首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In Germany, sugar beet is often rotated with 2 years of cereal. Extensive fallow periods between cereal harvest and autumn primary tillage allow for a weed flora to develop. Broad‐leaved weeds could potentially be alternate hosts for the common nematode Heterodera schachtii, one of the most important pests of sugar beet. Between 2009 and 2012, annual weeds developing in cereal stubble fields during July to mid‐October in the season prior to sugar beet were surveyed, including known hosts of H. schachtii. Yearly weather patterns and agronomic practices possibly impacted weed species composition and weed population densities. During September, Chenopodium album, Cirsium arvense, Convolvulus arvensis, Mercurialis annua, Polygonum spp., Solanum nigrum and Sonchus spp. occurred at the highest frequencies. Weed hosts of H. schachtii were present, but densities, frequencies and uniformity were limited. In 2010 and 2011, staining for nematodes in roots revealed juvenile penetration of some weeds but few adult stages. No indication of nematode reproduction of H. schachtii was found on these weed hosts. A fairly stable weed flora was detected on stubble fields that could provide some carry over for weed species. An elevated risk for nematode population density build‐up on these weeds was not found and management of these weeds at the observed densities during the stubble period for nematological reasons appeared unnecessary.  相似文献   

2.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Primarily, spatial information allows a potential reduction in herbicide use, when post‐emergent herbicides are only applied to field sections with high weed infestation levels. This paper presents a system for site‐specific weed control in sugar beet, maize, winter wheat, winter barley, winter rape and spring barley. The system includes on‐line weed detection using digital image analysis, computer‐based decision making and Global Positioning System‐controlled patch spraying. In a 2‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 6–81% for herbicides against broad leaved weeds and 20–79% for grass weed herbicides. Highest savings were achieved in cereals followed by sugar beet, maize and winter rape. The efficacy of weed control varied from 85% to 98%, indicating that site‐specific weed management will not result in higher infestation levels in the following crops.  相似文献   

3.
Summary. A series of experiments was carried out in glasshouses and in fields to study the - behaviour of PEBC and its possible use for weed control in different beet crops as compared with other herbicides. The loss by volatilization of PEBC does not seem to constitute an important factor of dissipation, when the herbicide is applied on dry soil without incorporation; the herbicidal activity was even increased after an exposure of several days on the dry soil surface. The clay and organic matter content of the soil affected the activity of PEBC. In the field trials on sugar beet, fodder beet and red beet, PEBC was sprayed on dry soil before or after planting and activated by sprinkler irrigation or rainfall after 12 or 48 hr. In the pre-planting experiment, deep incorporation by disk-harrow and shallow incorporation by roller were compared with a non-incorporated treatment; the herbicidal activity of PEBG was significantly lower with deep incorporation. In two pre-emergence experiments, incorporation by rolling was compared with non-incorporation; the control of weeds susceptible to PEBC was somewhat better when the application was followed by rolling. PEBC was active against annual grasses and fairly active against Amaranthus spp. and Portulaca oleracea, which constitute the majority of the weeds infesting beet fields in Israel. Cruciferae were quite tolerant and perennial weeds were resistant to PEBC. Sugar beet, fodder beet and red beet tolerated doses of PEBC capable of satisfactory weed control. The activity of PEBC treatment lasted for 1 or 2 months. Under the specific conditions of beet cultivation in Israel, the application of PEBC before emergence, possibly followed by rolling, appears to be a promising herbicidal treatment. Untersuchungen über die Eigenschaften von PEBC (S-propyl N-Aubuty N-äthylthiolcarbamat) und dessen Eignung zur Unkrautbekämpfung in Rüben.  相似文献   

