首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical treatment is an often-followed route to improve the physical and mechanical properties of natural fiber reinforced polymer matrix composites. In this study, the effect of chemical treatment on physical and mechanical properties of jute fiber reinforced polypropylene (PP) biocomposites with different fiber loading (5, 10, 15, and 20 wt%) were investigated. Before being manufactured jute fiber/PP composite, raw jute fiber was chemically treated with succinic anhydride for the chemical reaction with cellulose hydroxyl group of fiber and to increase adhesion and compatibility to the polymer matrix. Jute fiber/PP composites were fabricated using high voltage hot compression technique. Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) tests were employed to evaluate the morphological properties of composite. Succinic anhydride underwent a chemical reaction with raw jute fiber which was confirmed through FTIR results. SEM micrographs of the fractured surface area were taken to study the fiber/matrix interface adhesion and compatibility. Reduced fiber agglomeration and improved interfacial bonding was observed under SEM in the case of treated jute fiber/PP composites. The mechanical properties of jute/PP composite in terms of Tensile strength and Young’s modulus was found to be increased with fiber loading up to 15 wt% and decreased at 20 wt%. Conversely, flexural strength and flexural modulus increased with fiber loading up to 10 wt% and start decreasing at 15 wt%. The treated jute/PP composite samples had higher hardness (Rockwell) and lower water absorption value compared to that of the untreated ones.  相似文献   

2.
Jute fibers have immense potential to be used as natural fillers in polymeric matrices to prepare biocomposites. In the present study jute fibers were surface treated using two methods: i) alkali (NaOH) and ii) alkali followed by silane (NaOH+Silane) separately. Effects of surface treatments on jute fibers surface were characterized using fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analyses. Further, the effects of surface treatments on jute fibers properties such as crystallinity index, thermal stability, and tensile properties were analyzed by X-ray diffraction method (XRD), thermo gravimetric analysis (TGA), and single fiber tensile test respectively. The effects of surface treatment of jute fibers on interphase adhesion between of poly(lactic acid) (PLA) and jute fibers were analyzed by performing single fiber pull-out test and was examined in terms of interfacial shear strength (IFSS) and critical fiber length.  相似文献   

3.
The effect of different treatments on the mechanical (tensile), thermal behavior (TGA), FTIR, and morphology of Phormium tenax fibers has been studied with the aim to investigate methods to improve their compatibility with polymer matrices. Applied treatments included sodium hydroxide (NaOH), silane (APTES, 3-aminopropyltriethoxysilane), and the combined application of silane treatment after NaOH. The effectiveness of the treatments in the removal of non-structural matter from the fibers was confirmed by FTIR investigation and TGA measurements, suggesting also that the alkali treatment has a strong effect on their thermal behavior. The study of tensile properties of the fibers performed using Weibull statistics indicates that the tensile properties are somewhat reduced by chemical treatment. The morphological investigation of treated fibers through scanning electron microscopy indicates that silane treatments, both on raw fibers and on alkalized ones, result in limited fiber degradation.  相似文献   

4.
A two step process was used for the modification of a cellulose/chitin mixed fibers: the first step was an alkali treatment with a NaOH solution (20 %), which was followed by the reaction with one of the reagents such as Nisopropylacrylamide, p-hydroxybenzoic acid, gallic acid, or eugenol. Both the samples activated with the alkali treatment and modified with chemicals were characterized by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermal analysis. Results revealed the morphological and structural changes of the fiber surface after the surface grafting, which significantly altered the cellulose/chitin mixed fiber properties. Thermal analysis results showed an increase in the thermal stability of the treated samples. Antioxidant activity of cellulose/chitin mixed fibers modified with phenolic compounds showed that the efficiency depends on the chemical nature of phenolic compound.  相似文献   

