首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Abstract. Protein and energy maintenance and optimum feed requirements are reported in the catfish, Clarias batrachus (L.), fed a purified diet (40% CP; 1487·1kJ/100g) at 0 to 8% (BW/day) ration levels. Linear (r = 0·985) increase was observed in daily average growth increment up to a ration level of 4% (BW/day), corresponding to 6·03g protein/(kg0·8BW/day) and 224·26 kJ energy/(kg0·8 BW/day). Maintenance requirements, obtained by regressing daily average growth increment to zero, were 0·942 g/(kg0·8 BW/day) for protein and 36·02 kJ/(kg0·8BW/day) for energy. Net gains in muscle protein and energy also depicted linear increase (r = 0·975) with feeding levels up to 6·03g protein/(kg0·8 BW/day) and 224·26kJ energy/(kg0·8 BW/day). On fitting the above data to regression equations, giving the amount of dietary protein and energy required to maintain a constant amount of body protein and energy, values of 1·005g/(kg0·8 BW/day) and 42·11 kJ/(kg0·8BW/day) were obtained for protein and energy respectively. The optimum feeding rate for this species, as evident from specific growth rate and conversion efficiencies, appears to be 3% (BW/day) at 30 ± 2°C. Moisture and lipid contents in muscle were found to be significantly ( P < 0·05) affected by the ration levels.  相似文献   

2.
Factorial determinations of energy and protein requirements in growing Sparus aurata were carried out at 23–24°C. The energy content in the whole fish was dependent on fish weight and ranged from 5 to 11 MJ kg−1 body mass for 1–250 g fish, whereas the protein content remained constant at 179 g kg−1.
During starvation the fish lost 42.5 kJ body weight (BW) (kg)−0.83 day−1 and 0.42 g protein BW (kg)−0.70 day−1. The maintenance requirement for energy was calculated to be 55.8 kJ BW (kg)−0.83 day−1 and for protein 0.86 g BW (kg)−0.70 day−1. Utilization of digestible energy and digestible crude protein below and at maintenance was determined as 0.72 and 0.51, respectively. Utilization of digestible energy and digestible crude protein for growth above maintenance was determined as 0.46 and 0.28, respectively.
These values allow estimation of requirements for growing Sparus aurata .  相似文献   

3.
投饲率对草鱼生长、体组成和能量收支的影响   总被引:2,自引:0,他引:2  
为了建立草鱼(Ctenopharyngodon idella)的精准投喂模型管理系统,研究了不同投喂水平下草鱼的能量收支。实验在水温(27.5±2.0)℃条件下,选用初始体重(71.03±1.13)g的草鱼,共设5个不同投饲水平(饥饿、1%鱼体重(1%BW)、2%BW、4%BW和饱食),研究摄食水平对草鱼生长、鱼体组分和能量收支的影响。结果显示:随投喂水平的增加,草鱼鱼体水分减少,粗蛋白含量、粗脂肪含量和能量增加,灰分含量先减少后增加。特定生长率和热积温生长系数均随投喂水平的增加先增加再降低,在5%鱼体重时达到最大,且高于饱食投喂组。饵料转化率(FE)在投喂水平为体重2%组最高,且显著高于其他各组。干物质和能量表观消化率随投喂水平的增加而显著增加,蛋白质表观消化率在投喂水平为体重2%组显著高于其他组。生长能比例随投喂水平的增加而显著增加,而在体重2%组到饱食组间均无显著性差异;代谢能与生长能相反。在最大投喂水平下的能量收支方程为:100 C=21.72 F+4.25 U+45.85R+28.18 G或100 A=61.94R+38.06G。结果表明,5%鱼体重的投喂量为草鱼此阶段的最佳投喂水平。  相似文献   

4.
We evaluated the effects of various dietary blood meal levels on the growth performance and body composition of pirarucu (Araipama gigas) juveniles. Fish (8.5 ± 0.4 g) were stocked into 24 tanks and fed for 60 days with eight isoproteic diets, having 0% to 21% incorporation of blood meal. Fish increased weight by six to 15 times from their initial weight. The highest body weights (117–135 g), growth rates (4%–5% BW/day), and protein retentions (19%–20%) were observed in fish fed 0% to 6% blood meal. Feed intake increased from 2.9% to 4.4% BW/day with increasing blood meal level. Feed conversion ratio (FCR: 1.0–1.1) did not vary among groups fed 0% to 6% blood meal (P < 0.001). However, when fish were fed more than 6% blood meal, FCR (1.3–1.7) and protein retention (11.1–13.7) deteriorated sharply. Lipid (7.7–11.7%) and energy (18.7–21.2 kJ/g) content increased with increasing blood meal levels up to 9%.  相似文献   

