首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of dietary riboflavin (B2) supplementation and selenium (Se) source on the performance and Se metabolism of weanling pigs was studied. Pigs fed a B2-supplemented (10 mg/kg) casein-glucose diet for 18 d gained faster than pigs fed the B2-unsupplemented diet. Percentage active erythrocyte glutathione reductase (GR) declined rapidly when pigs were placed on the B2-unsupplemented diet and was lower (P less than .01) than that of B2-supplemented pigs after 12 d on test. Percentage active erythrocyte GR values fell below 50% before other B2 deficiency signs became evident. Supplementation of diets with 10 mg B2/kg resulted in increased kidney and muscle glutathione peroxidase (GSH-Px) activity. The Se concentration of liver and heart increased and plasma Se levels decreased with dietary B2 supplementation. Riboflavin supplementation and Se source did not alter apparent Se absorption, but B2 supplementation decreased urinary Se and thus increased Se retention. Also, there was less urinary Se excretion when selenomethionine was the dietary Se source and consequently more Se was retained than when sodium selenite was the dietary Se source. In a final trial, B2 supplementation increased kidney, muscle, heart and brain GSH-Px activity when sodium selenite was the dietary Se source, but not when selenomethionine was the dietary Se source.  相似文献   

2.
Forty-eight Norwegian bred White Leghorn chickens were divided into 6 groups and fed a basal diet containing 0.30 mig Se/kg supplemented with 0, 0.1, 0.5, 1.0, 3.0 or 6.0 mg Se/ kg in the form of selenomethionine for 18 weeks. A supplement of only 0.1 mg Se/kg induced significantly higher selenium concentrations in breast muscle and eggs, particularly in the egg white. The increase of selenium in the tissue and egg was proportional to the amounts of selenomethionine added to the feed. In the group given 6.0 mg Se/kg, the selenium concentrations in all tissues and eggs analysed ranged from 4.8 to 7.3 μg Se/g. No signs of toxic effects were observed even at the highest intake of selenium. Excess supply of selenium as selenomethionine to chickens was shown to be more potent than sodium selenite in raising the selenium concentration in tissues and eggs. A supplementation up to 10 times the requirement did not increase the levels of selenium in poultry products to such a degree that they could be considered as a potential risk for human consumption.Key words: dietary selenium, laying hens, selenium concentrations, tissues, eggs  相似文献   

3.
Fifty Norwegian-bred White Leghorn chickens, 20 weeks of age, were divided into 3 groups and fed a basal diet containing 0.09 mg Se/kg dry matter (D.M.). One group was given a supplement of 0.5 mg Se/kg as seleno-DL-methionine (Se-Met), another group 0.5 mg/kg as sodium selenite while one group served as control. After 10 weeks, all 3 groups were offered the basal diet without added selenium (Se) for a further 9 weeks. At the end of the supplementation period, significantly higher Se levels in blood and tissues were observed in the Se-Met group. These higher levels were not reflected in the glutathione peroxidase (GSH-Px) activity. During the first weeks of the depletion period, there was a steady decrease in Se levels and GSH-Px activity in blood and tissues in both the Se supplemented groups. However, Se levels in the group receiving sodium selenite fell almost to- those in the control group after 2 weeks, while the levels in the Se-Met group did not approach the control levels, even after 9 weeks. There were no differences as regards tissue GSH-Px activity between the 2 supplemented groups, which in both groups nearly reached the control level after 2 weeks. There was, however, a more rapid decrease in GSH-Px activity in whole blood in the sodium selenite group from week 0 to 5 as compared to the Se-Met group. The results obtained in this study support the theory that different forms of Se occupy separate metabolic pools in the body, and that the Se pool resulting from Se-Met supplementation can be mobilized for GSH-Px synthesis in a depletion period.  相似文献   

