首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thorough understanding of the genetic mechanisms governing drought adaptive traits can facilitate drought resistance improvement. This study was conducted to identify chromosome regions harbouring QTLs contributing for water stress resistance in wheat. A RIL mapping population derived from a cross between W7984 (Synthetic) and Opata 85 was phenotyped for root length and root dry weight under water stress and non-stress growing conditions. ANOVA showed highly significant (p ≤ 0.01) variation among the RILs for both traits. Root length and root dry weight showed positive and significant (p ≤ 0.01) phenotypic correlation. Broad sense heritability was 86% for root length under stress and 65% for root dry weight under non-stress conditions. A total of eight root length and five root dry weight QTLs were identified under both water conditions. Root length QTLs Qrln.uwa.1BL, Qrln.uwa.2DS, Qrln.uwa.5AL and Qrln.uwa.6AL combined explained 43% of phenotypic variation under non-stress condition. Opata was the source of favourable alleles for root length QTLs under non-stress condition except for Qrln.uwa.6AL. Four stress specific root length QTLs, Qrls.uwa.1AS, Qrls.uwa.3AL, Qrls.uwa.7BL.1 and Qrls.uwa.7BL.2 jointly explained 47% of phenotypic variation. Synthetic wheat contributed favourable alleles for Qrls.uwa.1AS and Qrls.uwa.3AL. Two stable root dry weight QTLs on chromosomes 4AL and 5AL were consistently found in both water conditions. Three validation populations were developed by crossing cultivars Lang, Yitpi, and Chara with Synthetic W7984 to transfer two of the QTLs identified under stress condition. The F2.3 and F3.4 validation lines were phenotyped under the same level of water stress as RILs to examine the effect of these QTLs. There were 13.5 and 14.5% increases in average root length due to the inheritance of Qrls.uwa.1AS and Qrls.uwa.3AL, respectively. The result indicated that closely linked SSR markers Xbarc148 (Qrls.uwa.1AS) and Xgwm391 (Qrls.uwa.3AL) can be incorporated into MAS for water stress improvement in wheat.  相似文献   

2.
Phytophthora root rot caused by Phytophthora drechsleri Tucker is one of the most devastating sugar beet diseases in tropical areas. To identify genetic resources resistant to this disease, an aggressive isolate of P. drechsleri was selected. Then, a screening method was optimized based on the standard scoring scales of 1–9 (1: no symptoms, 9: complete plant death). Finally, 19 sugar beet lines, three cultivars, and 14 accessions of the wild species Beta vulgaris subsp. maritima, B. macrocarpa, B. procumbens, and B. webbiana were evaluated for resistance to the most aggressive isolate of P. drechsleri by using the optimized method (inoculum included 20 g of rice seed together with superficial wound creation). The isolates of P. drechsleri had significant variation in aggressiveness, and Kv10 was the most aggressive isolate on the susceptible variety Rasoul. The lines O.T.201-15, SP85303-0 (resistant check), and S2-24.P.107 had the lowest disease index with scores of 3.09, 3.13, and 3.27 respectively; they were categorized into the resistant group. The interaction between isolates and genotypes was not significant, which indicated the same response of each genotype to different isolates. Investigating the resistance of different generations of sugar beet revealed that progeny selection would be an effective method for increasing the resistance level of breeding materials to P. drechsleri. Among the wild species, the accession 9402 belonging to B. macrocarpa and the accession 7234 of B. vulgaris subsp. maritima had the lowest disease index (2.29 and 2.60, respectively) and were categorized into the resistant group.  相似文献   

3.
Wheat is one of the most widely grown cereal crops based on the amount of calories it provides in the human diet. Durum wheat (Triticum turgidum ssp. durum) is largely used for production of pasta and other products. In order to use genetic knowledge to improve the understanding of N-use efficiency, we carried out, for the first time in durum wheat, the isolation and the characterization of four members of the asparagine synthetase (AsnS) gene family. Phylogenetic inference clustered the Ttu-AsnS1 (1.1 and 1.2) and Ttu-AsnS2 (2.1 and 2.2) genes in AsnS gene class I, which is present in monocots and dicots. Class I genes underwent a subsequent duplication leading to the formation of two subgroups. Plants of Svevo cultivar were grown under N-stress conditions and expression of the four AsnS genes was investigated at three developmental stages (seedling, booting, and late milk development), crucial for N absorption, assimilation and remobilization. AsnS1 genes were down-regulated in N-stressed roots, stems and leaves during seedling growth and booting, but seemed to play a role in N remobilization in flag leaves during grain filling. AsnS2 genes were scarcely expressed in roots, stems, and leaves. In N-stressed spikes there was no differential expression in any of the genes. The genes were mapped in silico using a durum wheat SNP map, assigning Ttu-AsnS1 genes to chromosome 5 and Ttu-AsnS2 to chromosome 3. These findings provide a better understanding of the role of ASN genes in response to N stress in durum wheat.  相似文献   

