首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To compare CBC results obtained by use of an in-house centrifugal analyzer with results of a reference method. DESIGN: Prospective study. SAMPLE POPULATION: Blood samples from 147 dogs, 42 cats, and 60 horses admitted to a veterinary teaching hospital and from 24 cows in a commercial dairy herd. PROCEDURE: Results obtained with the centrifugal analyzer were compared with results obtained with an electrical-impedance light-scatter hematology analyzer and manual differential cell counting (reference method). RESULTS: The centrifugal analyzer yielded error messages for 50 of 273 (18%) samples. Error messages were most common for samples with values outside established reference ranges. Correlation coefficients ranged from 0.80 to 0.99 for Hct, 0.55 to 0.90 for platelet count, 0.76 to 0.95 for total WBC count, and 0.63 (cattle) to 0.82 (cats) to 0.95 (dogs and horses) for granulocyte count. Coefficients for mononuclear cell (combined lymphocyte and monocyte) counts were 0.56, 0.65, 0.68, and 0.92 for cats, horses, dogs, and cattle, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that there was an excellent correlation between results of the centrifugal analyzer and results of the reference method only for Hct in feline, canine, and equine samples; WBC count in canine and equine samples; granulocyte count in canine and equine samples; and reticulocyte count in canine samples. However, an inability to identify abnormal cells, the high percentage of error messages, particularly for samples with abnormal WBC counts, and the wide confidence intervals precluded reliance on differential cell counts obtained with the centrifugal analyzer.  相似文献   

2.
BACKGROUND: The CA530-VET is a completely automated impedance cell hematology analyzer, which yields a 16-parameter blood count including a 3-part leukocyte differential. OBJECTIVES: The aim of this study was to examine the operational potential of the CA530-VET and its value for use in veterinary practice. METHODS: The analyzer was tested for blood carry-over, precision, and accuracy. Comparison methods included the CELL-DYN 3500, microhematocrit centrifugation, manual platelet (PLT) counting for feline and equine species, and a 100-cell manual WBC differential. Blood samples for comparison of the methods were obtained from 242 dogs, 166 cats, and 144 horses. RESULTS: The carry-over ratio (K) was 0.28% for RBC, 0.59% for PLT, 0.32% for WBC, and 0.18% for hemoglobin (HGB) concentration. Coefficients of variation (CVs) for within-batch precision and duplicate measurement of blood samples were clearly within the required limits, except for duplicate platelet counts in cats (8.7%) and horses (9.5%). The WBC count was in excellent agreement for dogs and horses and RBC count was in excellent agreement for horses. The accuracy of feline WBC counts was not acceptable, with the exception of values at the high end of the range. RBC counts in dogs and cats, and HGB concentration and MCV in all 3 species were sufficiently accurate. The CA530-VET HCT results were in excellent agreement with microhematocrit results in horses but exceeded the maximum allowed inaccuracy for cats and dogs. In all species, PLT counts established mechanically and manually were not in adequate agreement. Large differences were found between the CA530-VET and the manual differential percentage for lymphocytes and "mid-sized cells" (monocytes and basophilic granulocytes). CONCLUSIONS: The CA530-VET can be considered useful for routine canine, feline, and equine blood cell analyses. It should not be considered accurate, however, for PLT counts, feline total WBC counts in the subnormal and normal range, and leukocyte differentials, except for granulocytes.  相似文献   

3.
OBJECTIVE: To determine accuracy of a manual technique for detection of neutropenia and thrombocytopenia in dogs receiving chemotherapy. DESIGN: Masked prospective study. ANIMALS: 11 dogs treated with chemotherapy for neoplasia. PROCEDURE: 124 blood samples from dogs being treated with chemotherapy for various neoplasms were processed through an automated cell counter, and results were compared with those obtained by use of a rapid manual technique for estimating neutrophil and platelet concentrations to determine whether the manual technique could accurately detect dogs with neutropenia or thrombocytopenia. RESULTS: By use of automated techniques, neutropenia (< 3,000 cells/microl) was detected in 17 of 124 blood samples, and thrombocytopenia (< 100,000 platelets/microl) was detected in 3 of 124 blood samples. The manual technique correctly identified 16 of 17 (94%) blood samples with neutropenia, with a specificity of 92% (98/107). The manual technique correctly identified 3 of 3 (100%) blood samples with thrombocytopenia, with specificity of 94% (114/121). CONCLUSIONS AND CLINICAL RELEVANCE: Manual estimates of neutrophil and platelet counts are sensitive and specific; however, a full differential cell count is still preferable.  相似文献   