5.
The effects of feeding level on growth and energy partitioning were studied in rainbow trout growing from 150 to 600 g. Triplicate groups of fish (initial weight 158 g fish?1) were fed a practical diet at various feeding levels (25%, 50%, 75% and 100% of near satiation) for 24 weeks at 8.5°C. The final body weights of fish were 235, 381, 526 and 621 g. Restricted feeding levels significantly reduced live weight gain. Feeding levels had less pronounced effects on feed efficiency ratio, which were 0.98, 1.08, 1.02 and 0.83, respectively, for the 25%, 50%, 75% and 100% feeding levels. The growth of fish fed to near satiation was accurately described by the thermal‐unit growth coefficient. The growth data also showed that the widely used specific growth rate was not an appropriate model. Fish fed at the lowest feeding level (25%), which represented a maintenance ration (energy gain was less than 2 kJ fish?1 day?1), showed positive protein deposition but negative lipid deposition. This indicates that fish fed a maintenance ration mobilize body lipid reserve to support protein deposition. The efficiency of energy for growth (kg) was estimated to be 0.63. The factorial multiple regression approach estimated that the partial efficiencies of metabolizable energy utilization for protein deposition (kp) and lipid deposition (kf) were 0.63 and 0.72, and that maintenance energy requirement was about 19 kJ (kg BW0.824)?1, for rainbow trout held at 8.5°C.  相似文献   

6.
An experiment was conducted to determine effects of feeding levels on growth performance, feed utilization, body composition, and apparent digestibility coefficients (ADCs) of nutrients for juvenile grouper Epinephelus coioides (initial weight, 10.31 ± 0.36 g). Grouper were fed a practical diet from 0 (starvation) to 3.5% (at 0.5% increments) body weight per day (bw/d) for 8 wk. ANOVA indicated that growth performance, feed utilization, body composition, and ADCs of dry matter, protein, and energy were significantly (P < 0.05) affected by feeding levels. Survival was the lowest for the starvation group and for fish fed a ration of 0.5% bw/d. Final mean body weight, weight gain (WG), specific growth rate, and metabolic growth rate increased with feeding rate from 0 to 2.5% bw/d (P < 0.05) and showed no significant differences above the level (P > 0.05). Feed conversion rate was significantly lower at a feeding level of 2.0% bw/d than above and below the level (P < 0.05). Protein efficiency ratio was markedly highest at the 2.0% bw/d ration level (P < 0.05). Lipid contents of whole body, muscle, and liver increased with increasing feeding rates from 0 to 3% bw/d and showed a slight decline at the feeding level of 3.5% bw/d. Protein contents of whole‐body composition, muscle, and liver remained relatively stable with the different ration amount with the exception of fish fed a ration of 0.5% bw/d, at which grouper possessed significantly lower body protein concentration (P < 0.05). Condition factor, viscerosomatic index, and hepatosomatic index were the lowest for fish fed 0.5% bw/d and tended to increase with the increasing feeding levels. ADCs of dry matter, protein, and energy decreased with increasing feeding levels from 0 to 2.5% bw/d and then remained relatively constant over the level. Based on the broken‐line regression analysis using WG data, the optimum and maintenance feeding levels for grouper were 2.5% bw/d and 0.25% bw/d, respectively.  相似文献   