4.
Both low-temperature germinability (LTG) and cold tolerance at the seedling stage (CTS) are important traits for rice. In this study, a rice population of recombinant inbred lines (RILs), derived from the backcross population of a cross between Dongnong422 and Kongyu131, was developed to detect quantitative trait loci (QTL) affecting LTG and CTS by using seed of different storage times. Correlation analysis indicated that there was no significant relationship between LTG and CTS, suggesting that cold tolerance might be genetic differences for LTG and CTS. In total, Twelve and twenty-three major QTLs were detected for LTG and CTS, respectively, which could explain greater than 10% of the phenotypical variation. Eight (qCG12-1, qGI12-1, qGV9-1, qMLIT12-1, qPV6-1, qMDG12-1, qLDWcold10-1, qLFWcold10-1) significant QTLs were mapped for different storage time, it concluded that such QTLs were not affected by environment (storage time) and were closely related QTLs to cold tolerance. One or more QTLs were identified for each trait with some of these QTLs co-locating, qMLIT7-1, qCG7-1, and qGI7-1 for LTG, qLFWcold10-1, and qLDWcold10-1 for CTS with contributions over 15% were mapped common marker interval, respectively, co-location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. Two lines, RIL128 and RIL73, might be valuable to improve the LTG and CTS through a combination of crosses. The identified QTLs might be applicable to improve the rice cold tolerance by the marker-assisted selection approach.  相似文献   

5.
To identify marker–trait associations (MTAs) for yield and quality traits in peanut, genic and nongenic Arachis hypogaea transposable element (AhTE) markers were employed in a population consisting of independent mutants from several parents. The population was field-evaluated during the rainy seasons of 2014 and 2015, and genotyped with 110 AhTE markers to check the polymorphisms for AhMITE1 transposition. The gene diversity index ranged from 0.00 to 0.50 with average of 0.35, indicating low to moderate genetic diversity in the population. Diversity analysis indicated the grouping of mutants derived from each parent in respective subgroups. Marker–trait association analysis for 110 markers and 40 traits resulted in 132 highly significant MTAs, represented by 58 AhTE markers for 39 traits. Nutritional traits recorded the highest number of MTAs (38), followed by agronomic traits (35), productivity traits (31), foliar disease resistance (23), and taxonomic traits (5). Seventeen MTAs with phenotypic variance explained (PVE) value above 50 % were observed for resistance to late leaf spot (LLS) and rust, plant height, and pod width. The genic and nongenic AhTE markers associated with the above traits were analyzed for their genomic location and functional annotation so that the significance of these loci can be analyzed in the future.  相似文献   

6.
Fruit setting after self-pollination, crosses and free-pollination appears to be erratic in the cultivated olive tree [Olea europaea subsp europaea L. (O. e. europaea L.)] because of a lack of a suitable model to enable prediction of rates. The same lack of prediction also applies to the wild taxon Olea europaea subsp cuspidata (O. e. cuspidata). Because of their close phylogenetic relationships, we hypothesize that O. e. cuspidata and cultivated olive share the same self-incompatibility system. We used data recently published in a wide study involving four O. e. cuspidata accessions and four olive cultivars. Because the olive varieties have been deciphered for their S-allele pair, that infer determinants present in the stigma and pistil, and that coat the pollen, we deciphered the S-alleles carried by three of the O. e. cuspidata accessions. Data are too scarce and the number of accessions too small to speculate on the O. e. cuspidata genetic population structure. The working hypothesis is confirmed. This study and data from the Italian team will enable us to embark on a large-scale hybridization program between the two subsp. to obtain a wide range of progenies for screening for responses to cold, diseases and pests.  相似文献   