4.
BACKGROUND: The LaserCyte hematology analyzer (IDEXX Laboratories, Chalfont St. Peter, Bucks, UK) is the first in-house laser-based single channel flow cytometer designed specifically for veterinary practice. The instrument provides a full hematologic analysis including a 5-part WBC differential (LC-diff%). We are unaware of published studies comparing LC-diff% results to those determined by other methods used in practice. OBJECTIVE: To compare LC-diff% results to those obtained by a manual differential cell count (M-diff%). METHODS: Eighty-six venous blood samples from 44 dogs and 42 cats were collected into EDTA tubes at the Forest Veterinary Centre (Epping, UK). Samples were analyzed using the LaserCyte within 1 hour of collection. Unstained blood smears were then posted to Langford Veterinary Diagnostics, University of Bristol, and stained with modified Wright's stain. One hundred-cell manual differential counts were performed by 2 technicians and the mean percentage was calculated for each cell type. Data (LC-diff% vs M-diff%) were analyzed using Wilcoxon signed rank tests, Deming regression, and Bland-Altman difference plots. RESULTS: Significant differences between methods were found for neutrophil and monocyte percentages in samples from dogs and cats and for eosinophil percentage in samples from cats. Correlations (r) (canine/feline) were .55/.72 for neutrophils, .76/.69 for lymphocytes, .05/.29 for monocytes and .60/.82 for eosinophils. Agreement between LC-diff% and Mdiff% results was poor in samples from both species. Bland-Altman plots revealed outliers in samples with atypical WBCs (1 cat), leukocytosis (2 dogs, 9 cats), and leukopenia (16 dogs, 11 cats). The LaserCyte generated error flags in 28 of 86 (32.6%) samples, included 7 with leukopenia, 8 with lymphopenia, 7 with leukocytosis, 1 with anemia, and 1 with erythrocytosis. When results from these 28 samples were excluded, correlations from the remaining nonflagged results (canine/feline) were .63/.65 for neutrophils, .67/.65 for lymphocytes, .11/.33 for monocytes, and .63/.82 for eosinophils. CONCLUSION: Although use of a 100-cell (vs 200-cell) M-diff% may be a limitation of our study, good correlation between WBC differentials obtained using the LaserCyte and the manual method was achieved only for feline eosinophils.  相似文献   

5.
Analysis of canine and feline haemograms using the VetScan HMT analyser   总被引:2,自引:0,他引:2  
The VetScan HMT is an impedance counter haematology analyser which produces a full blood count and three-part white blood cell differential. The aim of this study was to compare the results generated by the analyser with those obtained by standard methods used routinely in the authors' laboratory. Blood samples from 68 dogs and 59 cats were run on the VetScan HMT analyser and also subjected to reference methods, and the results obtained were compared. Correlation coefficients (feline/canine) were: 0.97/0.99 for haematocrit (Hct), 0.98/0.99 for haemoglobin (Hb), 0.81/0.98 for total white blood cells (WBC), and 0.89/0.97 for granulocyte and 0.65/0.93 for platelet counts. Coefficients for lymphocyte counts were 0.25/0.28 and for monocyte counts were 0.12/0.79. In conclusion, the VetScan HMT performed well on canine samples, showing excellent correlation for canine Hct, Hb, RBC, WBC, granulocyte and platelet counts. For feline samples, although there was excellent correlation for Hct, Hb and RBC, the WBC and three-part white blood cell differential and platelet count should be interpreted with caution as they can be unreliable.  相似文献   