7.
An experiment was conducted to determine effects of feeding levels on growth performance, feed utilization, nutrient deposition, body composition and apparent digestibility coefficients (ADCs) of nutrients for juvenile Chinese sucker (initial weight, 11.77±0.22 g). Chinese sucker were fed a practical diet from 0% (starvation) to 4.0% (at 0.5% increments) body weight (bw) day?1 for 8 weeks. The results showed that growth performance, feed utilization, nutrient deposition, body composition and ADCs of dry matter, protein and energy were significantly (P<0.05) affected by feeding levels. Survival was the lowest for the starvation group. Final mean body weight, growth rate, thermal‐unit growth coefficient (TGC) increased with feeding rate from 0% to 3.0% bw day?1 (P<0.05) and showed no significant differences above the level (P>0.05). Feed conversion rate was significantly lower at a feeding level of 2.5% bw day?1 than above and below the level (P<0.05). Protein efficiency ratio was markedly highest at the 2.5% bw day?1 ration level (P<0.05). Fish fed at the feeding level (1.0% bw day?1), which represented a maintenance ration (energy gain was less than 2.27 kJ fish?1 day?1), showed positive protein deposition but negative lipid deposition. This indicates that fish fed a maintenance ration mobilize body lipid reserve to support protein deposition. Lipid contents of whole body, muscle and liver increased with increasing feeding rates from 0.5% to 3.0% bw day?1 and showed no significant differences above the level (P>0.05). Protein contents of whole‐body composition increased with feeding rate from 0.5 to 3.0% bw day?1 (P<0.05) and showed no significant differences above the level (P>0.05), whereas muscle and liver remained relatively stable with the different ration amount with the exception of fish fed a ration of 0.5% bw day?1, at which Chinese sucker possessed significantly lower body protein concentration (P<0.05). The ADCs of dry matter, protein and energy decreased with increasing feeding levels from 0.5% to 3.0% bw day?1 and then remained relatively constant over the level. Based on the broken‐line regression analysis using WG data, the optimum and maintenance feeding levels for Chinese sucker were 3.10% bw day?1 and 0.45% bw day?1 respectively.  相似文献   

8.
Two trials were performed with sea bass juveniles to study the effect of dietary protein (trial I) and lipid (trial II) levels on the metabolic utilization of diets at 25 °C. The effect of water temperature (18 and 25 °C) on metabolism was also tested in trial I. For that purpose, oxygen consumption and ammonia excretion were measured both in fed and in 9-days starved fish. In trial I, diets were formulated to be isoenergetic (GE: 19.4 kJ g–1) and to have 36, 42, 48 and 56% protein; in trial II, diets were formulated to be isonitrogenous (48% protein) and to have 12, 18, 24 and 30% lipid. In trial I, feed intake (g kg–1 day–1), and daily ammonia excretion and oxygen consumption significantly increased with water temperature. However, when expressed relatively to intake there was no significant effect of temperature on ammonia excretion (% N intake) or heat production (% GE intake). Heat increment of feeding (% GE intake) was neither affected by diet composition nor by water temperature. The relative contribution of protein catabolism to total energy expenditure significantly increased with dietary protein level, but was not affected by water temperature. In trial II, both daily ammonia excretion and oxygen consumption were inversely correlated to dietary lipid levels. Nitrogen excretion, heat production, heat increment of feeding, non-fecal losses (% intake) and the relative contribution of protein to total energy expenditure were also inversely related to dietary lipid levels. Results of this study indicate that the main effect of water temperature was to modify feed intake, not the metabolic utilization of diets. Indeed, expressed relatively to nitrogen or energy intakes, both nitrogen and energy budgets were not significantly affected by water temperature. A decrease of dietary protein to energy ratio, by modifying either dietary protein or lipid levels, spared protein utilization for metabolism, and this effect was essentially due to a decrease of non-fecal nitrogen excretion and of the heat increment of feeding.  相似文献   

9.
以鱼粉和豆粕为蛋白源,鱼油和豆油等比例混合油为脂肪源,采用4×4因子实验来确定草鱼(Ctenopharyngodon idellus)幼鱼饲料中的合适蛋白能量比(P/E),其中饲料蛋白水平分别为20%、25%、30%、35%,能量水平为12.5、13.7、15、16.2 k J/g,饲料蛋白能量比的范围为12.1~27.3 mg/k J,共16组饲料,每组设3个重复,连续投喂初体质量(16.85±0.29)g的草鱼幼鱼10周,研究饲料蛋白能量比对草鱼幼鱼生长性能、蛋白利用和体成分的影响。结果表明:(1)最高末体质量和特定生长率出现在P/E为18.3 mg/k J组,而P/E为16.0 mg/k J组的饲料系数最高,蛋白质效率和蛋白沉积率最高组分别为P/E 12.10 mg/k J组和15.20 mg/k J组。(2)P/E为27.30 mg/k J组的能量沉积率和总氮排泄率最大。(3)在同一饲料蛋白水平下,鱼体的脂肪含量随饲料能量水平升高而升高;在同一饲料能量水平下,鱼体的蛋白含量随饲料蛋白含量升高而升高。对生长、蛋白利用、体成分的实验结果进行综合分析,草鱼幼鱼饲料的最适蛋白含量为30%,最适P/E为19.5 mg/k J。  相似文献   