7.
Tiller number per plant (TN) and plant height (PH) are important agronomic traits related to grain yield (GY) in rice (Oryza sativa L.). A total of 30 additive quantitative trait loci (A-QTL) and 9 significant additive × environment interaction QTLs (AE-QTL) were detected, while the phenotypic and QTL correlations confirmed the intrinsic relationship of the three traits. These QTLs were integrated with 986 QTLs from previous studies by metaanalysis. Consensus maps contained 7156 markers for a total map length of 1112.71 cM, onto which 863 QTLs were projected; 78 meta-QTLs (MQTLs) covering 11 of the 30 QTLs were detected from the cross between Dongnong422 and Kongyu131 in this study. A total of 705 predicted genes were distributed over the 21 MQTL intervals with physical length <0.3 Mb; 13 of the 21 MQTLs, and 34 candidate genes related to grain yield and plant development, were screened. Five major QTLs, viz. qGY6-2, qPH7-2, qPH6-3, qTN6-1, and qTN7-1, were not detected in the MQTL intervals and could be used as newly discovered QTLs. Candidate genes within these QTL intervals will play a meaningful role in molecular marker-assisted selection and map-based cloning of rice TN, PH, and GY.  相似文献   

8.
Pre-harvest sprouting (PHS) causes significant yield loss and degrade the end-use quality of wheat, especially in regions with prolonged wet weather during the harvesting season. Unfortunately, the gene pool of Triticum durum (tetraploid durum wheat) has narrow genetic base for PHS resistance. Therefore, finding out new genetic resources from other wheat species to develop PHS resistance in durum wheat is of importance. A major PHS resistance QTL, Qphs.sicau-3B.1, was mapped on chromosome 3BL in a recombinant inbred line population derived from ‘CSCR6’ (Triticum spelta), a PHS resistant hexaploid wheat and ‘Lang’, a PHS susceptible Australian hexaploid wheat cultivar. This QTL, Qphs.sicau-3B.1, is positioned between DArT marker wPt-3107 and wPt-6785. Two SCAR markers (Ph3B.1 and Ph3B.2) were developed to track this major QTL and were used to assay a BC2F8 tetraploid population derived from a cross between the durum wheat ‘Bellaroi’ (PHS susceptible) and ‘CSCR6’ (PHS resistant). Phenotypic assay and marker-assisted selection revealed five stable tetraploid lines were highly PHS resistant. This study has successfully established that PHS-resistance QTL from hexaploid wheat could be efficiently introgressed into tetraploid durum wheat. This tetraploid wheat germplasm could be useful in developing PHS resistant durum cultivars with higher yield and good end-use quality.  相似文献   

9.
A collection of 112 African barley accessions were assessed for response to Puccinia hordei in seedling greenhouse tests using 10 pathotypes and in adult plant field tests over three successive field seasons in Australia. One of the 10 pathotypes (viz. 5457P+) used in seedling tests was also used in field tests to allow assessment of the presence of adult plant resistance (APR) in lines that were seedling susceptible to this pathotype. The seedling resistance genes Rph1, Rph2, Rph3, Rph9.am and Rph9.z were postulated in a number of accessions, singly and in various combinations, with Rph2 and Rph9.z being the most common. Twenty-six accessions carried seedling resistance that was either uncharacterized or could not be determined using the 10 P. hordei pathotypes. One accession carried high levels of APR and 11 accessions showed moderate levels of APR, all of which were susceptible to all P. hordei pathotypes at the seedling stage. All barley accessions were genotyped for the presence of marker alleles that are closely linked to the APR genes Rph20 and Rph23 (bPb-0837 and Ebmac0603, respectively). No accession was positive for bPb-0837, suggesting that Rph20 is not frequent in African germplasm. Thirteen accessions were postulated to carry Rph23 based on the presence of the marker allele Ebmac0603 found in Yerong (Rph23), and 10 out of the 11 accessions with moderate APR lacked the bPb-0837 and Ebmac0603 marker alleles, indicating that they likely carry new uncharacterized APR genes. Inheritance studies were performed using populations derived from four of the accessions that carried APR (Clho 9776, Clho 11958, Mecknes Maroc and Sinai) by crossing with the susceptible barley genotype Gus. Chi squared analysis of the phenotypic data from F3 populations suggested that CIho9776 carried a single APR gene and CIho11958, Mecknes Maroc and Sinai each carried two genes for APR to leaf rust.  相似文献   