5.
This study is an attempt to investigate the feasibility of alkali pre-treatment to activate surface hydroxyl groups of cellulose fibers in order to enhance the deposition efficiency of silver nanoparticles (AgNPs) onto cotton fabrics. Cotton samples were pre-treated with various alkali solutions containing different earth metal hydroxides (LiOH, NaOH, and KOH). The as-prepared samples were then treated with aqueous silver nitrate followed by reduction treatment with aqueous ascorbic acid, which caused in situ formation of AgNPs on fiber surfaces. The surface structure of the fabrics was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis, and colorimetric data. The amount of silver was measured by using inductively coupled plasma-optical emission spectrometer (ICP-OES). Antimicrobial activity was measured against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. It was established that alkali pre-treatment had a substantial effect on the formation and adsorption of AgNPs on the fibers. Alkali pre-treated samples were homogeneously coated by AgNPs with high surface coverage. Alkali type had significant effect not only on the amount of AgNPs on the surface but also on its size. High antibacterial activity against both Gram-positive and Gram-negative strains was also demonstrated, even after 10 cycles washing.  相似文献   

6.
The chemical and morphological properties of ramie fibers treated by chemical surface modification were examined with Fourier transform infrared (FT-IR) spectroscopy. The mechanical and thermal decomposition properties were evaluated with respect to tensile strength, tensile modulus and thermogravimetric analysis (TGA). Surface morphological changes were investigated with scanning electron microscopy (SEM). Finally, the capabilities of composites reinforced with various chemically treated fibers were analyzed by investigating tensile and impact strengths. Additionally, the thermal mechanical properties of the composites were investigated with thermal mechanical analysis (TMA). Based on the results of these analyses, we concluded that pectin, lignin and hemicellulose were removed and thermal stability was increased with chemical treatments. The composites reinforced with ramie fiber showed better properties compared with pure PLA matrix with respect to tensile and impact strengths. The peroxide-treated fiber composite had the smallest thermal expansion.  相似文献   

7.
By activating corn starch with acetic acid and using acetic anhydride as an esterifying agent, starch acetates with increasing degrees of substitution were obtained using microwave assistance when the amount of iodine varied from 0.5 to 1.75 mmol. The study of Fourier Transform Infrared (FT-IR) spectra, X-ray diffraction pattern, thermal properties, granule morphology, water absorption and solubility, revealed important changes on the physical properties of the obtained products related to the increase of the iodine content. As shown by the scanning electron microscope (SEM), a specific structure on the granule surface was discerned for each amount of iodine. By its exo-corrosive action on starch, iodine indirectly induced loss of crystallinity, decrease of the glass transition and melting temperatures, and a progressive reduction in the water absorption and water solubility index of the modified products. Starch esters with better hydrophobicity and good processability for bio-based material applications were synthesized. Alternatively, the variation in the concentration of the iodine could also be of interest in special purposes, in which starch granules with controlled surface porosity are needed.  相似文献   

8.
This study presents the mechanical and thermal properties of environment-friendly composites made from recycled newspaper fibers reinforced recycled poly(ethylene terephthalate) (rPET) resin with the addition of styrene-ethylene-butylene-styrene grafted maleic anhydride (SEBS-g-MA) as compatibilizer. The effect of SEBS-g-MA addition (i.e., 10 phr) by using a twin-screw extruder to the rPET resin, followed by different fiber content (5, 10 and 15 wt.%) on the tensile, flexural and impact properties of the composites were determined. Stiffness of composites increased significantly compared to those of rPET/SEBS-g-MA blend. Fiber addition resulted in moderate increases in both tensile and flexural strength of the composites. Scanning electron microscope (SEM) photomicrographs of the impact fracture surfaces demonstrate good adhesion at 5 and 10 % fiber content. Differential scanning calorimetry (DSC) showed that the presence of newspaper fibers enhanced the nonisothermal crystallization kinetics and crystallinity. Thermal stability of the composites was improved as indicated by thermogravimetric analysis (TGA).  相似文献   

