首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Four anthocyanin-pyruvic adducts were synthesized through the reaction of cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-sophoroside, and cyanidin 3-O-sambubioside with pyruvic acid, structurally characterized by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), and their chromatic properties were studied (pH and SO2 stability assays). Overall, these pigments were shown to have a higher resistance to discoloration toward pH variations and also in the presence of SO2, being that this resistance to discoloration was explained by a higher protection of the chromophore group against the water or bisulfite nucleophilic attack that gives rise to the colorless hemiacetal form. Only slight differences in the protection against the nucleophilic attack of water and bisulfite were found to occur between all of the cyanidin-pyruvic acid adducts studied. Indeed, anthocyanin-pyruvic acid adducts with glucose or sambubiose attached to the 3-O position of the flavylium moiety were shown to have smaller bleaching constants compared with similar pigments that possess a rutinosyl or sophorosyl moiety. The study of the pigments (A-D and cyanidin-3-O-glucoside) color parameters, namely, chroma (C), lightness (L), and the hue angle (h(a,b)), obtained from the CIELAB system, revealed that different patterns of sugars in the anthocyanin-pyruvic acid adduct moiety affected the referred three parameters of color. The loss of saturation (DeltaC < 0) and the increase of lightness (DeltaL > 0) presented by the cyanidin-pyruvic acid adduct solutions at acidic pH values (1.0 and 2.0) showed that they are much less colored than the cyanidin-3-O-glucoside. For higher pH values (5.0 and 7.0), the reverse trend was observed. This means that the cyanidin-pyruvic acid adducts A-D are much more colored than the anthocyanin at these pH values. The higher coloring capacity of these pigments at higher pH values may be an important feature, indicating a putative application of these compounds in food products.  相似文献   

2.
A new class of blue anthocyanin-derived pigments isolated from red wines   总被引:1,自引:0,他引:1  
Two newly formed anthocyanin-derived pigments that revealed unique spectroscopic features, showing maximum absorption in their UV-vis spectra at 575 nm, were isolated by TSK Toyopearl HW-40 (S) gel column chromatography and semipreparative HPLC from an aged Port red wine. Further characterization by ESI/MS and NMR ((1)H, gCOSY) showed them to belong to a new class of pigments described here for the first time, the structure of which consisted of a pyranoanthocyanin moiety linked to a flavanol by a vinyl bridge. The extended conjugation of the pi electrons throughout all the pigment molecule is likely to confer a higher stability on it and is probably the origin of the intense blue color. The formation of these pigments was found to arise from the reaction between anthocyanin-pyruvic acid adducts and vinyl-flavanol adducts.  相似文献   

3.
The free radical chemistry of two polyphenolic pigments from red wine, belonging to the family of portisins, has been investigated after reaction with O(2)(?-) radicals using electron paramagnetic resonance (EPR) spectroscopy. Two portisins derived from malvidin-3-glucoside and cyanidin-3-glucoside were used for this study. Stable free radicals were detected with both portisins and correspond to unpaired electrons localized on the B as well as F rings of the portisins. Interpretations were confirmed by comparison with the spectra of free radicals formed by oxidation of the model compounds cyanidin-3-glucoside, malvidin-3-glucoside, and catechin. These results concur with previous work reporting the higher antiradical properties of these pigments compared to their anthocyanin precursors.  相似文献   

4.
For three years, the evolution of the three major anthocyanidin monoglucosides (malvidin 3-glucoside, malvidin 3-acetylglucoside, and malvidin 3-coumaroylglucoside) and their anthocyanin-pyruvic acid adducts was monitored in Port wines stored in oak barrels. The degradation reactions of all pigments followed first-order kinetics in all the wines studied. The degradation rate constants of the anthocyanin-pyruvic acid adducts were much lower than those of the anthocyanidin monoglucosides. The results of both anthocyanins and pyruvic acid adducts show that acylation on the sugar moiety of all the pigments decreased their stability in wine. The levels of malvidin 3-glucoside-pyruvic acid adduct and its acylated forms increased right after wine fortification with wine spirit before starting to decrease around 100 days. The initial formation of anthocyanin-pyruvic acid adducts was concurrent with the degradation of anthocyanidin monoglucosides.  相似文献   