10.
Over recent years, quality has become an important commercial issue for durum wheat breeders. Modern breeding methods are most efficient for producing and supplying the best quality raw materials to the pasta industry. Here we assessed the effectiveness of molecular marker-assisted selection of quality traits in durum wheat. To this end, DNA and quality trait markers were jointly used to analyze quality-related traits in a durum wheat collection. A total of 132 durum wheat (Triticum turgidum ssp. durum) Mediterranean landraces, international lines, and Moroccan cultivars were analyzed for seven important qualityrelated traits including thousand-kernel weight (TKW), test weight (TW), gluten strength, yellow pigment (YP), and grain protein content (GPC). Additionally, 18 simple sequence repeat (SSR) markers previously reported to be associated with different quality traits were analyzed. Of these, 14 (78%) were polymorphic and four were monomorphic. There were between two and seven alleles per locus, with an average of four alleles per locus. The average phenotypic variation value (R2) ranged from 2.81 to 20.43%. Association analysis identified nine markers significantly associated with TKW, TW, and YP, followed by eight markers associated with GPC, six markers associated with yellow index b, four markers associated with brightness L, and three markers associated with SDS-sedimentation volume. This study highlights the efficiency of SSR technology, which holds promise for a wide range of applications in marker-assisted wheat breeding programs.  相似文献   

11.
Two recombinant inbred line F10 rice populations (IAPAR-9/Akihikari and IAPAR-9/Liaoyan241) were used to identify quantitative trait loci (QTLs) for ten drought tolerance traits at the budding and early seedling stage under polyethylene glycol-induced drought stress, and two traits of leaf rolling index (LRI) and leaf withering degree (LWD) under field drought stress. The results showed that the drought-tolerance capacity of IAPAR-9 was stronger than that of Akihikari and Liaoyan241. Thirty-four QTLs for 12 drought tolerance traits were detected, and among them, in the IAPAR-9/Akihikari population, qLRI9-1 and qLRI10-1 for LRI were repeatedly detected in RM3600-RM553 on chromosome 9 and in RM6100-RM3773 on chromosome 10, respectively, at two times points of July 31 and August 13 in 2014. The two QTLs are stable against the environmental impact, and qLRI9-1 and qLRI10-1 explained 6.77–13.66% and 5.01–8.32% of the phenotypic variance, respectively, at the two times points. qLWD9-2 for LWD in the IAPAR-9/Liaoyan241 population contributed 8.73% of variation was detected in the same marker interval with the qLRI9-1, and qLRI1-1 for LRI and qLWD1-1 for LWD were located in the same marker interval RM11054-RM5646 on chromosome 1, which contributed 18.82 and 5.78% of phenotype variation respectively. qGV3 for germination vigor and qRGV3 for relative germination vigor at the budding stage were detected in the same marker interval RM426-RM570 on chromosome 3, which explained 14.98 and 16.30% of the observed phenotypic variation respectively, representing major QTLs. The above-mentioned stable or major QTLs regions could be useful for molecular marker assisted selection breeding, fine mapping, and cloning.  相似文献   

12.
Most forage cultivars released for the genus Paspalum belong to a section named Plicatula. The species of Plicatula are mostly apomictic and consequently the genetic diversity is locked for their genetic improvement. The objectives were to evaluate the crossability, hybrid fertility, heterosis, and genetic distances between apomictic accessions and a sexual genotype of species of Plicatula group of Paspalum. Crosses were made using 22 apomictic tetraploid accessions belonging to 12 different species as pollen donors, and a sexual tetraploid genotype induced by colchicine from a sexual diploid accession of P. plicatulum. Crossability varied between 0 and 16% among crosses. Viable hybrid offspring were recovered from 15 out of 22 crosses. The most successful crosses involved P. guenoarum, P. plicatulum, P. chaseanum, and P. oteroi. Fertility of the sampled hybrids varied between 1.6% for the cross involving P. lenticulare, and 40.1% for an intraspecific cross (P. plicatulum, accession Hojs388). The genetic distance between parents was estimated using amplified fragment-length polymorphism, and it varied between 0.34 and 0.53. There was no correlation between genetic distances and crossability or fertility of the hybrids. Hybrids from the most numerous families were classified for mode of reproduction using flow cytometric seed analysis. The ratio between sexual and apomictic hybrids varied between 0.6:1 and 1.6:1. A selected group of apomictic hybrids were evaluated for several agronomic traits in the field. Heterosis was observed for frost tolerance and cattle preference. The results indicated that gene transfer via hybridization is possible among several species of Plicatula. Superior hybrids for specific traits can be generated and fixed by apomixis.  相似文献   