6.
Blood samples form 120 consecutive clinical cases (40 cats, 40 dogs and 40 horses) were analyzed on the QBC VetAutoread analyzer and the results compared with those obtained by a Baker 9000 electronic resistance cell counter and a 100-cell manual differential leukocyte (WBC) count. Packed cell volume (PCV), hemoglobin (Hb) concentration, mean cell hemoglobin concentration (MCHC), and platelet, total WBC, granulocytes, and lymphocyte plus monocyte (L+M) counts were determined. Indistinct separation of red blood cell and granulocytes layers on the QBC VetAutoread was observed in samples from five cats (12.5%), two dogs (5%), and one horse. Significantly different (P=0.002) median values for the two methods were obtained for PCV, Hb concentration, MCHC and platelet count in cats; PCV, MCHC, WBC, count and granulocytes count in dogs; and PCV, Hb concentration, MCHC and WBC, granulocytes and platelet counts in horses. Results from the QBC VetAutoread should not be interpreted using reference ranges established using other equipment. Results were abnormal on a limited number of samples; however, when correlation coefficients were low, marked discrepancy existed between values within as well as outside of reference ranges. Spearman rank correlation coefficients were excellent (r=0.93) for PCV and Hb concentration in dogs, and Hb concentration and WBC count in horses. Correlation was good (r=0.80-0.92) for PCV and Hb concentration in cats, WBC count in dogs, and PCV, granulocytes count and platelet count in horses. For remaining parameters, correlation was fair to poor (r=0.79). Acceptable correlations (r>0.80) were achieved between the two test systems for all equine values except MCHC and L+M count, but only for PCV and HB concentration in feline and canine blood samples.  相似文献   

7.
Background: The Sysmex XT‐2000iV is a laser‐based, flow cytometric hematology system that has been introduced for use in large and referral veterinary laboratories. Objective: The purpose of this study was to validate the Sysmex XT‐2000iV for counting erythrocytes, reticulocytes, platelets, and total leukocytes in blood from ill dogs, cats, and horses. Methods: Blood samples from diseased animals (133 dogs, 65 cats, and 73 horses) were analyzed with the Sysmex XT‐2000iV and the CELL‐DYN 3500. Manual reticulocyte counts were done on an additional 98 canine and 14 feline samples and manual platelet counts were done on an additional 73 feline and 55 canine samples, and compared with automated Sysmex results. Results: Hemoglobin concentration, RBC counts, and total WBC counts on the Sysmex were highly correlated with those from the CELL‐DYN (r≥0.98). Systematic differences occurred for MCV and HCT. MCHC was poorly correlated in all species (r=0.33–0.67). The Sysmex impedance platelet count in dogs was highly correlated with both the impedance count from the CELL‐DYN (r=0.99) and the optical platelet count from the Sysmex (r=0.98). The Sysmex optical platelet count included large platelets, such that in samples from cats, the results agreed better with manual platelet counts than with impedance platelet counts on the Sysmex. Canine reticulocyte counts on the Sysmex correlated well (r=0.90) with manual reticulocyte counts. Feline reticulocyte counts on the Sysmex correlated well with aggregate (r=0.86) but not punctate (r=0.50) reticulocyte counts. Conclusion: The Sysmex XT‐2000iV performed as well as the CELL‐DYN on blood samples from dogs, cats, and horses with a variety of hematologic abnormalities. In addition, the Sysmex detected large platelets and provided accurate reticulocyte counts.  相似文献   

8.
Effects of low-dose LPS (0.1 μg/kg IV) on leukocyte and platelet parameters measured using an Advia 120 hematology analyzer were investigated. Five dogs received a saline sham treatment prior to LPS, and blood was collected before and 3, 6, and 24 h post-treatment. LPS-treated dogs had mild neutrophil toxic change and increased neutrophil bands at 3 and 6 h. Compared to saline-treated controls, total leukocyte, neutrophil, and monocyte counts of LPS-treated dogs were significantly decreased at 3 h and increased at 24 h. Compared to baseline, total leukocyte counts of LPS-treated dogs were significantly decreased at 3 h and increased at 24 h. Mean platelet volume was significantly increased and mean platelet component concentration was decreased at 3 h compared to baseline. Platelet count was significantly decreased at 3 and 6 h; plateletcrit did not change significantly. High dosage is not required in order to detect LPS-mediated hematologic effects in dogs. Low-dose LPS administration causes significant changes in leukocyte and platelet indices in dogs without causing severe clinical signs or death.  相似文献   