5.
Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts   总被引:3,自引:0,他引:3  
A blueberry extract (A) and two anthocyanin-derived extracts (B and C) were prepared. The contents of polyphenols, flavonoids, anthocyanins, and anthocyanin-derived pigments of the extracts were determined for the first time. The pigment profile of blueberry extract A corresponded to 15 anthocyanins, whereas extract B was mainly composed of anthocyanin-pyruvic acid adducts of the blueberry original anthocyanins and extract C was mainly composed of the respective vinylpyranoanthocyanin-catechins (portisins). The extracts' abilities to inhibit lipid peroxidation, induced by 2,2'-azobis(2-methyl-propanimidamide) dihydrochloride in a liposomal membrane system were examined. The antioxidant capacities of the extracts were evaluated through monitoring oxygen consumption and by measuring the formation of conjugated dienes. All of the extracts provided protection of membranes against peroxyl radicals by increasing the induction time of oxidation. This effect increased with the polyphenol content and with the structural complexity of the anthocyanin-derived pigments of the extracts. The pigments present in extract C seemed to induce a higher protection of the liposome membranes toward oxidation. In addition, the antiradical properties and the reducing power of the extracts were determined by using DPPH and FRAP methods, respectively. The results from these assays were in agreement with those obtained with the liposome membranes.  相似文献   

6.
Two newly formed yellow pigments that revealed unique spectral features were detected and isolated from an aged Port red wine by TSK Toyopearl HW-40(s) gel chromatography and characterized by UV-visible spectrophotometry, 1H NMR and 13C NMR, and mass spectrometry (LC-ESI/MS). The UV-vis spectra of these pigments showed maximum absorption at 478 nm that is significantly hypsochromically shifted from those of original grape anthocyanins and other pyranoanthocyanins, exhibiting a more yellow hue in acidic solution. The structures of these pigments correspond to methyl-linked pyranomalvidin 3-glucoside and its respective coumaroyl glucoside derivative. They were shown to arise from the reaction between acetoacetic acid and genuine grape anthocyanins. Isolation and NMR identification using 1D and 2D NMR techniques are reported for the first time for this new family of anthocyanin-derived yellow pigments occurring in red wines.  相似文献   

7.
Red pigments were isolated from wine and grape-skin extracts using preparative high-speed countercurrent chromatography (HSCCC) and identified by NMR and MS techniques. Four solvent systems were developed in order to separate anthocyanins with different polarities. Malvidin-3-glucoside was the major component present in young red wines, and up to 500 mg of pure malvidin-3-glucoside could be obtained from a single bottle of a red wine. Other isolated pigments were the malvidin- and peonidin-3,5-diglucosides, as well as acetyl-, coumaroyl-, and caffeoyl-derivatives of anthocyanins. Furthermore, condensed red wine pigments formed from malvidin-3-glucoside (vitisin A and acetylvitisin A) were isolated on a preparative scale. Isolated compounds were used as standards for quantification of anthocyanins in a range of red wines. The "color activity concept" was applied to red wine, and visual detection thresholds were determined for some of the isolated anthocyanins. Mono-glucosides were found to exhibit lower visual detection thresholds than di-glucosides and acylated anthocyanins.  相似文献   