13.
A set of putative marker genes to study plant defense responses against Polyphagotarsonemus latus, a key pest in the production of Rhododendron simsii hybrids, was selected and validated. Genes belonged to the biosynthetic pathway of phytohormones jasmonic acid (JA) (RsLOX, RsAOS, RsAOC, RsOPR3 and RsJMT) and salicylic acid (SA) (RsPAL and RsICS). Furthermore, RsPPO, a putative marker gene for oxidative stress response was successfully cloned from R. simsii. A CTAB-based extraction protocol was optimized to assure excellent RNA quality for subsequent RT-qPCR analysis. The RT-qPCR protocol was extensively tested and RsRG7 and RsRG14 were selected as reference genes from a geNorm pilot study. Validation of the marker genes was done after application with elicitors [methyl jasmonate (MeJA), coronatine, β-aminobutyric acid and acibenzolar-Smethyl] or wounding. Both 100 μM MeJA and 0.1 μM coronatine had a significant effect on the expression of all marker genes. Foliar application of MeJA on the shoots resulted in a significantly earlier response when compared to root application and subsequent sampling of the shoots. Expression patterns after MeJA treatment were generally the same in six R. simsii genotypes: ‘Nordlicht’, ‘Elien’, ‘Aiko Pink’, ‘Michelle Marie’, ‘Mevrouw Gerard Kint’ and ‘Sachsenstern’. Wounding resulted in the same expression patterns as MeJA treatment except for RsJMT. None of the genotypes showed a significant induction of the latter gene 6 h upon wounding. Findings of these experiments indicated that the tolerant genotype ‘Elien’ has low basal expression levels of RsPPO. This might be the first step towards the breeding of mite-tolerant genotypes.  相似文献   

14.
N. Watanabe 《Euphytica》2017,213(8):201
Einkorn wheat, Triticum monococcum L. (2n = 2x = 14, AmAm genome), is a primitive, cultivated form of diploid wheat. The shortcoming of einkorn is that it lacks the free-threshing habit. Early heading and semi-dwarf traits are also required to fit modern agricultural practice. In the present study we developed T. monococcum pre-breeding germplasm having early, free threshing traits by utilizing an early heading source, two sources of soft glume (spike) and three sources of semi-dwarfism to combine their phenotypes into pre-breeding materials. We found two different genes determined free threshing of einkorn wheat. One of them was the sog (soft glume) gene from Triticum sinskajae Filat. et Kurkiev (2n = 2x = 14, AmAm genome) and another was the sos (soft spike) gene, which was completely linked or pleiotropic with the gene for semi-dwarfism. The genes sos, spd (short peduncle) and sd17654 (semi-dwarf CItr 17654) were utilized to develop semi-dwarf T. monococcum lines. Field performance of 6 early and free-threshing pre-breeding materials with sos and spd genes were tested over three crop seasons. Five semi-dwarf pre-breeding materials (PBMs) were obtained. However, these materials had slightly less grain yield than #252 (tall and hulled check) and PBM-1 (tall free-threshing check). Harvest index of the pre-breeding materials was improved due to the presence of sos and spd genes. If optimized cultivation practice is performed, these pre-breeding materials can be utilized as sources of early, free-threshing and semi-dwarf traits to produce modern T. monococcum varieties.  相似文献   

15.
Sugar beet hybrid varieties are produced through the crosses between male sterile lines and the multigerm pollinators. The uniformity of pollinators used for hybrid crosses depends on the presence of self-sterility (S s ) and self-fertility (S f ) genes. The aim of the study was to analyze correlation between hybrid performance and genetic distance or heterozygosity of the sugar beet pollinators. Twelve diploid pollinators classified as self-sterile (S s ) or self-fertile (S f ) and two cytoplasmic male sterile (CMS) lines were crossed in line × tester scheme, producing 24 F1 hybrids. The parents and the hybrids were evaluated for root yield and quality traits, from which F1 performance, combining abilities, mid-parent and high-parent heterosis were calculated. Parental genetic distance and diversity of the pollinators were estimated by SSR markers and, together with GCA and F1 performance, correlated with the heterosis effects. The S f hybrids had better GCA and higher values of root yield, root weight, and root circumference than the S s hybrids. Heterosis was recorded in more combinations with the S f than with the S s pollinators. Parameters of genetic diversity were higher in the S s (Na = 3.125; Ne = 2.341; He = 0.555) than in the S f pollinators (Na = 3.000; Ne = 2.188; He = 0.510). Genetic distance between the tested pollinators and the CMS lines was low (0.072–0.224) indicating that the genetic base of the investigated germplasm was narrow. Correlation of the heterosis effects with GD and heterozygosity was detected only for the root yield traits.  相似文献   