4.
A weed survey methodology was used for 2 years in three provinces in Greece to determine the abundance and spatial distribution of weeds in cotton (Gossypium hirsutum L.) fields. Based on a stratified random sampling procedure, the most frequently occurring weeds were counted in 150 cotton fields. The field surveys were conducted late in the growing season; hence, the weed populations consisted of species that had been present during the critical competitive period for the crop and may have contributed to yield losses.Solanum nigrum was the most abundant weed in the surveyed fields of the southern province, followed byCyperus rotundus, Convolvulus arvensis, Xanthium strumarium, Chrozophora tinctoria andCynodon dactylon, in descending order. The ranked weed flora in the fields of the northern province was differentiated, suggesting the geographical distribution of weed species. The weedsDatura stramonium andS. nigrum were recorded in high abundance and followed byAmaranthus spp.,Abutilon theophrasti, Portulaca oleracea, Chenopodium album andXanthium spinosum, in descending order. Although the use of preplant incorporated herbicides is the dominant practice in cotton cultivation, certain weeds continue to spread in increasing densities. http://www.phytoparasitica.org posting July 26, 2005.  相似文献   

5.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Most of all, it allows a potential reduction in herbicide use, when post‐emergence herbicides are only applied to field sections with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site‐specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including online weed detection using digital image analysis, computer‐based decision making and global positioning systems (GPS)‐controlled patch spraying. In a 4‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 60% for herbicides against broad‐leaved weeds and 90% for grass weed herbicides. In sugarbeet and maize, average savings for grass weed herbicides were 78% in maize and 36% in sugarbeet. For herbicides against broad‐leaved weeds, 11% were saved in maize and 41% in sugarbeet.  相似文献   

6.
For dominant weed species that are difficult to control by traditional means, the development of new, selective, control methods that can be implemented in integrated pest management (IPM) is essential. Here, biological control can be the appropriate means of control due to its high degree of selectivity and environmental safety (direct control value). The biocontrol strategy is based on a detailed analysis of the crop environment and, thus, provides a fundamental tool for developing sustainable agroecosystems (indirect, heuristic value). The successful application of biological weed control will lead to substantial reductions in pesticide use and, thus, will also contribute to the conservation, augmentation and utilization of biodiversity in agroecosystems, an explicit objective of IPM. Only cooperative and concerted efforts, such as those envisaged by COST, will allow the effective completion of weed biocontrol projects within a reasonable period of time. At present, over 25 institutions from 14 countries are participating in this COST action. The following six objectives have been defined for COST-816: to bring together European institutions, to promote a programme for scientific research and exchange, to draw up a general protocol for biological weed control in Europe, to integrate biological control into general weed management strategies, to establish a protocol to resolve potential conflicts of interest and to establish a list of agricultural weed species in Europe for biological control. Three principal methods of biological weed control are used in COST-816: the inoculative or classical approach, the system management approach and the inundative or microbial herbicide approach. Initially, Amaranthus spp., Convolvulus arvensis/Calystegia sepium, Chenopodium album and Senecio vulgaris were chosen as target weeds, each being the subject of a working group. A fifth working group on the control of Orobanche spp. control is in preparation. This concentration on a few target weed species has greatly stimulated cooperation and facilitated technology transfer between the research groups  相似文献   

7.
Broad-leaved weeds in pasture, such as Carduus nutans, Onopordum spp. and Echium plantagineum are a major problem for graziers in southern Australia. Previous attempts to combat these weeds with a single technique have only resulted in short-term success. An approach to long-term control, combining biological control with different grazing and herbicide strategies, was evaluated in an integrated weed management (IWM) programme, in south-eastern Australia. This IWM study was one of the few that has focused on biological control agents. During the field trials, the impacts of grazing and herbicide treatments on the weed and biological control agents, as well as on pasture composition, were monitored. This paper concentrates on the part of the study that focuses on the role and importance of pasture composition as part of weed management. The main pasture components were monitored using botanal , a sampling technique for estimating species composition and pasture yield in the field. IWM is a long-term ecological approach and after 3 years, major trends were just becoming apparent. This study shows that pasture composition can be manipulated to increase productivity and sustainability. It demonstrates that broad-leaved weeds can be reduced when high level pasture background management and chemical control are combined.  相似文献   