8.
A red wine, made from Cabernet Sauvignon (60%) and Tannat (40%) cultivars, was fractionated by high speed countercurrent chromatography (HSCCC). The biphasic solvent system consisting of tert-butyl methyl ether/n-butanol/acetonitrile/water (2/2/1/5, acidified with 0.1% trifluoroacetic acid) was chosen for its demonstrated efficiency in separating anthocyanins. The different native and derived anthocyanins were identified on the basis of their UV-visible spectra, their elution time on reversed-phase high-performance liquid chromatography (HPLC), and their mass spectra, before and after thiolysis. The HSCCC method allowed the separation of different families of anthocyanin-derived pigments that were eluted in different fractions according to their structures. The hydrosoluble fraction was almost devoid of native anthocyanins. Further characterization (glucose quantification, UV-visible absorbance measurements) indicated that it contained flavanol and anthocyanin copolymers in which parts of the anthocyanin units were in colorless forms. Pigments in the hydrosoluble fraction showed increased resistance to sulfite bleaching and to the nucleophilic attack of water.  相似文献   

9.
Several factors may affect the results obtained when micro-oxygenation is applied to red wines, the most important being the moment of application, the doses of oxygen, and the wine phenolic characteristics. In this study, three red wines, made from Vitis vinifera var. Monastrell (2005 vintage) and with different phenolic characteristics, were micro-oxygenated to determine as to how this technique affected the formation of new pigments in the wines and their chromatic characteristics. The results indicated that the different wines were differently affected by micro-oxygenation. In general, the micro-oxygenated wines had a higher percentage of new anthocyanin-derived pigments, being that this formation is more favored in the wines with the highest total phenol content. These compounds, in turn, significantly increased the wine color intensity. The wine with the lowest phenolic content was less influenced by micro-oxygenation, and the observed evolution in the degree of polymerization of tannins suggested that it might have suffered overoxygenation.  相似文献   

10.
DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of protocatechuic acid and its structural analogues (methyl protocatechuate, 3',4'-dihydroxyacetophenone, 3,4-dihydroxybenzaldehyde, and 3,4-dihydroxybenzonitrile) were examined in aprotic and protic solvents. In aprotic acetonitrile, all test compounds scavenged two radicals. In protic methanol, however, these compounds rapidly scavenged five radicals except for protocatechuic acid, which consumed only two radicals. The result indicated that higher radical scavenging activity in methanol than in acetonitrile was due to a nucleophilic addition of the methanol molecule on the oxidized quinones, which led to a regeneration of catechol structures. To investigate the importance of the nucleophilic addition on the quinones for the high radical scavenging activity, DPPH radical scavenging activity of protocatechuic acid and its analogues was examined in the presence of a variety of nucleophiles. The addition of a strong nucleophile such as a cysteine derivative significantly increased the radical scavenging equivalence. Furthermore, thiol adducts at C-2 and C-2,5 of protocatechuic acid and its analogues were isolated from the reaction mixtures. These results strongly suggest that the quinone of protocatechuic acid and its analogues undergo a nucleophilic attack at C-2 to yield 2-substituted-3,4-diols. Then, a regenerated catechol moiety of adducts scavenge two additional radicals by reoxidation into quinones, which undergo the second nucleophilic attack at the C-5. This mechanism demonstrates a possibility of synergistic effects of various nucleophiles on the radical scavenging ability of plant polyphenols containing a 3,4-dihydroxy substructure like protocatechuic acid and its analogues.  相似文献   

11.
Hydroxyl radicals (.OH) seem to have an important role in the oxidation of wine constituents and the production of important electrophilic aldehydes and ketones. In this experiment, glyceraldehyde, a .OH oxidation product of glycerol, recently described in wine, reacts with (+)-catechin, (-)-epicatechin, and malvidin-3-glucoside (Mv3gl), in model solutions, yielding new condensed phenolic compounds. The adduct compounds formed were separated by means of reversed phase liquid chromatography and detected and characterized using UV-vis and electrospray ionization mass spectrometry. Flavanol-flavanol and anthocyanin-flavanol adducts linked with glyceraldehyde yielded compounds with m/z ratios for their main ions, in positive ion mode, of 653.2 for the (+)-catechin dimer or the (-)-epicatechin dimer and 855.5 for Mv3gl/(+)-catechin or Mv3gl/(-)-epicatechin dimers. The possible occurrence of these compounds in wine is suggested, and the potential role of these and related reactions in wine aging is discussed.  相似文献   