4.
The main aim of this trial was to define the possible differences between selenite and selenate in their ability to increase the selenium (Se) concentration of milk, in comparison with organic Se. Dairy cows (n = 42) were fed a basal diet containing .10 to .12 mg Se/kg DM for 5 mo and were then divided into four groups of 10 or 11, as similar as possible in age and stage of lactation. During the next 84 d, the cows in three of the groups were supplemented with 3 mg of Se daily, whereas the cows in one control group remained unsupplemented. The Se supplement was given as sodium selenite, sodium selenate, or a Se yeast product. The total Se concentration of the diets varied with the cows' stage of lactation and was for the supplemented groups .24 to .31 mg/kg DM, but remained between .10 and .12 mg/kg in the control group. At the end of the trial, the mean whole blood Se concentrations in the selenite, selenate, yeast, and control groups were 138, 141, 165, and 104 microg/L, respectively. The Se concentration in plasma apparently reached a plateau level within 4 wk, at approximately 75 microg/L in the selenite group, 80 microg/L in the selenate group, and 90 microg/L in the yeast group. In the control group the mean concentration in plasma remained at approximately 50 microg/L. The increase of the activity of glutathione peroxidase (GSH-Px) in the erythrocytes was significantly higher in the supplemented groups than in the control group. The mean concentrations of Se in milk in the selenite, selenate, and yeast groups were 16.4, 16.4, and 31.2 microg/L, respectively, whereas the concentration remained at approximately 14 microg/L in the control group. The milk Se concentration reached a plateau within 1 wk after the start of Se supplementation. Dietary supplementation with selenite and selenate, thus, had only a limited effect on the Se concentration in milk, and there was no significant difference between the two inorganic compounds in any variable measured. Organic Se was much more effective than inorganic Se in increasing the concentration of Se in milk.  相似文献   

5.
Influence of selenium on antibody production in sheep   总被引:3,自引:0,他引:3  
Three experiments were carried out, using sheep fed a marginally low selenium diet, to study the effect of selenium supplementation on the antibody response to tetanus toxoid and on the serum IgG concentration. Six groups of three six-month-old lambs were fed a basal diet containing 0.13 mg Se kg-1 supplemented with either 0.1, 0.5 or 1.0 mg Se kg-1, as sodium selenite or as selenomethionine. These animals generally showed enhanced antibody response to tetanus toxoid, parainfluenza-3 virus and Corynebacterium pseudotuberculosis, and their total serum IgG concentrations were higher than in unsupplemented control animals although few responses were statistically significant. In two field studies significantly higher titres to tetanus toxoid were detected in ewes injected with 100 mg selenium as barium selenate, although no influence on serum IgG concentrations was detected. Lambs from selenium supplemented ewes had significantly higher titres to tetanus toxoid than lambs from ewes in the control group. Dietary vitamin E supplementation had a similar effect on the antibody response to tetanus toxoid in ewes, though no additive effect was seen when vitamin E was given together with selenium.  相似文献   

6.
Effect of selenium on sheep lymphocyte responses to mitogens   总被引:1,自引:0,他引:1  
The effect of selenium (Se) on sheep lymphocyte response to mitogens was studied. In an indoor experiment lambs were fed a basal diet containing 0.13 mg Se kg-1, and supplemented with, respectively, 0.1 or 0.5 mg Se kg-1, either as sodium selenite or as selenomethionine. Enhancement of the proliferative response of lymphocytes to phytohaemagglutinin (PHA), pokeweed mitogen (PWM) and concanavalin A was found in lambs following selenium supplementation at the lower levels. The highest dietary selenium content, however, induced decreased mitogen response. Transient increases in lymphocyte response to PHA and PWM by ewes supplemented with selenium was demonstrated in one field study and a combined effect of selenium and vitamin E was seen in another. There was no stimulatory effect on the mitogen response of lymphocytes from sheep supplemented with dietary vitamin E alone.  相似文献   