8.
A sugarbeet field experiment was conducted in 1999 and 2000 to measure beet yield where Sinapis arvensis or Lolium perenne were growing in the crop row at 2, 4 or 8 cm from the beet plants. The weeds were removed by cutting once in the growing season in either late May, mid‐June or early July. The number of neighbouring beet plants to every target beet plant was recorded. Projected leaf cover of a subset of the data with non‐cut weeds was analysed by using image analysis to investigate whether this could be used to predict beet yield loss early in the growing season. Increasing the distance between beet and weed from 2 to 8 cm increased the beet yield significantly by an average of 20%, regardless of weed species. The dry weight of non‐cut and re‐growing weeds at harvest time decreased when cutting was postponed to the period between mid‐June and early July. The number of neighbours described a sigmoidal yield decline of the single beet plants. Results from image analysis showed that approximately 33 g of beet yield was lost in October/November for each per cent relative projected leaf cover of the weeds in May, despite variation in growing conditions. The results are discussed in relation to potentials for robotic in‐row weed control.  相似文献   

9.
Pigweeds (Amaranthus spp.) are of economic importance worldwide. In Europe, Amaranthus retroflexus is one of the ten weed species of greatest economic importance. It is a serious problem weed in several field crops (e.g. maize), as well as in vegetables, orchards and grape vines. It is an annual spreading by seeds which have a long viabilityand are dispersed principally by wind and water, but also by machinery. There is great variability in seed germination which renders control with post-emergence herbicides difficult. In addition, triazine herbicide-resistant populations occur in ten European countries. The aim of this subproject of COST action 816 is to investigate the possibilities of classical and inundative biological control of Amaranthus spp., to characterize potentialbiological control agents and to develop methods for their integration with current phytosanitary measures in the target crops. The project was initiated with an extended literaturesurvey followed by field surveys for insects and pathogens associated with Amaranthus spp. in several European countries. Promising isolates of fungal pathogens have been tested ondetached leaves and whole plants, and initial studies on the application of pathogens causing damping off in seedlings have been made. Further, the variability of different provenances ofAmaranthus spp. in response to fungal attack has been investigated  相似文献   

10.
A weed monitoring conducted by Syngenta Agro GmbH in co-operation with the University of Hohenheim was carried out to evaluate the local and regional weed situation in maize in Germany. The fields were monitored at the two to six leaf stage of maize before weed control. A total of 2602 maize fields across Germany has been investigated from 2000 until 2004. Altogether 204 weed species (including volunteer crops) from 32 plant families have been recorded. The dicots were the predominant group with 166 species. The monocots were represented by 36 species and two species belonged to the family of Equisetaceae; volunteer crops were represented by 22 species. The most frequent species were Chenopodium spp. (79.7%) in particular Chenopodium album, followed by Stellaria media (61.0%), Fallopia convolvulus (55.7%), Echinochloa crus-galli (53.0%), Matricaria spp. (50.3%), Viola arvensis (47.8%), Polygonum aviculare (45.8%), Lamium spp. (41.6%), Galium aparine (39.7%) and Elytrigia repens (39.4%). The results demonstrate that with the exception of Echinochloa crus-galli, species usually considered for being typical for maize as e. g. Solanum nigrum, Amaranthus spp. and Galinsoga spp. are not dominating. Among the volunteer crops, rape was most abundant (17.2%). On average the weed density over all fields was 192 plants m-2. The monitoring clearly shows that some weeds occur predominantly in certain areas as e. g. Solanum nigrum and Stellaria media in the north-west and Veronica spp. in the south of Germany. Beside climatic conditions differences in cropping systems and cultivation practices lead to a specific weed flora in maize. In comparison to similar investigations in the seventies of the last century, some species species as e. g. Veronica spp. and Viola arvensis have increased dramatically. This increase is mainly due to the use of sulfonylurea herbicides which are weak on these species. The increase of Geranium spp., weeds which are rather new in maize, is also linked to the low efficacy of the herbicides presently used on these species. All the species found during the five years monitoring are presented by their frequency of occurrence.  相似文献   