10.
Oxygen consumption, carbon dioxide excretion and nitrogen excretion from 2 kg Atlantic salmon Salmo salar L. were studied at land-based outdoor tanks, throughout a 10 day period. Fish were fed six feed rations (0 [fasting fish], 0.15, 0.30, 0.45, 0.60 and 0.75% BW day-1) of commercially extruded dry feed at two provision regimes: between 07.00-09.00 h and 19.00–21.00 h (periodic feeding); and between 07.00-21.00 h (continuous feeding). Fish were acclimatized to the feeding regime for 5 days prior to the start of the experiment. From days 5 to 10 of the study, oxygen consumption was measured automatically every 15 min. During day 10, carbon dioxide excretion, ammonia and urea excretion were measured hourly throughout a 24 h period. During the experiment, the water temperature and salinity were 8.5C and 33.5 ppt, respectively. Significant linear relationships between feed ration and metabolic rates were evident. Increased feed ration influenced oxygen consumption, carbon dioxide excretion, ammonia and urea excretion, ammonia quotient and the respiration quotient, proportionally. The two feed provision regimes caused the establishment of different daily rhythms in metabolic excretion. Only small differences in total daily excretion were however recorded for each feed ration. Ammonia and respiratory quotient results clearly showed that fish became more dependent on fat oxidation as an energy source, when feed was restricted.  相似文献   

11.
Abstract.— A 61-d growth trial (five 11-d feeding periods) was conducted to determine the effects of feeding rate on growth, feed utilization, morphology, and body composition of the gilthead sea bream Sparus aurata . Gilthead sea bream juveniles with an average initial body weight of 3 g were fed a commercial diet (51% crude protein, 11% crude fat) at rates of 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0% of their body weight (BW) per day in two equal meals. Water temperature was approximately 21.4 C throughout the experiment. Each ration was administered to triplicate groups of 60 fish, with ration readjusted every 11 d. Growth rate was measured as specific growth rate (SGR). Survival rate and coefficient of variation did not differ significantly among the groups fed different rates. Body weight, condition factor, and hepatosomatic and viscerosomat-ic indices displayed significant increases with increasing feeding rate from 0.5 to 3.0% BW/d. Fish fed 0.5% BW/d had significantly higher moisture and ash and lower protein contents than those fed at higher rates. Moisture and protein contents were not significantly different for fish fed at the highest feeding rates (2.0, 2.5, and 3.0% BW/d). Lipid contents increased significantly with increasing feeding rate from 0.5 to 3.0% BW/d. The SGR showed a curvilinear significant increase when the feeding rate was increased from 0.5 to 3.0% BW/d. Feed efficiency (FE) increased significantly to a maximum value with increasing feeding rate from 0.5 to 2.0% BW/d and decreased significantly with increasing feeding rate from 2.5 to 3.0% BW/d. Based on the data obtained, feeding rates of 2.3% and 0.6% BW/d are recommended as optimum and maintenance rations, respectively.  相似文献   