7.
Excess consumption of selenium (Se) accumulator plants can result in selenium intoxication. The objective of the study reported here was to compare the acute toxicosis caused by organic selenium (selenomethionine) found in plants with that caused by the supplemental, inorganic form of selenium (sodium selenite). Lambs were orally administered a single dose of selenium as either sodium selenite or selenomethionine and were monitored for 7 days, after which they were euthanized and necropsied. Twelve randomly assigned treatment groups consisted of animals given 0, 1, 2, 3, or 4 mg of Se/kg of body weight as sodium selenite, or 0, 1, 2, 3, 4, 6, or 8 mg of Se/kg as selenomethionine. Sodium selenite at dosages of 2, 3, and 4 mg/kg, as well as selenomethionine at dosages of 4, 6, and 8 mg/kg resulted in tachypnea and/or respiratory distress following minimal exercise. Severity and time to recovery varied, and were dose dependent. Major histopathologic findings in animals of the high-dose groups included multifocal myocardial necrosis and pulmonary alveolar vasculitis with pulmonary edema and hemorrhage. Analysis of liver, kidney cortex, heart, blood, and serum revealed linear, dose-dependent increases in selenium concentration. However, tissue selenium concentration in selenomethionine-treated lambs were significantly greater than that in lambs treated with equivalent doses of sodium selenite. To estimate the oxidative effects of these selenium compounds in vivo, liver vitamin E concentration also was measured. Sodium selenite, but not selenomethionine administration resulted in decreased liver vitamin E concentration. Results of this study indicate that the chemical form of the ingested Se must be known to adequately interpret tissue, blood, and serum Se concentrations.  相似文献   

8.
不同来源硒对异育银鲫的生物学效应研究   总被引:1,自引:0,他引:1  
以异育银鲫为试验动物,研究不同来源的硒(蛋氨酸硒和纳米硒)对其生长性能、肌肉生化组成和谷胱甘肽过氧化物酶活性的影响。试验分为3个处理,日粮中添加硒浓度分别为0 mg/kg(对照组)、0.5 mg/kg(蛋氨酸硒)和0.5 mg/kg(纳米硒),每个处理3个重复。结果显示,与对照组相比,蛋氨酸硒和纳米硒均可显著提高异育银鲫的末重、相对增重率以及谷胱甘肽过氧化物酶活性(P<0.05),但是蛋氨酸硒处理组和纳米硒处理组间差异不显著。纳米硒处理组肌肉中硒含量显著高于其他两组(P<0.05),蛋氨酸硒处理组肌肉中硒含量显著高于对照组(P<0.05)。研究表明,饵料中添加一定浓度的蛋氨酸硒和纳米硒具有一定的生物学效应。  相似文献   

9.
Groups af White Leghorn chicks obtained from dams deprived on selenium (Se), were fed from hatching a low-Se-vitamin E basal diet alone, or supplemented with 0.02, 0.04, 0.06 or 0.08 mg Se/kg diet, as sodium selenite (Na2SeO3 · 5H2O), wheat, barley or fish meal. Prevention of the Se-vitamin E deficiency responsive disease exudative diathesis (ED) as it was clinical observed, induction of the plasma Se dependent enzyme glutathione peroxidase (GSH-Px) activity, and Se concentration in the cardiac muscle were observed to be dietary Se level and source dependent. Slope ratio assay was applied to estimate the biological availability of Se in the natural sources relative to Se in sodium selenite. For the prevention of ED, the bioavailability of Se in wheat, barley and fish meal was 99, 85 and 80 %, respectively. The increase in the plasma GSH-Px activity revealed a bioavailability for Se in wheat, barley and fish meal of 79, 71 and 66 %, respectively. Using retention of Se in the cardiac muscle as the bioassay, a bioavailability of 108, 87 and 100 % was calculated for wheat, barley and fish meal Se, respectively.  相似文献   