11.
Recent development of site‐specific weed management strategies suggests patch application of herbicides to avoid their excessive use in crops. The estimation of infestation of weeds and control thresholds are important components for taking spray decisions. If weed pressure is below a certain level in some parts of the field and if late germinating weeds do not affect yield, it may not be necessary the spray such places from an economic point of view. Consequently, it makes sense to develop weed control thresholds for patch spraying, based on weed cover early in the growing season. In Danish maize field experiments conducted from 2010 to 2012, we estimated competitive ability parameters and control thresholds of naturally established weed populations in the context of decision‐making for patch spraying. The most frequent weed was Chenopodium album, accompanied by Capsella bursa‐pastoris, Cirsium arvense, Lamium amplexicaule, Tripleurospermum inodorum, Poa annua, Polygonum aviculare, Polygonum persicaria, Stellaria media and Veronica persica. Relative leaf cover of weeds was estimated using an image analysis method. The relation between relative weed leaf cover and yield loss was analysed by nonlinear regression models. The competitive ability parameters and economic thresholds were estimated from the regression models. The competitive ability of weed mixtures was influenced by the increasing proportion of large size weeds in the mixtures. There was no significant effect of weeds which survived or established after the first herbicide application, indicating that early image analysis was robust for use under these conditions.  相似文献   

12.
Parthenium weed (Parthenium hysterophorus L.) is one of the most aggressive invasive weeds, threatening natural ecosystems and agroecosystems in over 30 countries worldwide. Parthenium weed causes losses of crops and pastures, degrading the biodiversity of natural plant communities, causing human and animal health hazards and resulting in serious economic losses to people and their interests in many countries around the globe. Several of its biological and ecological attributes contribute towards its invasiveness. Various management approaches (namely cultural, mechanical, chemical and biological control) have been used to minimise losses caused by this weed, but most of these approaches are ineffective and uneconomical and/or have limitations. Although chemical control using herbicides and biological control utilising exotic insects and pathogens have been found to contribute to the management of the weed, the weed nevertheless remains a significant problem. An integrated management approach is proposed here for the effective management of parthenium weed on a sustainable basis. © 2014 Society of Chemical Industry  相似文献   

13.
Summary There is a lack of information on the combined effects of preceding crop, reduced tillage (especially no-tillage) and the time of herbicide application on the development of weed populations and the efficiency of weed control in winter wheat in humid temperate climates. An experiment was conducted with a crop rotation (winter wheat – oilseed rape – winter wheat – maize) on a sandy loam and a loamy silt soil in the Swiss midlands to investigate the impact of different preceding crops and pre- and post-emergence control of weeds in conventional tillage (CT; mouldboard plough), minimum tillage (MT; chisel plough) and no-tillage (NT; no soil disturbance systems). When winter wheat was grown after maize and winter wheat was grown after oilseed rape, the ranking order of weed density in treatments without herbicide application was NT < MT < CT and CT < MT < NT respectively. Analysis of variance and canonical discriminant analysis showed that Epilobium spp., Sonchus arvensis , Myosotis arvensis and volunteer crops were more abundant in NT than in MT and CT. The efficiency of post-emergence weed control was generally better than that of pre-emergence weed control, regardless of tillage intensity.  相似文献   

14.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

15.
Most herbicide applications to sugar beet (Beta vulgaris L.) are made to the whole crop area, but there is the opportunity to restrict applications to the crop row, decreasing the usage of herbicide by up to 70%. However, this would require greater use of mechanical weed control between rows. Experiments were performed in two seasons to evaluate the weed control performance of a novel, vision‐guided, inter‐row hoe in sugar beet crops grown on a peat fen soil. Hoe lateral placement was within ±30 mm. A precise hoeing and band spraying treatment was compared with overall herbicide use, and with treatments in which the herbicide applications were replaced by hand weeding to minimize competition between crop and weeds. Two hoe passes were made in each season, at crop growth stages of two and 10–12 true leaves in the first season and four and eight true leaves in the second season. Plant population density was not affected by treatment, indicating that none of the treatments caused crop plant loss. Use of the guided hoe controlled weeds better than overall spraying. Crop yields were not significantly different between treatments, indicating that weed control prevented competition with the crop in all treatments.  相似文献   