9.
The application of post treatments in preparation of high flux membranes is expanding rapidly. In this work, several hybrid post treatments have been introduced and used for change in the water flux of polysulfone (PSf) hollow fiber membranes. Dry wet spinning method was employed for fabrication of PSf hollow fiber membrane from spinning dope in mass ratio of 15:5:80 of PSf/PVP-K90/NMP. The simultaneous effects of single and hybrid post treatments containing traditional hypochlorite; high pressure injection technique (HPI) of hypochlorite, hot air and hot water treatments on the morphology and water flux of fabricated hollow fibers has been investigated. AFM analysis and image processing of SEM microphotographs of hollow fibers were used for structural studies. The mechanical properties of hollow fibers as well as strain at break and strength also were studied. It was found that the pores size and surface roughness parameter of hollow fiber membranes have been increased after traditional hypochlorite, HPI technique and hot water treatments while decreased when heat treated in air. In general all the employed hybrid post treatments caused to increase in the pores size of hollow fibers although the pores size increase rate in the membranes treated by the hybrid post treatments involving hot air was much lower than the others. The mechanical properties of hollow fibers have been decreased after hybrid and single post treatments containing traditional hypochlorite, HPI technique and hot water treatment while slightly increased after post treatments containing hot air. It was stated that the fabricated PSf hollow fibers were considerably affected by the employed hybrid post treatments. This can be attributed to the combine effects of used post treatments.  相似文献   

10.
The vegetable fibers used as reinforcement for polymer matrix composites are usually treated to improve their adhesion with the matrix. The chemical treatment with sodium hydroxide (NaOH) is widely employed, but it may damage the fiber surface structure, reducing its strength. This novel study is related to the use of hydride ions (H?) as protective agent for vegetable fibers, under alkaline treatment, as a way to promote their use in polymeric composites. Sisal fibers were modified by immersion in a NaOH aqueous solution (2, 5, and 10 % wt/vol) with or without the addition of sodium borohydride (NaBH4) (1 % wt/vol) under different treatment conditions. The treated fibers were characterized via density and moisture content analyses and also using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effectiveness of NaBH4 to protect the sisal fiber was more pronounced in moderate NaOH concentrations (5 %) at room temperature or higher for shorter alkaline treatment times.  相似文献   

11.
The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt% glycerin. The mixtures (0, 5, 10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 °C. The mixtures obtained were pressed on a hot plate press at 155 °C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 °C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 °C (E30 °C′) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials.  相似文献   

12.
The ligno-cellulose natural fabric from the polyalthia cerasoides tree was analyzed by FTIR, chemical, X-ray and thermo gravimetric methods. The morphology of the fibers was studied by scanning electron and polarized optical microscopic methods. The tensile properties were also studied. The effect of alkali treatment on the properties of the fabric was studied. The FTIR and chemical analyses indicated lowering of hemi-cellulose and lignin content on alkali treatment of the fabric. The tensile properties were found to increase on alkali treatment. The x-ray diffraction revealed an increase in crystallinity of the fabric on alkali treatment. The thermal stability of the fabric was also found to increase on alkali treatment. The properties of this fabric were compared with those of two natural fabrics reported in the literature. This uniaxial fabric has sufficient tensile modulus and can be used as reinforcement in the development of green composites.  相似文献   

13.
In this paper, the mulberry fibers were successfully obtained by a new pretreatment named alkali-assisted microwave plus biological enzymatic technique (AMBET). The morphology, microstructure, physico-mechanical and antibacterial properties of the mulberry bast fibers were investigated by means of scanning electron microscope (SEM), Fourier Transform-Infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), instron tensile tester and antibacterial testing. The results showed that impurities of the bast fibers could be removed by AMBET treatment. AMBET treated mulberry fiber was even, smooth and fine, and typical cellulose I in the mulberry fibers was confirmed by FTIR and XRD analysis. The crystallinity of the AMBET treated fibers was higher than that of the raw mulberry and chemical treated mulberry fibers. Thermal analysis indicated that the mulberry fibers had a good thermal stability. Moreover, the AMBET treated mulberry fibers showed excellent antimicrobial activities against S.aureus. The physical properties of the mulberry fibers indicated the AMBET treated mulberry fibers were ideal candidates for new textile materials.  相似文献   