9.
Background: Many Cavalier King Charles Spaniel (CKCS) dogs are affected by an autosomal recessive dysplasia of platelets resulting in fewer but larger platelets. The IDEXX Vet Autoread (QBC) hematology analyzer directly measures the relative volume of platelets in a blood sample (plateletcrit). We hypothesized that CKCS both with and without hereditary macrothrombocytosis would have a normal plateletcrit and that the QBC results would better identify the total circulating volume of platelets in CKSC than methods directly enumerating platelet numbers.
Objectives: The major purpose of this study was to compare the QBC platelet results with platelet counts from other automated and manual methods for evaluating platelet status in CKCS dogs.
Methods: Platelet counts were determined in fresh EDTA blood from 27 adult CKCS dogs using the QBC, Sysmex XT-2000iV (optical and impedance), CELL-DYN 3500, blood smear estimate, and manual methods. Sysmex optical platelet counts were reanalyzed following gating to determine the number and percentage of normal- and large-sized platelets in each blood sample.
Results: None of the 27 CKCS dogs had thrombocytopenia (defined as <164 × 109 platelets/L) based on the QBC platelet count. Fourteen (52%) to 18 (66%) of the dogs had thrombocytopenia with other methods. The percentage of large platelets, as determined by regating the Sysmex optical platelet counts, ranged from 1% to 75%, in a gradual continuum.
Conclusions: The QBC may be the best analyzer for assessing clinically relevant thrombocytopenia in CKCS dogs, because its platelet count is based on the plateletcrit, a measurement of platelet mass.  相似文献   

10.
BACKGROUND: Platelet aggregates are a common artifact in canine blood. Aggregates may affect the accuracy of platelet counts, with important consequences for patient care. OBJECTIVES: The purpose of this study was to determine if platelet counts in dogs were more accurate if blood was collected into citrate instead of EDTA as an anticoagulant. METHODS: Blood was collected from 50 dogs with neoplasia admitted to the oncology service at Cornell University. EDTA and citrate Vacutainer tubes were filled with blood in random order. Platelet counts and parameters (mean platelet volume [MPV], platelet distribution width [PDW], mean platelet component concentration [MPC], platelet component distribution width [PCDW], and automated platelet clump count [APCC]) were determined using an optical-based hematology analyzer (ADVIA 120). Blood smears from each anticoagulated sample were scored visually for platelet aggregates. RESULTS: The median platelet count was significantly lower (median decrease, 27 x 10(9)/L) in citrate-anticoagulated blood compared with EDTA-anticoagulated blood. This was attributed to platelet activation and aggregation: significantly more aggregates were seen in smears of citrate- than of EDTA-anticoagulated blood. Aggregates were typically small and not detected by the analyzer. Also, the MPV and MPC (or density) were significantly higher (median increase, 3 fL) and lower (median decrease, 33 g/L) in citrate-anticoagulated samples, respectively. CONCLUSIONS: Platelets aggregate, likely from activation, when blood from dogs with neoplasia is anticoagulated with citrate for hematology testing, resulting in lower platelet counts. Citrate also yields inaccurate results for MPV and MPC, likely because of inadequate sphering of platelets. Thus, we recommend that citrate not be used as an anticoagulant when accurate platelet counts are desired in dogs.  相似文献   

11.
Abstract: The objective of this study was to compare and assess the agreement between the Coulter AcT Diff hematology analyzer (CAD) and the Bayer Technicon H1 (H1) using blood samples from 391 animals of 4 species. The H1 has been used in veterinary laboratories for many years. Recently, Coulter modified the CAD and added veterinary software for hematologic analysis of feline, canine, and equine samples. A comparison of hemograms from dogs, cats, horses, and cattle was made using EDTA-anticoagulated blood samples. Both instruments were calibrated using human blood products. Performance characteristics were excellent for most values. The exceptions were MCV in canine samples (concordance correlation of .710), platelet counts for feline and equine samples (.258 and .740, respectively), feline and bovine WBC counts (.863 and .857, respectively), and bovine hemoglobin (.876).  相似文献   

12.
Background: The Sysmex XT‐2000iV is a laser‐based, flow cytometric hematology system that stains nucleic acids in leukocytes with a fluorescent dye. A 4‐part differential is obtained using side fluorescence light and laser side scatter. Objective: The purpose of this study was to validate the Sysmex XT‐2000iV for determining differential leukocyte counts in blood from ill dogs, cats, and horses. Methods: Blood samples from diseased animals (133 dogs, 65 cats, and 73 horses) were analyzed with the Sysmex XT‐2000iV (Auto‐diff) and the CELL‐DYN 3500. Manual differentials were obtained by counting 100 leukocytes in Wright‐stained blood smears. Results: Leukocyte populations in the Sysmex DIFF scattergram were usually well separated in equine samples, but were not as well separated in canine and feline samples. Correlation among the Sysmex XT‐2000iV, CELL‐DYN 3500, and manual counts was excellent for neutrophil counts (r ≥.97) and good for lymphocyte counts (r ≥.87) for all three species. Systematic differences between the 3 methods were seen for lymphocyte and monocyte counts. The Sysmex reported incomplete differential counts on 18% of feline, 13% of canine, and 3% of equine samples, often when a marked left shift (>10% bands) and/or toxic neutrophils were present. Eosinophils were readily identified in cytograms from all 3 species. Neither the Sysmex nor the CELL‐DYN detected basophils in the 7 dogs and 5 cats with basophilia. Conclusions: The Sysmex XT‐2000iV automated differential leukocyte count performed well with most samples from diseased dogs, cats, and horses. Basophils were not detected. Immature neutrophils or prominent toxic changes often induced errors in samples from cats and dogs.  相似文献   