10.
The objective of this study was to determine if serum glutathione peroxidase activity reflects short-term changes in the selenium status of goats. Angora goat kids (n=14) were fed pelleted luceme containing 20 microg/kg of selenium, and treated orally with either selenium (0.1 mg/kg of liveweight weekly, as sodium selenate) or de-ionised water. Serum activity of glutathione peroxidase was increased in response to supplementation and differed from that of controls within 24 hours of supplementation. The change in serum glutathione peroxidase activity during the 21 days after the start of weekly supplementation closely followed changes in serum selenium concentration. The results of this study suggest that serum glutathione peroxidase activity reflects the short-term improvement in the selenium status of Angora goat kids following oral supplementation with sodium selenate.  相似文献   

11.
The aim of the study was to define possible differences between selenite, selenate and selenium yeast on various aspects of selenium status in growing cattle. Twenty-four Swedish Red and White dairy heifers were fed no supplementary selenium for 6 months. The basic diet contained 0.026 mg selenium/kg feed dry matter (DM). After the depletion period the animals were divided into 4 groups; group I-III received 2 mg additional selenium daily as sodium selenite, sodium selenate, and a selenium yeast product, respectively. Group IV, the control group, received no additional selenium. The total dietary selenium content for groups I-III during the supplementation period was 0.25 mg/kg DM. After the depletion period the mean concentration of selenium in blood (640 nmol/l) and plasma (299 nmol/l) and the activity of GSH-Px in erythrocytes (610 mukat/l) were marginal, but after 3 months of supplementation they were adequate in all 3 groups. The concentration of selenium in blood and plasma was significantly higher in group III than in groups I and II, but there was no significant difference between groups I and II. The activity of GSH-Px in erythrocytes did not differ between any of the supplemented groups. The animals in the control group had significantly lower concentrations of selenium in blood and plasma and lower activities of GSH-Px in erythrocytes than those in the supplemented groups. The activity of GSH-Px in platelets was also increased by the increased selenium intake. There was no difference in the concentration of triiodothyronine (T3) between any of the groups, but the concentration of thyroxine (T4) was significantly higher in the unsupplemented control group.  相似文献   

12.
本试验旨在考察不同硒源及硒水平对大鼠生长性能、血清抗氧化能力及组织硒沉积的影响,并以亚硒酸钠和商品酵母硒(酵母硒B)为参比,对本课题组用糖蜜和尿素为发酵底物研制的酵母硒(酵母硒A)生物学效价进行评定.将硒耗竭2周后的70只8周龄左右Wistar雌性大鼠称重,随机分到10个处理,每个处理7个重复,每个重复1只大鼠,分别饲喂不同处理的饲粮21d.处理1不添加任何形式的硒源,处理2~9在基础饲粮中分别以亚硒酸钠或酵母硒A的形式添加0.1、0.2、0.3和0.4mg/kg硒,处理10以酵母硒B形式添加0.3mg/kg硒.结果表明:1)不同硒源及硒水平对大鼠生长性能、血清谷胱甘肽过氧化物酶(GSH-Px)和超氧化物歧化酶活性影响不显著(P>0.05);2)组织硒含量随饲粮硒水平的升高极显著增加(P<0.01),添加酵母硒A组大鼠组织硒含量显著高于亚硒酸钠组(P<0.05);3)以亚硒酸钠为参比,血清GSH-Px活性及肝脏、肾脏和肌肉硒含量作为判定指标,酵母硒A的相对生物学效价分别为95.9%、127.5%、114.5%和101.2%;4)添加酵母硒A和酵母硒B对大鼠生长性能、血清抗氧化能力的影响不显著(P>0.05),但添加酵母硒A组大鼠肾脏硒含量极显著高于酵母硒B组(P<0.01),而酵母硒B在肌肉中有更多的硒沉积(P<0.01).结果提示:1)硒源对大鼠组织硒沉积有较大影响,酵母硒相对于亚硒酸钠具有更高的生物学效价,但不同酵母硒之间存在一定的差异;2)饲粮硒水平对大鼠血清抗氧化能力影响较小,以血清GSH-Px活性为衡量标准,0.1mg/kg硒的酵母硒和亚硒酸钠都能满足大鼠的需要,但更高水平的酵母硒可以使大鼠组织中有更多硒的储备.  相似文献   