12.
摄食水平对几种重要海水养殖鱼类生长和氮收支的影响   总被引:1,自引:0,他引:1  
本文研究了不同摄食水平(从饥饿至饱食)军曹鱼幼鱼(平均初始体重10.0g)、青石斑鱼幼鱼(平均初始体重5.5g)和卵形鲳鲹幼鱼(平均初始体重7.7g)的生长和氮收支,建立了生长和氮排泄与摄食水平的回归方程。结果表明,军曹鱼幼鱼特定生长率随摄食水平的增加呈显著增长趋势,在9%和饱食两个摄食水平之间无显著性差异,而青石斑鱼和卵形鲳鲹幼鱼的特定生长率随摄食水平增加呈线性增长趋势;饱食时,青石斑鱼和卵形鲳鲹幼鱼的生长速率接近而明显低于军曹鱼幼鱼的。军曹鱼幼鱼食物转化效率随摄食水平的增加呈先增长后下降的趋势,在9%/d摄食水平组有最大值,而青石斑鱼和卵形鲳鲹幼鱼食物转化效率随摄食水平的增加而持续增长,在饱食摄食水平时有最大值;饱食时,军曹鱼和青石斑鱼幼鱼的食物转化效率接近而明显高于卵形鲳鲹幼鱼的。3种海水鱼摄食氮、排粪氮、生长氮和氮排泄均随摄食水平的增加呈显著增长趋势;比较可知,军曹鱼幼鱼的摄食氮和氮排泄均最大,而青石斑鱼幼鱼的最小。军曹鱼、青石斑鱼和卵形鲳鲹幼鱼饱食和次饱食摄食水平时的氮收支方程分别为100CN = 7.7(6.0)FN + 22.6(31.31)GN + 69.7(62.68)UN、100CN = 2.7(2.8)FN + 20.9(8.4)GN + 76.4(88.8)UN和100CN = 1.8(1.4)FN + 12.8(9.3)GN + 85.4(89.3)UN(氮收支方程括号中的为次饱食数据);3种海水鱼饱时和次饱食时摄食氮中用于排粪的比例较小且变化不大,军曹鱼次饱食时摄食氮中用于生长的比例较饱食时的大而用于排泄的比例较饱食时的小,青石斑鱼和卵形鲳鲹幼鱼的则相反。因此,鱼类的氮排泄率和氮收支方程存在种间差异,而当食物中氮含量较为接近时,摄食量增大是导致鱼类氮排泄增加的主要原因之一。综合考虑生长、食物转化效率、氮排泄和氮收支方程各因素,可得出在实验的生长阶段,3种海水养殖鱼中,军曹鱼幼鱼的最佳摄食水平为次饱食摄食水平(9%/d或约为饱食摄食水平的70%),而青石斑鱼和卵形鲳鲹幼鱼的最佳摄食水平为饱食摄食水平。  相似文献   

13.
本实验以平均初始体重为15.60 g的红鳍东方鲀(Takifugu rubripes)幼鱼为研究对象,研究饲料中蛋白含量及养殖密度对红鳍东方鲀幼鱼生长性能、氮排泄及相关生理生化指标的影响。设计两因素三水平(2×3)实验,配制3种不同蛋白梯度(38.87%、45.55%和51.00%,干重)的等脂实验饲料,设置3个密度梯度为1.53 kg/m^3(0.196 m3体积的实验桶,每桶20尾鱼)、2.30 kg/m^3(每桶30尾鱼)和3.06 kg/m^3(每桶40尾鱼)。每组饲料设3个重复,养殖实验为期56 d,在室内流水系统内进行。结果显示,增重率在高、中蛋白组显著高于低蛋白组(P<0.05),但当饲料蛋白含量一定时,养殖密度对增重率没有显著性影响。饲料蛋白含量和养殖密度对鱼体常规成分没有显著性影响。当饲料蛋白一定时,高密度组的血清总蛋白和胆固醇含量显著高于中密度组(P<0.05)。血清总蛋白含量在低蛋白组显著高于中蛋白组(P<0.05)。血清碱性磷酸酶含量在低蛋白组显著高于高蛋白组(P<0.05)。饲料蛋白含量和养殖密度对红鳍东方鲀幼鱼的生长、氨氮排泄没有显著性交互作用。静水投喂3 h后,氨氮排泄率在高密度组显著高于低密度组(P<0.05)。研究表明,45.55%饲料蛋白质含量已经能够满足红鳍东方鲀幼鱼正常生长的需求。饲料蛋白含量和养殖密度对红鳍东方鲀幼鱼的生长性能和氨氮排泄没有显著性交互作用。  相似文献   

14.
A study was conducted to evaluate the effect of partial replacement of dietary fish meal by crystalline amino acids on growth performance, feed utilization, body composition and nitrogen utilization of turbot juveniles.