16.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

17.
Five fodder crop systems of different intensity (ranging from a double annual crop of Italian ryegrass + silage maize to a permanent meadow) were adopted for 30 years in the lowlands of Northern Italy under two input levels, differing mainly in their provision of organic fertiliser (manure). Herbicides were used in the maize crops included in all systems, except the meadow. After 30 years, the weed seedbank of all systems and input levels were assessed by the seedling emergence technique on soil samples from each plot. The cropping systems determined the abundance and composition of the weed assembly. Relatively few, frequent species made up the majority of the emerged seedlings in all systems, and there was no relationship between the total number of emerged seedlings and the mean number of species recorded in the different systems. Arabidopsis thaliana and Oxalis corniculata were abundant in the annual double crop and in the 3- and 6-year rotations that also comprised the annual double crop. These weeds, however, were unlikely to represent a major threat to the crops, due to their vigour and growth period. The permanent meadow tended to greater weed biodiversity than the other systems. The application of manure favoured the seedbank of species such as Lolium multiflorum, Digitaria sanguinalis and A. thaliana. Weed communities in the different systems were mainly determined by herbicide application, (through the ability of weeds to avoid its effects, determined by the weed life history and emergence period) and manure application (with its possible dual effect of spreading weed seeds and favouring nitrogen-responsive weeds).  相似文献   

18.
Weeds and weed control are major production costs in global agriculture, with increasing challenges associated with herbicide‐based management because of concerns with chemical residue and herbicide resistance. Non‐chemical weed management may address these challenges but requires the ability to differentiate weeds from crops. Harvest is an ideal opportunity for the differentiation of weeds that grow taller than the crop, however, the ability to differentiate late‐season weeds from the crop is unknown. Weed mapping enables farmers to locate weed patches, evaluate the success of previous weed management strategies, and assist with planning for future herbicide applications. The aim of this study was to determine whether weed patches could be differentiated from the crop plants, based on height differences. Field surveys were carried out before crop harvest in 2018 and 2019, where a total of 86 and 105 weedy patches were manually assessed respectively. The results of this study demonstrated that across the 191 assessed weedy patches, in 97% of patches with Avena fatua (wild oat) plants, 86% with Raphanus raphanistrum (wild radish) plants and 92% with Sonchus oleraceus L. (sow thistles) plants it was possible to distinguish the weeds taller than the 95% of the crop plants. Future work should be dedicated to the assessment of the ability of remote sensing methods such as Light Detection and Ranging to detect and map late‐season weed species based on the results from this study on crop and weed height differences.  相似文献   

19.
The cereal–legume cropping system is a common practice across the tropical world. However, there are limited quantitative data on the effect of cereal–legume intercropping on weed species diversity. A study was conducted in the Guinea savanna zone of Ghana to evaluate the effect of maize–soybean intercropping on yield productivity and weed species control. The treatments used include three maize maturity types (extra‐early: Abontem, early: Sammaz 27 and medium: Obatanpa) intercropped with soybean at three intraspacing (10, 20 and 30 cm), and their sole crop treatments were laid in a randomized complete block design with three replications. Results showed that the land equivalent ratio (LER) for the intercrops was above 1, indicating better intercrop productivity than the sole crops. An average of 40% land was saved for the intercrops compared with the sole crops. Intercropping Sammaz 27 maize with soybean significantly increased LER by 9% compared to the other types. Intercropping maize with soybean significantly reduced weed biomass at 6 and 9 weeks after planting (WAP) and at harvest relative to the sole maize. The weed biomass at 6 and 9 WAP and harvest increased (p < .05) with increasing soybean intraspacing. The grass and broadleaf weed species count at 6 WAP and harvest from the sole crops were significantly higher than that of the intercrops. The results suggest that intercropping early maize maturity type with soybean at 10 cm intraspacing could be used to increase grain yield, LER and control of grass and broadleaf weeds in a maize‐based cropping system in the Guinea savanna zones of West Africa.  相似文献   

20.
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton–sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0–15 and 15–30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0–15 and 15–30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus‐galli seeds in the 15–30 cm soil horizon compared with the other tillage regimes. Total seedbank (0–30 cm) of P. oleracea was significantly reduced in cotton–sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus‐galli. Total seed densities of most annual broad‐leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus‐galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring‐germinating grass weed species, but also prevents establishment of summer‐germinating weed species by the early developing crop canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号