum leptin was found to have a positive correlation with follicular fluid progesterone level (P = 0.01) in the preovulatory follicles. The present study shows that there is a relationship between the concentration of leptin in follicular fluid and atresia in small follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号