Four diets were formulated to be isolipidic (12% DM) and isonitrogenous (8% DM). A fish meal based diet was used as control. In the experimental diets, a crystalline amino acid (AA) mixture was used to partially replace fish meal, corresponding to a non-protein nitrogen content of 19, 37 and 56%, respectively (diets 19AA, 37AA and 56AA, respectively). The overall amino acid profile of the experimental diets resembled that of the whole-body protein of turbot. Each experimental diet was fed to triplicate groups of 20 fish (initial body weight of 31.8 g) twice daily to apparent satiation for 42 days. During the trial water temperature averaged 18 °C.

Final body weight, weight gain (g kg ABW− 1 day− 1) and specific growth rate were not different between the control and 19AA diet but significantly decreased with the increase of crystalline-AA inclusion from 19 to 56%. Feed intake and feed efficiency of fish fed the control and diet 19AA were similar and significantly higher than those of fish fed the 56AA diet. At the end of the growth trial, there were no significant differences in whole-body composition among groups. Hepatosomatic index was also unaffected by dietary treatments.

Nitrogen retention (g kg ABW− 1 day− 1) of fish fed the control and the 19AA diets were similar and significantly higher than that of fish fed the other diets. Expressed as a percentage of the nitrogen intake, N retention was significantly higher with the control than with the 37AA and 56AA diets.

Daily ammonia excretion (mg kg ABW− 1 day− 1) of fish fed the control diet was significantly higher than that of fish fed the 37AA and 56AA diets, while daily urea excretion (mg kg ABW− 1 day− 1) did not significantly differ among treatments. Non-fecal nitrogen (ammonia + urea) excretion (mg kg ABW− 1 day− 1) was significantly higher for fish fed the control diet than in those fed the 37AA and 56AA diets. However, as percent of N intake, ammonia excretion and non-fecal N excretion were significantly higher in fish fed the 56AA diet than in those fed the control and 19AA diets.

Specific activity of glutamate dehydrogenase, alanine and aspartate aminotransferases did not significantly differ among experimental groups.

In conclusion, in diets with an overall amino acid profile resembling that of the whole-body protein of turbot, crystalline-AA may replace 19% of dietary protein without negatively affecting growth performances or feed utilization efficiency. However, higher protein replacement levels of protein-bound-AA by crystalline-AA severely depressed growth performance.  相似文献   


15.
An 8-week growth study was conducted to determine the effect of ration level, energy, and protein maintenance requirement of catfish, Heteropneustes fossilis–Bloch, fingerling (7.90 ± 0.55 cm; 3.10 ± 0.28 g) by feeding casein–gelatin-based purified diet (40% CP; 3.61 kcal g-1 GE) at six ration levels 1–6% of BW/day, at 0800 and 1700 h, in triplicate, with 20 fish per trough fitted with water flow-through system of volume 55 L. Maximum live weight gain, best feed conversion ratio (FCR), best specific growth rate (SGR), and highest protein efficiency ratio (PER) were evident for ration levels of 4–5% body weight. However, second-degree polynomial regression analysis for weight gain, FCR, PER, protein, and energy retention data indicated that the break-points occurred at 5.08, 4.18, 4.05, 4.16, and 4.17% BW/day, respectively. Significantly (P < 0.05) higher body protein content was recorded at 4 and 5% rations. While a linear increase in body fat content with inverse relationship in moisture content was evident with increasing rations. Ash content remained insignificantly (P > 0.05) low at higher rations. Protein and energy retention values also produced significant (P < 0.05) differences. Based on the results obtained, it is recommended that feeding in the range of 4 to 4.5% BW/day, corresponding to 1.60–1.80 g protein and 14.46–16.27 kcal energy g100 g−1 of the diet/day is optimum for the growth and efficient feed utilization of H. fossilis, while 2–3% ration levels (0.80–1.20 g protein and 7.23–10.84 kcal energy) suggest that these amounts approximate to the maintenance requirement of this fish.  相似文献   