16.
Tortuous-stem plants have extremely high ornamental value due to the zigzag shape or natural twisting of the branches. At present, the research about tortuous-stem plants focuses mainly on the morphological characteristics, anatomic structure and genetic characteristics, but few studies have been conducted on the genetic mechanism of tortuous stem traits. In recent years, numerous tortuous-stem mutants have been screened from Arabidopsis thaliana, Zea mays, Glycine max, Lycopersicon esculentum, Prunus and Populus indicating that tortuous traits may be closely related to the abnormal geotropic growth, uneven distribution of hormones and asymmetric development of vascular bundles. In this paper, advances in morphological characteristics, environmental regulation, genetic patterns, molecular mechanism and application prospects of tortuous-stem plants were summarized, aiming at providing the basis for revealing the molecular mechanism of tortuous stem traits.  相似文献   

17.
Gluten protein determines the processing quality of both durum wheat and bread wheat. The glutenin subunits compositions and associated quality traits of 20 Ethiopian durum wheat varieties were systematically analyzed using SDS-PAGE and Payne numbers. A total of 16 glutenin patterns were identified. At the Glu-A1 locus, all varieties scored the null allele. The predominant glutenin alleles at the Glu-B1 locus were Glu-B1b (7+8) and Glu-B1e (20). In Glu-3, the most abundant glutenin subunits were Glu-A3a and Glu-B3c. Based on the Payne scores, the varieties Yerer, Ginchi, Candate, and Foka were identified to have allelic composition suitable for pasta making. The cluster analysis using agglomerative hierarchical clustering (AHC) method classified the varieties into four similarity classes. Based on the findings of this experiment, suggestions were made for allelic composition improvement through introgression of superior alleles from known Glu-1 and Glu-3 sources.  相似文献   

18.
Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici (also known as Mycosphaerella graminicola), is one of the most devastating foliar wheat diseases worldwide. Host resistance is the most effective strategy for management of the disease. A factor that complicates the determination of resistance is its reported interaction with heading date (Hd) and plant height (Ph). In this study, we report findings from a genome-wide association study of resistance to STB in a world-wide collection of 96 wheat accessions. The collection was evaluated under conditions of artificial infection for seedling and adult plant STB resistance, Hd and Ph in field trials. Marker-trait associations (MTAs) were detected using a mixed linear model. STB disease severities showed significant phenotypic variation. In total, 73 MTAs involving STB resistance were detected. The chromosomal locations of some of them were similar to known Stb genes or quantitative trait loci; whereas others were detected in new genomic regions. The field experiment showed evidence of genetic association between STB resistance and Hd, but only for a few genotypes. This was corroborated at the molecular level, where a total of eight genomic regions associated with STB resistance were located in similar positions to MTAs for Hd. New genomic regions associated with STB resistance found here could be useful in wheat breeding aimed at controlling STB after validation in relevant genetic backgrounds  相似文献   

19.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

20.
Peach powdery mildew is one of the major diseases of the peach. Various sources of resistance to PPM have thus been identified, including the single dominant locus Vr2 carried by the peach rootstock ‘Pamirskij 5’. To map Vr2, a linkage map based on microsatellite markers was constructed from the F2 progeny (WP2) derived from the cross ‘Weeping Flower Peach’ × ‘Pamirskij 5’. Self-pollinations of the parents were also performed. Under greenhouse conditions, all progenies were scored after artificial inoculations in two classes of reactions to PPM (resistant/susceptible). In addition to Vr2, WP2 segregated for three other traits from ‘Weeping Flower Peach’: Rm1 for green peach aphid resistance, Di2 for double-flower and pl for weeping-growth habit. With their genomic locations unknown or underdocumented, all were phenotyped as Mendelian characters and mapped: Vr2 mapped at the top of LG8, at 3.3 cM, close to the CPSCT018 marker; Rm1 mapped at the bottom of LG1, at a position of 116.5 cM, cosegregating with the UDAp-467 marker and in the same region as Rm2 from ‘Rubira’®; Di2 mapped at 28.8 cM on LG6, close to the MA027a marker; and pl mapped at 44.1 cM on LG3 between the MA039a and SSRLG3_16m46 markers. Furthermore, this study revealed, for the first time, a pseudo-linkage between two traits of the peach: Vr2 and the Gr locus, which controls the red/green color of foliage. The present work therefore constitutes a significant preliminary step for implementing marker-assisted selection for the four major traits targeted in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号