13.
1. Two experiments were carried out to study the effect of dietary cyanide, given in the form of sodium nitroprusside (SNP), on the growth and selenium status of chicks fed on diets low in sulphur-containing amino acids. 2. In experiment 1, SNP (0.3 g/kg) depressed growth rate and food intake when included in diets low in total sulphur-containing amino acids. It also reduced plasma and liver glutathione peroxidase activity (GSH-Px) and kidney selenium concentration. These latter variables also showed increases in response to supplements of selenium of 0.1 and 0.2 mg selenium/kg (as sodium selenite) although growth was not affected. 3. In experiment 2, SNP did not affect growth when reduced to 0.1 g/kg in diets low both in methionine and total sulphur-containing amino acids. It did, however, reduce plasma GSH-Px activity, which again increased in response to similar dietary supplements of selenium. 4. It is concluded that dietary cyanide effectively increases the requirement for selenium and could induce deficiency in diets only marginally adequate in selenium, particularly when the supply of sulphur-containing amino acids was marginal or inadequate.  相似文献   

14.
Background:This study was designed to evaluate the efficacy of DL-selenomethionine(DL-SeMet) supplementation on growth performance,antioxidant status,plasma selenium(Se) concentration,and immune function of weaning pigs.216 weaning pigs were randomly allocated to 6 treatments with 6 replicates each according to a complete randomized block design.Each replicate had six pigs.Diet of group one was corn-soybean basal diet without any additional Se supplement.Group 2 was supplemented with 0.3 mg/kg of Se from sodium selenite.Groups 3-6 were supplemented with 0.1,0.3,0.5,and 0.7 mg/kg of Se from DL-SeMet,respectively.The trial lasted for 42 days.Results:Pigs supplemented with 0.3 and 0.7 mg/kg DL-SeMet obtained better feed gain ratio(P 0.05).The best antioxidant ability(serum,liver,and muscle) was shown in 0.1-0.3 mg/kg DL-SeMet groups(P 0.05).The plasma Se concentration increased as the dietary DL-SeMet level elevated.The immunity among groups was not affected.Conclusions:DL-SeMet supplementation in the diet significantly improved the growth performance,antioxidant ability and plasma Se content of weaning pigs.DL-SeMet can replace sodium selenite in the diet of weaning pigs.  相似文献   

15.
The objective was to determine the concentration of total Se and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in postmortem tissues of beef cattle offered diets containing graded additions of selenized enriched yeast (SY; Saccharomyces cerevisiae CNCM I-3060) or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of edible muscle tissue were assessed 10 d postmortem. Thirty-two beef cattle were offered, for a period of 112 d, a total mixed ration that had been supplemented with SY (0, 0.15, or 0.35 mg of Se/kg of DM) or SS (0.15 mg of Se/kg of DM). At enrollment (0 d) and at 28, 56, 84, and 112 d following enrollment, blood samples were taken for Se and Se species determination, as well as whole blood GSH-Px activity. At the end of the study beef cattle were killed and samples of heart, liver, kidney, and skeletal muscle (LM and psoas major) were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in skeletal muscle tissue (LM only). The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, as well as GSH-Px activity. There was also a dose-dependent response to the graded addition of SY on total Se and proportion of total Se as SeMet in all tissues and GSH-Px activity in skeletal muscle tissue. Furthermore, total Se concentration of whole blood and tissues was greater in those animals offered SY when compared with those receiving a comparable dose of SS, indicating an improvement in Se availability and tissue Se retention. Likewise, GSH-Px activity in whole blood and LM was greater in those animals offered SY when compared with those receiving a comparable dose of SS. However, these increases in tissue total Se and GSH-Px activity appeared to have little or no effect in meat oxidative stability.  相似文献   