13.
OBJECTIVE: To determine survival rates in dogs and cats with septic peritonitis treated with open peritoneal drainage (OPD) versus primary closure (PC) after laparotomy. STUDY DESIGN: Retrospective analysis of medical records from Colorado State University Veterinary Teaching Hospital from 1993 to 1999. SAMPLE POPULATION: Thirty-six dogs and 6 cats with septic peritonitis documented by cytological examination or microbiological culture of abdominal fluid. METHODS: Medical records of dogs and cats with septic peritonitis treated by OPD or PC were reviewed. Age, weight, species, white blood cell (WBC) count, band neutrophil count, platelet count, serum glucose concentration, heart rate, body temperature, duration of hospitalization, and clinical outcome were recorded for each animal. Differences in treatments administered between the OPD and PC groups as well as the underlying cause of septic peritonitis were determined. RESULTS: There was no significant difference in survival between animals in the OPD versus PC groups (P =.26) with an overall survival rate of 71%. White blood cell count, band neutrophil count, platelet count, serum glucose and total bilirubin concentrations, heart rate, age, and weight were not significantly different between groups (P >.05). A significantly greater number of animals in the OPD group received plasma (P =.009), blood (P =.037), and a jejunostomy tube (P =.02) than animals in the PC group. There was a significant difference in the number of days spent in critical care unit with a mean of 6.0 +/- 4.1 days for the OPD group and 3.5 +/- 2.3 days for the PC group (P =.02). CONCLUSIONS: Open peritoneal drainage for the management of septic peritonitis in dogs and cats is an acceptable alternative to PC.  相似文献   

14.
OBJECTIVE: To describe diseases, prognosis, and clinical outcomes associated with extreme neutrophilic leukocytosis in cats. DESIGN: Retrospective study. ANIMALS: 104 cats with extreme neutrophilic leukocytosis. PROCEDURE: Medical records from 1991 to 1999 were examined to identify cats that had > or =50,000 WBC/microl with > or =50% neutrophils. Signalment, absolute and differential WBC counts, rectal temperature, clinical or pathologic diagnosis, duration and cost of hospitalization, and survival time were reviewed. RESULTS: Mean age of cats was 8.3 years, mean WBC count was 73,055 cells/microl, and mean absolute neutrophil count was 59,046 cells/microl. Mean duration of hospitalization was 5.9 days, and mean cost of hospitalization was $2,010. Twenty-nine (28%) cats were febrile, and 63 (61%) cats died. Overall median survival time was 30 days. Cats with neoplasia were nearly 14 times as likely to die unexpectedly as cats with other diseases. CONCLUSIONS AND CLINICAL RELEVANCE: Extreme neutrophilic leukocytosis was associated with a high mortality rate. The prognostic importance of extreme neutrophilic leukocytosis should not be overlooked. Cats and dogs have similar diseases, mortality rates, and treatment costs associated with extreme neutrophilic leukocytosis.  相似文献   