12.
Several anthocyanin-derived pigments that showed UV-visible spectra different from those of the original grape anthocyanins were detected by HPLC-DAD analysis in 1-year-old bottled Port wines from the Douro region. Among these, three malvidin 3-glucoside derived pigments were detected in large amounts, representing approximately 60% of the total anthocyanidin monoglucosides content. These pigments were isolated, purified, and identified by LSI-MS and NMR ((1)H, DQF-COSY, ROESY, HSQC, and HMBC) techniques. The major pigment is malvidin 3-glucoside pyruvic adduct, previously characterized, and the other two corresponded to its respective acetyl and coumaroyl glucoside derivatives. The latter is reported for the first time in red wines.  相似文献   

13.
The physicochemical properties of 8,8-methylmethine catechin-malvidin 3-O-glucoside isomers, commonly referred to as catechin-ethyl-malvidin 3-O-glucoside, have been studied in aqueous solutions and compared with those of the parent anthocyanin (malvidin 3-O-glucoside). The hydration and acidity constants (pKh and pKa) of the catechin-ethyl-malvidin 3-O-glucoside pigments and malvidin 3-O-glucoside were determined by UV-visible spectroscopic measurements. The ethyl-linked catechin-malvidin 3-O-glucoside pigments present higher stability toward hydration than the parent anthocyanin. The high resistance of these ethyl-linked pigments toward the hydration is related to the self-association that offers optimal protection from the nucleophilic attack of water. Moreover, the ethyl link may confer to the molecule enough flexibility to undergo intramolecular interaction, further protecting it from hydration and bisulfite discoloration. In the wine pH range (3.2-4.0), due to the low pKa and high pKh values, the ethyl-linked pigments are present as colored forms (flavylium cation and quinonoid bases).  相似文献   

14.
Three newly formed Port wine pigments were isolated by Toyopearl HW-40(s) gel chromatography and semipreparative HPLC. Furthermore, the pigments were identified by mass spectrometry (LC/MS) and NMR techniques (1D and 2D). These anthocyanin-derived pigments showed UV-visible spectra different from those of the original grape anthocyanins. These pigments correspond to malvidin 3-glucoside linked through a vinyl bond to either (+)-catechin, (-)-epicatechin, or procyanidin dimer B3 [(+)-catechin-(+)-catechin]. NMR data of these pigments are reported for the first time.  相似文献   

15.
Three newly formed pigments were detected and isolated from a 2-year-old Port wine through TSK Toyopearl HW-40(S) gel column chromatography and characterized by UV-visible spectrophotometry, NMR, and mass spectrometry (ESI/MS). (1)H NMR and (13)C NMR data for these pigments obtained using 1D and 2D NMR techniques (COSY, NOESY, gHSQC, and gHMBC) are reported for the first time. The structure of the pigments was found to correspond to the vinyl cycloadducts of malvidin 3-coumaroylglucoside bearing either a procyanidin dimer or a flavanol monomer ((+)-catechin or (-)-epicatechin). Additionally, conformational analysis was performed for one of these newly formed pigment using computer-assisted model building and molecular mechanics. A chemical nomenclature is proposed to unambiguously name this new family of anthocyanin-derived pigments.  相似文献   

16.
Red wine extracts were screened for potential wine pigments derived from anthocyanins, using a combination of nanoelectrospray tandem mass spectrometry techniques. Fourteen aglycons were considered to be of anthocyanidin origin on the basis of their MS/MS spectra. The proposed structures of the aglycons were anthocyanidin C-4 substituted with vinyl linkage between C-4 and the hydroxy group at C-5. The anthocyanidin derivatives identified in the wine extracts were vinyl, vinylmethyl, vinylformic acid, 4-vinylphenol, 4-vinylguaiacol, and vinylcatechin adducts of malvidin as well as vinylformic acid and 4-vinylphenol adducts of peonidin and petunidin. The presence of vinyl alcohol, 4-vinylcatechol, and 4-vinylsyringol adducts of malvidin was also proposed.  相似文献   