16.
Four isonitrogenous [30% crude protein (CP)] diets containing different gross energy levels (13.39, 16.74, 20.50 and 23.85 kJ g−1) were evaluated to determine the optimum energy for the Malawian tilapia Oreochromis shiranus. Each tank (120 L) was stocked with 18 juvenile tilapia (average weight 7.32±0.25 g) and they were fed the experimental diets for 10 weeks. The final average weight of the fish was approximately twofold higher (range: 12.64–16.77 g) than the initial weight. The dietary energy significantly (P<0.05) influenced growth. The average weight of fish fed dietary energy level 20.50 kJ g−1 was significantly higher (P<0.05) than the weight of the fish fed any of the other experimental diets. There was no significant difference in growth of fish fed 13.39 and 16.74 kJ g−1 energy levels, but 23.85 kJ g−1 produced the lowest growth rates. There were no significant differences (P>0.05) between feed intake across the treatments. Feed conversion ratio (range: 2.2–3.0) and protein efficiency ratio (range: 1.10–1.50) among the dietary treatment groups were in agreement with trends for weight gain. Dietary energy level significantly (P<0.05) influenced the body composition of O. shiranus. Whole‐body moisture (range: 64.27–67.15%) and ash (range: 13.21–14.73%) decreased in all treatments. Whole‐body protein (range: 63.57–66.16%) increased only in groups fed on the diet containing 20.50 kJ g−1. Whole‐body fat (range: 13.58–17.27%) and gross energy (range: 28.411–33.210 kJ g−1) increased significantly (P<0.05). Fish survival was 100% in all treatments. The results demonstrated that to maximize growth at a temperature of 23°C, O. shiranus should be fed diets containing 20.50 kJ g−1 gross energy.  相似文献   

17.
SUMMARY: An 8-week feeding experiment was conducted to examine the influence of fat and carbohydrate levels in a 40% protein level diet on growth and body composition of rainbow trout Oncorhynchus mykiss under self-feeding conditions. Five fish meal-based diets were prepared to include gelatinized potato starch at four levels (9, 18, 27, and 36%) and dextrin (34%). Dietary fat levels were isoenergetically reduced from 18 to 7% by the digestible carbohydrates. Each diet was fed to four replicate groups (28 g/fish, 20–23 fish/group) using self-feeders. Specific growth rate, percentage weight gain and percentage protein retention did not differ between the treatments. Feed efficiency and protein efficiency ratios were higher in the 18% starch (s18) and s27 diet groups, and decreased in higher fat or carbohydrate diet groups. Although gross energy intake (kJ/kg BW per day) decreased as the starch level increased, levels of digestible energy intake did not differ between the treatments. Fat levels in the carcass, viscera and liver decreased as dietary carbohydrate level increased. These results suggest that a 40% protein diet with either 15% fat and 18% starch or 11% fat and 27% starch is appropriate for juvenile rainbow trout under self-feeding conditions.  相似文献   

18.
An 8-wk feeding trial was conducted to estimate the optimum dietary protein level and protein-to-energy (P/E) ratio in juvenile Korean rockfish Sebastes schlegeli. Twenty experimental diets were formulated with four energy levels and five protein levels at each energy level. Four gross energy levels of 14.2, 16.5, 18.6, and 20.9 kJ/g diet were included at various crude protein (CP) levels. Diets containing CP at 30, 40, 45, 50, and 55% had either 14.2 or 16.5 kJ/g energy; those with CP levels of 35, 40, 45, 50, and 60% had either 18.6 or 20.9 kJ/ g energy. After 2 wk of conditioning, fish initially averaging 7.3 ± 0.04 g (means ± SD) were randomly distributed into net cages as groups of 20 fish. Each diet was fed to fish in three randomly selected net cages for 8 wk. After 8 wk of the feeding trial, weight gain (WG) of fish fed 50% and 55% CP with 14.2 kJ/g diet was significantly higher than those of fish fed 30% and 40% CP diets (P 0.05). WG of fish fed 45, 50, and 55% CP with 16.5 kJ/g diet was significantly higher than those of fish fed 30% and 40% CP diets (P < 0.05). WG of fish fed 60% CP with 18.6 kJ/g diet was significantly higher than those of fish fed 35, 40, and 45% CP diets. WG of fish fed 45% CP with 20.9 kJ/g diet was significantly higher than those of fish fed 35, 40, and 60% CP diets. Generally, feed efficiency (FE) and specific growth rate (SGR) showed a similar trend as WG. However, protein efficiency ratio (PER) was negatively related to dietary protein levels. WG of fish did not always increase with increasing dietary protein and energy levels. Comprehensive comparison among diets containing 40, 45, and 50% CP with different energy levels indicated that the increase in protein from 40 to 45% significantly increased WG (P < 0.05), but such effect was not significant when protein increased from 45 to 50% at all energy levels. Increasing dietary energy significantly increased WG of fish fed 40% and 45% CP at each energy level; however, there was no difference in WG of fish fed 50% CP with energy levels of 18.6 and 2.9 kJ/g diet. There was no significant difference in WG of fish fed 50% CP with 18.6 kJ/g or 45 and 50% CP with 20.9 kJ/g diet. Broken-line analysis of weight gain indicated that the optimum dietary protein level was 50.9 ± 1.1% and PIE ratio was 35.4 ± 0.8 mg/kJ with 14.2 kJ/g diet; the optimum dietary protein level was 49.3 ± 5.0% and P/E ratio was 30.2 ± 1.0 mg/kJ with 16.5 kJ/g diet; the optimum dietary protein level was 46.2 ± 9.2% and P/E ratio was 24.7 ± 4.9 mg/kJ with 18.6 kJ/g diet; and the optimum dietary protein level was 45.1 ± 1.8% and P/E ratio was 21.5 ±0.7 with 20.9 kJ/g diet. Therefore, these data indicated that the concept of P/E ratio must be restricted to diets containing adequate protein and energy levels. Based on WG, the optimum P/E ratio was between 21.5 and 35.4 mg protein/kJ gross energy in juvenile Korean rockfish when gross energy ranged from 14.2 to 20.9 kJ/g diet.  相似文献   