14.
In this study, jute fabrics were modified by alkali, micro-emulsion silicon (MS) and fluorocarbon based agents (FA) in order to enhance the interfacial adhesion between the polyester matrix and the jute fiber. X-ray photoelectron spectroscopy (XPS) and contact angle measurements were used to characterize fiber surfaces. The effects of various surface treatments on the mechanical and morphological of jute/polyester composites were also studied. All surface treatments were shown to improve the tensile, flexural strengths and interlaminar shear strengths of the composites. Moreover, the maximum improvement in the mechanical properties was obtained for the FA treated jute/polyester composites. SEM micrographs of the tensile fracture surface of jute/unsaturated polyester composites also exhibited improvement of interfacial and interlaminar shear strengths by the alkali, MS and FA treatments of jute fibers.  相似文献   

15.
Novel acetylation process by substitution of acetic anhydride substitution with hydroxyl groups on nanocellulose (NCC) has been explored to increase its dispersion and interaction in nitrile butadiene (NBR) matrix. The crystallinity index was increased after modification when compared to unmodified NCC, but no significant different with increases of treatment time from 1 hour to 3 hours treatments proven by X-ray diffraction (XRD) results. The Fourier transform infra-red (FTIR) showed the existent of acetyl groups on surface of the NCC after treatment by existent of the peak 1736 cm-1 that attributed to carbonyl groups some peaks were observed at 1430, 1361 and 1248 cm-1 and confirmed on the acetylation process. The nuclear magnetic resonance (NMR) also show the present of acetyl groups by existent of the signal of proton methyl group at 1.90 ppm and new peaks at 5.42, 4.70 and 4.34 ppm, for all ACN samples. The thermal results by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) showed that the acetylated NCCs were 10 % more thermally stable. Transmission electron microscopic (TEM) results showed that no significant changes were observed due to the acetylation process. The results also showed well distributed of individual NCC after acetylation, this improvement was primarily attributed to uniform dispersion of the ACN-NCC and less aggregated occurred. Due to its hydrophobic characteristics, highly crystalline and nano size, ACN-NCC brought a significant improvement up to 25 % on the mechanical properties of nitrile butadiene (NBR) rubber composites.  相似文献   

16.
The effect of acetylation of milled rice grains of selected varieties (TDK 8, YRW 4, Reiziq, Amber 33, and SHZ 2) with varying apparent amylose contents (3.8–26.6%) on their physicochemical properties was investigated. Milled rice samples were treated with different acetic anhydride concentrations (0.004–0.04 g per 100 g of milled rice samples in 225 mL of water). Results showed that glutinous (TDK 8), very low amylose (YRW 4) and low amylose containing varieties (Reiziq) were prone to acetylation even with 0.004 g of acetic anhydride. X-ray diffraction patterns showed an increase in the crystallinity in acetylated samples and formation of V-type crystals, suggesting the possible interaction of acetic anhydride with starch. Acetylation of rice grains resulted in reduced peak and final viscosities and gel strength, particularly in glutinous (TDK 8) and very low amylose (YRW 4) rice. Differential calorimetric study showed that acetic anhydride treatment resulted in reduced thermal transition temperatures and enthalpy of all varieties. Although increase in the retrogradation thermal temperatures was observed, the enthalpy of retrogradation was reduced with increasing acetylation, suggesting that the extent of starch retrogradation was lower in all varieties with more prominent reduction in the glutinous type. Furthermore, the texture of cooked acetic anhydride treated rice grains was less hard and showed more adhesiveness. This study demonstrated that the acetylation of rice grains (instead of flour) was successfully achieved, showing the potential of applying acetylation to alter the textural, pasting, thermal and retrogradation properties of rice.  相似文献   