16.
The aim of this trial was to determine whether the selenium status of suckling calves could be improved by supplementing their dams' diet with organic Se instead of sodium selenite. A herd of 103 Hereford cows, which were on grass paddocks all year round, was divided into two groups. Both groups had free access to a mineral supplement that contained 30 mg of Se/kg; for one group the source of the Se was a Se yeast product, and for the other group the source was sodium selenite. The basal feed contained .02 mg of Se/kg DM. During the trial, the mean daily consumption of the mineral supplement was approximately 110 g/cow. The calving season started in the middle of March and ended in the middle of May. Blood samples were taken from 11 cows and their calves in the yeast group and from nine in the selenite group at the end of April and again at the beginning of June, and milk samples were taken at the same times. At both samplings, the concentration of Se in whole blood and the activity of glutathione peroxidase (GSH-Px) in the erythrocytes of the cows and calves in the yeast group were higher than in the samples from the animals in the selenite group. The same pattern was seen for plasma, except for the cows at the first sampling. The mean concentrations of Se in whole blood from calves in the yeast and selenite groups were 130 and 84 microg/L, respectively, and plasma concentrations were 48 and 34 microg/ L, respectively. Mean Se concentration in the milk from the yeast group (17.3 microg/L) was higher than that in milk from the selenite group (12.7 microg/L). There were significant correlations (r = .59 to .68) between the concentrations of Se in the cow's milk or cow's whole blood compared with Se concentrations in the calves whole blood and plasma or with the erythrocyte GSH-Px activity of the calves. The Se status of the calves in the selenite group was considered to be marginal, but the status of the calves in the yeast group was considered to be adequate. Supplementation of the suckler cows' diet with organic Se in the form of Se yeast rather than sodium selenite improved the Se status of their calves when the Se was mixed into a mineral supplement containing 30 mg of Se/kg. In practice, such supplementation would probably eliminate the risk of nutritional muscular degeneration in suckling calves.  相似文献   

17.
A randomized, blocked 23 factorial experiment was conducted with 48 pigs from sows fed a diet low in selenium and vitamin E. From 3 to 12 weeks of age the piglets were kept in single pens and fed a basic diet consisting mostly of barley, dried skim milk, soybean meal and dried yeast, and containing 55 µg selenium and 3 mg vitamin E per kg. The treatment factors — i.e. feed supplements — were 2 levels of Se (nil, 60 µg/kg), 2 levels of vitamin E (nil, 50 mg/kg), and 2 levels of the feed antioxidant ethoxyquin (nil, 150 mg/kg). Blood samples, collected at termination of the experiment, were examined for glutathione peroxidase activity (GSH-Px) and resistance against erythrocyte lipid peroxidation (ELP) to evaluate Se and vitamin E status, respectively. Analysis of variance showed the GSH-Px activity to be litter-dependent (P < 0.001) and influenced by selenium supplementation (P < 0.001) but not by the other supplements or by interactions between supplements. Resistance against ELP was influenced only by vitamin E supplementation (P < 0.001). GSH-Px and ELP thus seem to be valuable and simple methods for evaluating, respectively, Se status and vitamin E status in growing pigs.  相似文献   