15.
Background: A CBC is an integral part of the assessment of health and disease in companion animals. While in the past newer technologies for CBC analysis were limited to large clinical pathology laboratories, several smaller and affordable automated hematology analyzers have been developed for in‐clinic use. Objectives: The purpose of this study was to compare CBC results generated by 7 in‐clinic laser‐ and impedance‐based hematology instruments and 2 commercial laboratory analyzers. Methods: Over a 3‐month period, fresh EDTA‐anticoagulated blood samples from healthy and diseased dogs (n=260) and cats (n=110) were analyzed on the LaserCyte, ForCyte, MS45, Heska CBC, Scil Vet ABC, VetScan HMT, QBC Vet Autoread, CELL‐DYN 3500, and ADVIA 120 analyzers. Results were compared by regression correlation (linear, Deming, Passing‐Bablok) and Bland–Altman bias plots using the ADVIA as the criterion standard for all analytes except HCT, which was compared with manual PCV. Precision, linearity, and carryover also were evaluated. Results: For most analytes, the in‐clinic analyzers and the CELL‐DYN performed similarly and correlated well with the ADVIA. The biases ranged from ?0.6 to 2.4 × 109/L for WBC count, 0 to 0.9 × 1012/L for RBC count, ?1.5 to 0.7 g/dL for hemoglobin concentration, ?4.3 to 8.3 fL for MCV, and ?69.3 to 77.2 × 109/L for platelet count. Compared with PCV, the HCT on most analyzers had a bias from 0.1% to 7.2%. Canine reticulocyte counts on the LaserCyte and ForCyte correlated but had a negative bias compared with those on the ADVIA. Precision, linearity, and carryover results were excellent for most analyzers. Conclusions: Total WBC and RBC counts were acceptable on all in‐clinic hematology instruments studied, with limitations for some RBC parameters and platelet counts. Together with evaluation of a blood film, these in‐clinic instruments can provide useful information on canine and feline patients in veterinary practices.  相似文献   

16.
The purpose of this study was to describe the clinical presentation, potential causative agents, treatment and outcome of febrile neutropenia (FN) in chemotherapy‐treated cats. Medical records from eight institutions were retrospectively reviewed. A total of 22 FN events in 20 cats were evaluated. Lymphoma was the most common cancer diagnosis; lomustine and vinca alkaloids were the most frequently implicated causative agents. Presenting clinical signs included decreased appetite, lethargy, vomiting and diarrhoea. Median body temperature and absolute neutrophil count at presentation were 104.1 °F; 40 °C (range: 103.1–105.1 °F; 39.5–40.6 °C) and 246 mL‐1 (range: 0–1600 mL‐1), respectively. Median number of days between chemotherapy administration and FN onset was 5 (range: 4–25 days). All but one cat were treated with intravenous fluids and broad spectrum antibiotics. Fevers resolved in all cases and absolute neutrophil counts returned to normal in 19 cats. Clinical presentation of cats with FN appears similar to that of dogs.  相似文献   

17.
OBJECTIVE: To examine clinical features, laboratory test results, treatment, and outcome of dogs with pure red cell aplasia (PRCA) and idiopathic nonregenerative immune-mediated anemia (NRIMA). DESIGN: Retrospective study. ANIMALS: 43 dogs with severe nonregenerative anemia. PROCEDURE: Medical records of dogs determined to have PRCA, NRIMA, or ineffective erythropoiesis on the basis of bone marrow analysis between 1988 and 1999 were reviewed. Criteria for inclusion were > or = 5-day history of severe nonregenerative anemia (Hct < 20%; < 60.0 x 10(3) reticulocytes/microliter) with no underlying diseases. Information was retrieved on signalment, clinical signs, laboratory test results, treatment, and outcome. RESULTS: Median age of the dogs was 6.5 years. Spayed females and Labrador Retrievers were significantly overrepresented. Median Hct was 11% with no evidence of regeneration (median, 1.5 x 10(3) reticulocytes/microliter). Direct Coombs' test results were positive in 57% of dogs. Biochemical abnormalities included hyperferremia and high percentage saturation of transferrin. Bone marrow findings ranged from PRCA (5%) to erythroid hyperplasia (55%). Myelofibrosis was common. Dogs were treated with immunosuppressive drugs and the response was complete, partial, and poor in 55, 18, and 27% of the dogs, respectively. Mortality rate was 28%. CONCLUSIONS AND CLINICAL RELEVANCE: An immune-mediated pathogenesis should be considered in dogs with severe, nonregenerative anemia, normal WBC and platelet counts, hyperferremia, mild clinical signs, and no evidence of underlying disease. Bone marrow findings range from the rare PRCA to erythroid hyperplasia. Myelofibrosis is often detected in affected dogs and may prevent bone marrow aspiration.  相似文献   