17.
In the present study, nanofibrils of cellulose are extracted from waste jute fibers using high energy planetary ball milling process in wet condition. The rate of refinement of untreated fibers having non-cellulosic contents was found slower than treated fibers due to strong holding of fiber bundles by non-cellulosic contents. At the end of three hours of wet milling, untreated fibers were refined to the size of 850 nm and treated fibers were refined to the size of 443 nm. In the subsequent stage, composite films of poly lactic acid (PLA) were prepared by solvent casting with 3 wt% loading of untreated jute nanofibrils, treated jute nanofibrils and microcrystalline cellulose. The influence of non-cellulosic contents on mechanical properties of PLA films are investigated based on results of tensile test, dynamic mechanical analysis and differential scanning calorimetry. The maximum improvement was observed in case of treated jute nanofibril/PLA composite film where initial modulus and tensile strength increased by 207.69 % and 168.67 %, respectively as compared to neat PLA film. These improvements are attributed to the increased interaction of treated jute nanofibrils with PLA matrix due to their higher precentage of cellulosic contents and mechanically activated surface.  相似文献   

18.
This study investigates the effect of NaOH and NaOCl treatments on chemical composition, morphology and crystalline structure of Agave americana L. fibers. These fibers have been subjected to NaOCl and NaOH alkali treatments at different concentrations.The percentages of lignin and hemicellulose show a decrease with alkaline treatments which, in turn, induces a modification of both morphological and crystalline structures.Unit cell dimensions and crystallite size were more affected with NaOH treatment than NaOCl one. This may result from the mercerisation process which occurs with caustic soda treatment.The observed defibrillization on the treated fiber surface proves the dissolution of the non-cellulosic components present in the fiber cell wall by NaOH and NaOCl treatments. These morphological changes may improve the interaction between matrix and fiber in composites.  相似文献   

19.
Needle-punched nonwovens are widely used in industrial fields. However, they are limited to some applications such as high-efficiency filters, high-performance synthetic leathers, and high-absorption wipes because of their low surface area and large pore size. In this study, needle-punched nonwovens composed of Copolyethylene terephthalate (Co-PET)/Polyamide (PA) sea-island bicomponent fibers were treated in NaOH solution with various conditions for preparing nonwovens composed of ultra-fine fibers. The effect of NaOH concentration and treatment temperature on the structural factors and physical properties of nonwovens was investigated. The morphological structures of Co-PET and PA components were analyzed by scanning electron microscope. After alkali treatment, fiber diameter was significantly reduced from 23.65 to 3.95 μm, specific surface area of nonwovens increased more than five times, calculated and experimental mean pore diameter decreased by 83.6 % and 20.8 %, respectively. By increasing NaOH concentration and treatment temperature, pore diameter was reduced, thereby decreasing the air permeability of nonwovens. Meanwhile, tensile strength increased and tearing strength decreased as NaOH concentration and treatment temperature were increased in both machine and cross direction, respectively. The treatment temperature of alkali treatment was significantly influenced by the physical properties of nonwovens.  相似文献   

20.
Treatment of polyacrylonitrile (PAN) onto m-aramid fabric was carried out by pad-dry-cure method using dimethylformamide (DMF) dissolved acrylic fiber solution. The obtained PAN treated m-aramid fabric was dyed using exhaustion method with basic dyes. The effect of PAN treatment on fabric stiffness property was acceptable with acrylic fiber solutions ranging from 1 wt% to 4 wt%. Whilst, more than 4 wt% PAN treated fabrics exhibited undesirable stiffness. The dyeing results showed that PAN treated m-aramid fabrics exhibited a significant increase in color strength when compared to untreated fabric, arising from an increase in anionic dye sites (styrene SO3 ? group). Wash fastness was comparable to that of untreated fabric, indicating the strong interaction between dye molecules and the PAN. Rubbing fastness of treated fabrics was not affected by treatments with PAN concentrations lower than 4 wt%. Further increase in PAN concentration led to poorer rubbing fastness property due to the problem of surface dyeing. For light fastness, the PAN treatment failed to improve the light fastness property which is the main disadvantage of basic dyeing of aramid fabric. Finally, in case of PAN treatments with the range of 1 wt% to 4 wt%, the flame retardancy property of PAN treated m-aramid fabrics was found not affected by the percent add-on. However, above 4 wt% PAN treatment, the flame retardancy performance became deteriorated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号