首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract A glasshouse study was undertaken to determine the physiological and morphological changes in cocksfoot (Dactylis glomerata L.) during regrowth after defoliation. Individual plants were arranged in a mini‐sward in a randomized complete block design. Treatments involved harvesting each time one new leaf had expanded (one‐leaf stage), up to the six‐leaf stage, with the plants separated into leaf, stubble (tiller bases) and roots. Stubble and root water‐soluble carbohydrate (WSC), stubble and leaf dry matter (DM), tiller number per plant and leaf quality (crude protein (CP), estimated metabolizable energy (ME) and mineral content) were measured to develop optimal defoliation management of cocksfoot‐based pastures. WSC concentration in stubble and roots was highest at the five‐ and six‐leaf stages. Mean WSC concentration (g kg?1 DM) was greater in stubble than roots (32·7 ± 5·9 vs. 9·4 ± 1·5 respectively). There was a strong positive linear relationship between plant WSC concentration and leaf DM, root DM and tillers per plant after defoliation (Adj R2 = 0·72, 0·88 and 0·95 respectively). Root DM plant?1 and tiller DM tiller?1 decreased immediately following defoliation and remained low until the three‐leaf stage, then increased from the four‐leaf stage. Tillers per plant remained stable until the four‐leaf stage, after which they increased (from 9·9 ± 0·5 to 15·7 ± 1·0 tillers plant?1). Estimated metabolizable energy concentration (MJ kg?1 DM) was significantly lower at the six‐leaf stage (11·01 ± 0·06) than at any previous leaf regrowth stage, whereas CP concentration (g kg?1 DM) decreased with regrowth to the six‐leaf stage. Both the levels of ME and CP concentrations were indicative of a high quality forage throughout regrowth (11·37 ± 0·04 and 279 ± 8·0 for ME and CP respectively). Results from this study give a basis for determining appropriate criteria for grazing cocksfoot‐based pastures. The optimal defoliation interval for cocksfoot appears to be between the four‐ and five‐leaf stages of regrowth. Delaying defoliation to the four‐leaf stage allows time for replenishment of WSC reserves, resumption of root growth and an increase in tillering, and is before herbage is lost and quality falls due to onset of leaf senescence.  相似文献   

2.
Under Irish conditions, the digestibility in May of grass managed for silage production is sometimes lower than expected. In each of two successive years, replicate field plots were established to examine the effects of three defoliation heights (uncut or cut to a stubble height of 10 or 5 cm) applied in winter and/or spring on herbage yields harvested in May and again in July, and on chemical composition and conservation characteristics associated with first‐cut silage. Swards that were not defoliated in December or March had a dry‐matter (DM) yield and in vitro DM digestibility (DMD) in mid‐May of 6597 kg ha?1 and 736 g kg?1, respectively, in Year 1, and corresponding values of 7338 kg ha?1 and 771 g kg?1 in Year 2. Defoliating swards to 5 cm in December reduced (P < 0·001) May DM yields compared to swards that were not defoliated in both December and March, while herbage DMD in May increased (P < 0·001) when defoliated in December or March. There were no clear effects of defoliation height or its timing on herbage ensilability or resultant conservation efficiency characteristics. The effects of defoliation on July yield were the reverse of those observed for May, while the total yield of the December and March defoliations plus the two silage harvests increased as defoliation height was lowered in Year 2 only. It is concluded that defoliation in winter and/or spring can increase herbage digestibility but will likely reduce DM yields in May.  相似文献   

3.
A glasshouse study was undertaken to determine the priority within the perennial ryegrass (Lolium perenne L.) plant for leaf and root growth and daughter tiller initiation after defoliation, in relation to various levels of water-soluble carbohydrate (WSC) reserves at defoliation. Individual plants were arranged in mini-swards, and underwent varying defoliation frequencies and ambient temperatures before defoliation, and harvest heights at defoliation, to obtain a gradient of WSC content at H1, the date when all plants were defoliated. Defoliation interval consisted of defoliating either three times at the one new leaf tiller–1 stage (1-leaf stage) of regrowth, or once only at the 3-leaf stage, up to H1, while night temperature in the week prior to H1 was altered from 15°C to either 8 or 20°C. At H1, plants were defoliated to a stubble height of either 20 or 50 mm. Plants were subsequently destructively harvested at days 4, 6, 8, 12, 18 and 27. Leaf and root extension and tiller dynamics were also measured. On a regrowth timescale, tiller initiation was most sensitive, root regrowth moderately sensitive, and leaf regrowth relatively insensitive to a decrease in WSC. The time of daughter tiller initiation also coincided with replenishment of stubble WSC levels. In contrast to this sequence of regrowth events following defoliation, the quantitative effects on growth were different, with elongation and survival of roots most affected by reduced WSC levels. A 30-fold difference in stubble WSC at H1 between high and low WSC plants (1·52 vs. 0·05 mg tiller–1) produced only a 4-fold increase in leaf dry matter (DM) after 27 d (2·2 vs. 0·6 g plant?1), while tiller number plant?1 increased 6-fold (138 vs. 23% increase in tiller number from H1). Root elongation rate was 59 times higher in the high than in the low WSC plants (1·18 vs. 0·02 mm d?1). From a pasture management perspective, the study confirms that defoliation, coinciding with the 3-leaf stage of regrowth and around a stubble height of 50 mm, optimizes persistence and productivity of perennial ryegrass. By allowing more rapid replenishment of WSC reserves, this optimal defoliation strategy enables a greater proportion of WSC to be allocated to maintain a more active root system, and promotes tillering, compared with more frequent and close defoliation.  相似文献   