18.
Background: The laser‐based Sysmex XT‐2000iV hematology analyzer is increasingly used in veterinary clinical pathology laboratories, and instrument‐specific reference intervals for dogs are not available. Objective: The purpose of this study was to establish canine hematologic reference intervals according to International Federation of Clinical Chemistry and Clinical and Laboratory Standards Institute guidelines using the Sysmex XT‐2000iV hematology analyzer. Methods: Blood samples from 132 healthy purebred dogs from France, selected to represent the most prevalent canine breeds in France, were analyzed. Blood smears were scored for platelet (PLT) aggregates. Reference intervals were established using the nonparametric method. PLT and RBC counts obtained by impedance and optical methods were compared. Effects of sex and age on reference intervals were determined. Results: The correlation between impedance (I) and optical (O) measurements of RBC and PLT counts was excellent (Pearson r=.99 and .98, respectively); however, there were significant differences between the 2 methods (Student's paired t‐test, P<.0001). Differences between sexes were not significant except for HCT, PLT‐I, and PLT‐O. WBC, lymphocyte, and neutrophil counts decreased significantly with age (ANOVA, P<.05). Median eosinophil counts were higher in Brittany Spaniels (1.87 × 109/L), Rottweilers (1.41 × 109/L), and German Shepherd dogs (1.38 × 109/L) than in the overall population (0.9 × 109/L). PLT aggregates were responsible for lower PLT counts by the impedance, but not the optical, method. Conclusion: Reference intervals for hematologic analytes and indices were determined under controlled preanalytical and analytical conditions for a well‐characterized population of dogs according to international recommendations.  相似文献   

19.
BACKGROUND: Previous studies showed that dogs with extreme leukocytosis had specific types of diseases, long hospitalization times, and high mortality rates. Objectives: The aim of this study was to determine whether dogs with moderate to severe leukocytosis are likely to have similar results compared with age-matched control dogs. METHODS: Records at the Onderstepoort Veterinary Academic Hospital, University of Pretoria, were examined retrospectively from dogs with > or =35 x 10(9) WBC/L (Leukocytosis Group) and dogs with < or =30 x 10(9) WBC/L and < or =0.5 x 10(9) band neutrophils/L (Control Group). Hematologic and serum protein data, final diagnosis, and effect of glucocorticoid treatment were compared between groups. RESULTS: One hundred eighty-two dogs were included in the Leukocytosis Group and 179 in the Control Group. Compared with dogs in the Control Group, significantly more dogs in the Leukocytosis Group had infections, babesiosis, immune-mediated hematologic disease, and necrosis. Hospitalization time and neutrophil, lymphocyte, and monocyte counts were significantly higher and HCT, eosinophil count, platelet count, and serum albumin concentration were lower in dogs in the Leukocytosis Group (P<.0001). There was no difference in leukocyte counts between glucocorticoid-treated and non-glucocorticoid-treated dogs. Survival did not differ between Leukocytosis and Control Groups; however, a significant relationship was found between total neutrophil (mature+band) count and survival (P=.01). CONCLUSIONS: Dogs with leukocytosis of > or =35 x 10(9)/L are more likely to have bacterial and fungal infections, complicated babesiosis, immune-mediated hematologic disease, and necrosis. The total neutrophil count has a significant impact on outcome.  相似文献   

20.
Unique features of elephant hematology are known challenges in analytical methodology like two types of monocytes typical for members of the Order Afrotheria and platelet counts of the comparatively small elephant platelet. To investigate WBC differential and platelet data generated by an impedance-based hematology analyzer without availability of validated species-specific software for recognition of elephant WBCs and platelets, compared to manual blood film review. Blood samples preserved in ethylenediaminetetraacetic acid (EDTA) of 50 elephants (n = 35 Elephas maximus and n = 15 Loxodonta africana) were used. A Mann-Whitney test for independent samples was used to compare parameters between methods and agreement was tested using Bland-Altman bias plots. All hematological variables, including absolute numbers of heterophils, lymphocytes, monocytes, eosinophils, basophils, and platelets, were significantly different (p < 0.0001) between both methods of analysis, and there was no agreement using Bland-Altman bias plots. Manual review consistently produced higher heterophil and monocyte counts as well as platelet estimates, while the automated analyzer produced higher lymphocyte, eosinophil, and basophil counts. The hematology analyzer did not properly differentiate elephant lymphocytes and monocytes, and did not accurately count elephant platelets. These findings emphasize the importance of manual blood film review as part of elephant complete blood counts in both clinical and research settings and as a basis for the development of hematological reference intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号