17.
Several structurally related pigments were found to result from the reaction between catechin and coniferaldehyde/sinapaldehyde extracted from oak wood. Their structures were tentatively identified by mass spectrometry, and their formation was studied in different pH and temperature conditions for several days. They were all found to have a characteristic catechinpyrylium core, thereby constituting a new class of compounds named as oaklins. One of the main oaklins was also detected in a commercial table red wine aged in oak barrels.  相似文献   

18.
Anthocyanin pigments from rosé cider and red wine, which is a sparkling wine made from apples, were separated by gel permeation chromatography (GPC) using a TSK-GEL Toyopearl HW-40 (F) column with a 6:4 mixture of acetone and 8 M urea (pH 2.0) as the eluent. Under this condition, all phenolic compounds containing monomeric anthocyanins (mainly, cyanidin-3-galactoside; Cyn-3-gal), oligomeric and polymeric anthocyanins, chlorogenic acid, catechin, epicatechin, procyanidin B2 (PB2), and procyanidin C1 (PC1) in the apples and rosé cider were found to elute according to molecular weight. Bleaching of the anthocyanin pigments by SO(2) was gradually effective in the fractions separated by GPC according to elution volume. In the case of rosé cider, the levels of Cyn-3-gal decreased markedly during fermentation and then decreased gradually during maturation. We confirmed that anthocyanin polymers are not detectable in apple juice; these polymers are produced during fermentation and maturation as determined by GPC. The polymeric anthocyanins from red wine could be separated by this method, too.  相似文献   

19.
Reactions between malvidin-3-glucoside (mv3glc) and 8-vinylcatechin were carried out to synthesize pyranomv3glc-(+)-catechin pigment and to study the formation of intermediates. A rapid decrease of mv3glc content concomitant with the formation of more complex structures such as mv3glc-vinylcatechin [precursor of pyranomv3glc-(+)-catechin pigment] and mv3glc-divinylcatechin was observed. On the other hand, 8-vinylcatechin undergoes acid-catalyzed dimerization in model wine solution, giving rise to 8-vinylcatechin dimers. These compounds were also found in the reaction between mv3glc and (+)-catechin mediated by acetaldehyde, which provides evidence for the formation of 8-vinylcatechin and its involvement in the formation of pyranoanthocyanins in aged red wines.  相似文献   

20.
Phenolics from grapes and wines can play a role against oxidation and development of atherosclerosis. Levels of phenolics, major catechins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, and B4], phenolic acids (gallic acid and caffeic acid), caftaric acid, malvidin-3-glucoside, peonidin-3-glucoside, and cyanidin-3-glucoside were quantified by HPLC with UV detection for 54 French varietal commercial wines taken from southern France to study the antioxidant capacity and the daily dietary intake of these compounds for the French population. The highest antioxidant capacity was obtained with red wines and ranged from 12.8 mmol/L (Grenache) to 25.2 mmol/L (Pinot Noir). For white wines, Chardonnay enriched in phenolics by special wine-making was found to have an antioxidant capacity of 13.8 mmol/L, comparable to red wine values. For red wines classified by vintages (1996-1999) antioxidant capacities were approximately 20 mmol/L and then decreased to 13.4 mmol/L for vintages 1995-1991. Sweet white wines have 1.7 times more antioxidant capacity (3.2 mmol/L) than dry white wines (1.91 mmol/L). On the basis of a still significant French wine consumption of 180 mL/day/person, the current daily intake of catechins (monomers and dimers B1, B2, B3, and B4) averaged 5 (dry white wine), 4.36 (sweet white wines), 7.70 (rosé wines), 31.98 (red wines), and 66.94 (dry white wine enriched in phenolic) mg/day/resident for the French population. Red wine, and particularly Pinot Noir, Egiodola, Syrah, Cabernet Sauvignon, and Merlot varieties, or Chardonnay enriched in phenolics during wine-making for white varieties contribute to a very significant catechin dietary intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号