19.
The influence of dietary fat level and whole‐body adiposity on voluntary energy intake of juvenile rainbow trout Oncorhynchus mykiss (Walbaum) was examined using self‐feeders. Groups of lean fish [crude fat (CF) = 7%] and fat fish (CF = 11%), pretreated with a commercial diet with or without supplemental pollock oil, were self‐fed one of three fat level diets (CF = 8%, 13.5% and 19%) for 48 days at 17 °C. Final body weight (BW) and total digestible energy (DE) intake (kJ per fish) were positively affected by the initial BW. Relative to the initial BW, however, fat fish consumed less DE than lean fish. Although the effect of dietary fat level was not significant, percentage weight gain and daily DE intake per BW (kJ kg?1 BW day?1) of fat fish were significantly lower than those of lean fish (ancova with initial BW as a covariate, P < 0.05). Energy digestibility, feed efficiency and protein retention were improved with the dietary fat level; however, there was no difference resulting from body fat level. The whole‐body fat levels at the end of the experiment increased with the dietary fat level. Between groups self‐fed the same diet, fat levels of the initially fat fish were still higher than those of the lean fish. The results of the present medium‐term study suggest that rainbow trout adjust DE intake from diets with fat levels ranging from 8% to 19%. Although body fat level affects neither energy digestibility nor protein utilization, a high body fat level may reduce DE intake and consequently depress growth.  相似文献   

20.
The effects of feeding level on growth, retention efficiency, faeces production and energy partitioning of redlip mullet were studied. A practical diet was used and fed at six levels from starvation, 1%, 2%, 3%, 4% of body weight (BW) to satiation for 3 weeks. The temperature was kept at 24±1°C. Reducing the feeding amount resulted in significantly lower weight gain, and retention efficiency was significantly affected by feeding levels and attained the maximum at maximum feeding intake. Feeding 2% BW was the minimum required for fish to maintain growth. Fish carcass composition under different feeding levels could be divided into three groups: (1) starvation and FL1; (2) FL2 and FL3 and (3) FL4 and satiation, with significant differences among the groups but no differences in the groups except that ash content remained at constant value. Body composition of fish of group 2 was close to initial fish. The thermal‐unit coefficient was 0.0381 at satiation, and significantly increased with increasing feeding levels. In order to accurately estimate basal metabolism (HeE), another trial on the relationship between HeE (kJ) and BW (g) was carried out. An exponential curve as HeE=0.1255BW0.8386 explained this relationship. Intake energy (IE) increased from 11.30 to 63.08 kJ per fish, matching with different feeding levels. Energy allocated to growth of IE decreased with reducing feeding amount. There was a linear relationship between metabolism energy and retention energy in percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号