18.
On December 2, 1999, 120 pregnant cows were weighed, their body condition scored, and then sorted into six groups of 20 stratified by BCS, BW, breed, and age. Groups were assigned randomly to six, 5.1-ha dormant common bermudagrass (Cynodon dactylon [L.] Pers.) pastures for 2 yr to determine the effects of supplemental Se and its source on performance and blood measurements. During the winter, each group of cows had ad libitum access to bermudagrass/dallisgrass (Paspalum dilatatum Poir.) hay plus they were allowed limited access (1 to 4 d/wk) to a 2.4-ha winter-annual paddock planted in half the pasture. Treatments were assigned randomly to pastures (two pastures per treatment), and cows had ad libitum access to one of three free-choice minerals: 1) no supplemental Se, 2) 26 mg of supplemental Se from sodium selenite/kg, and 3) 26 mg of supplemental Se from seleno-yeast/kg (designed intake = 113 g/cow daily). Data were analyzed using a mixed model; year was the random effect and treatment was the fixed effect. Selenium supplementation or its source had no effect (P > or = 0.19) on cow BW, BCS, conception rate, postpartum interval, or hay DMI. Birth date, birth weight, BW, total BW gain, mortality, and ADG of calves were not affected (P > 0.20) by Se or its source. Whole blood Se concentrations and glutathione peroxidase (GSH-Px) activity at the beginning of the trial did not differ (P > or = 0.17) between cows receiving no Se and cows supplemented with Se or between Se sources. At the beginning of the calving and breeding seasons, cows supplemented with Se had greater (P < 0.01) whole blood Se concentrations and GSH-Px activities than cows receiving no supplemental Se; cows fed selenoyeast had greater (P < or = 0.05) whole blood Se concentrations than cows fed sodium selenite, but GSH-Px did not differ (P > or = 0.60) between the two sources. At birth and on May 24 (near peak lactation), calves from cows supplemented with Se had greater (P < or = 0.06) whole blood Se concentrations than calves from cows fed no Se. At birth, calves from cows fed seleno-yeast had greater (P < or = 0.05) whole blood Se concentrations and GSH-Px activities than calves from cows fed sodium selenite. Although no differences were noted in cow and calf performance, significant increases were noted in whole blood Se concentrations and GSH-Px activities in calves at birth as a result of feeding of seleno-yeast compared to no Se or sodium selenite.  相似文献   

19.
1. The aim of the experiment was to estimate the selenium requirement of growing male turkeys using the selenium concentrations in different organs and blood plasma and by fitting a continuous broken line to the activity of glutathione peroxidase in liver and plasma. 2. Newly hatched male BUT BIG 6 turkeys were fed either on the selenium deficient basal soybean-maize diets (selenium <0.010 mg/kg diet) adapted to the NRC (1994) and GfE (2004) recommendations for growing turkeys from 0 to 2 weeks (prestarter diet) and 3 to 5 weeks (starter diet) or the basal diets supplemented with 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 or 0.40 mg selenium/kg diet as sodium selenate. Vitamin E was supplemented adequately in all diets. 3. After 5 weeks the weight in all groups (mean 2568 g) exceeded the expectations for the genotype investigated. Feed consumption and weight gain were however significantly reduced in the group receiving the selenium-deficient diet. 4. After 2 and 5 weeks selenium concentration and activity of glutathione peroxidase in the plasma and the organs examined were greatly influenced by selenium supplementation. 5. Under the conditions investigated, 0.30 mg Se/kg diet was necessary for fast-growing male turkeys to ensure maximum selenium accumulation in the organs examined and maximum glutathione peroxidase activity in plasma and liver.  相似文献   

20.
Young chicks exhibited a 61% reduction in weight gain when a corn-soybean meal diet was supplemented with 15 mg/kg Se provided as Na selenite. The same level of Se provided as selenomethionine depressed weight gain by 32%. Supplementing the high selenite diet with isoarsenous (14 mg/kg As) additions of As2O5, As2O3, phenylarsonic acid, phenylarsine oxide and roxarsone ameliorated the Se-induced growth depression: As2O5 almost totally restored growth rate; As2O3, phenylarsonic acid and phenylarsine oxide gave intermediate responses; and roxarsone gave only a small ameliorative growth response. Arsanilic acid was without effect in stimulating growth rate of selenite-intoxicated chicks. Dietary addition of .4% L-cysteine produced a growth response in selenite intoxicated chicks that was somewhat greater than that obtained with roxarsone; administering both roxarsone and cysteine corrected growth better than either compound given singly. Both roxarsone and As2O5 also effectively ameliorated the Se-toxicity growth depression caused by selenomethionine (15 mg Se/kg) supplementation, but cysteine showed no efficacy against morbidity caused by this form of Se. Liver Se concentration was elevated 10-fold by selenite and 25-fold by selenomethionine supplementation. The arsenic compounds had varying effects on liver Se, whereas cysteine tended to increase Se concentration. These findings suggest that both inorganic and organic arsenicals as well as cysteine ameliorate selenium toxicity by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号