4.
The effect of sowing date (SD) and sowing rate of perennial ryegrass (PRG) on the establishment of Caucasian and white clovers in New Zealand was assessed. Clovers were sown in spring on 24 September (SD1) and 9 November (SD2) 1999, and in autumn on 4 February (SD3) and 31 March (SD4) 2000. On each date, clovers were sown with 0, 3, 6 or 12 kg ha?1 of PRG. Total herbage dry matter (DM) production up to 6 November 2000 was 13–16 t DM ha?1 for SD1 and SD2 when sown with 3–12 kg ha?1 of PRG, and 7–10 t DM ha?1 for sown clover monocultures. For SD3 and SD4, total herbage production was 6–9 t DM ha?1 with PRG, while total herbage production of clover monocultures was 5·4 t DM ha?1 for SD3 and 2·6 t DM ha?1 for SD4. By 6 November 2000, white clover contributed proportionately more than 0·15 of herbage mass when sown with 3–12 kg ha?1 of PRG on SD1, SD2 or SD3, but less than 0·09 when sown on SD4. The proportion of Caucasian clover never exceeded 0·09 of herbage mass in any of the swards. White clover was successfully established in spring and in autumn with 3–12 kg ha?1 of PRG provided the 15‐mm soil temperature was above 14 °C. None of the combinations of Caucasian clover and PRG provided an adequate proportion of legumes during the establishment year. This unsuccessful establishment of Caucasian clover with PRG was attributed to its inability to compete for available light as a seedling due to slow leaf area expansion from secondary shoot development and a high root:shoot ratio. Alternative establishment strategies for Caucasian clover may include the use of slow establishing grasses, cover crops and temporal species separation.  相似文献   

5.
The rates of drying of herbage, cut from perennial ryegrass (Lolium perenne L.) – dominant swards and subjected to different treatments, were investigated under field conditions by changes in weight of herbage in wire mesh trays in 1995 and 1996. A series of replicated factorial experiments studied the effects, in different combinations, of intensity of conditioning achieved by passing the cut herbage through a laboratory‐scale macerator zero (0C), once (1C), three (3C) or six (6C) times; weight of herbage per unit area equivalent to 450, 675 and 900 g dry matter (DM) m?2. In one experiment, pressing the herbage to form a mat was incorporated into the experimental design. A further experiment investigated the effect of varying the proportion of conditioned herbage in the herbage mass from 0·00, 0·25, 0·50, 0·75 and 1·00 on drying rate. On each occasion the trays plus herbage were weighed at hourly intervals over an ≈6‐h period and the DM content of the herbage estimated from the change in weight. On all occasions, conditioning and weight of herbage per unit area significantly (P < 0·001) influenced herbage drying rate. Lowering the weight per unit area of both unconditioned and conditioned herbage increased the rate of moisture loss. Unconditioned herbage at the equivalent of a herbage mass of 450 g DM m?2 had a total moisture loss that was on average 1·5–1·8 times greater than unconditioned herbage at the equivalent of a herbage mass of 900 g DM m?2. Similarly, conditioned herbage at the equivalent of a herbage mass of 450 g DM m?2 had a total moisture loss that was 1·8–2·3 times greater than unconditioned herbage at the equivalent of a herbage mass of 900 g DM m?2. Increasing the level of conditioning produced a non‐linear response in rate of moisture loss, consequently 3 passes through the macerator produced >0·95 of the total moisture loss that was produced by 6 passes through the macerator. Increasing the proportion of conditioned herbage in the herbage mass increased rate of moisture loss and consequently final DM content (P < 0·001) although there was little effect from increasing the proportion of conditioned herbage above 0·75. The effects of conditioning and weight of herbage per unit area treatments on total nitrogen , water‐soluble carbohydrate and acid‐detergent fibre concentration of the herbage were small.  相似文献   

6.
A rare stay‐green allele transferred from meadow fescue (Festuca pratensis L.) to perennial ryegrass (Lolium perenne L.) has improved both the colour of turf and the nutritive value of herbage. In this study its effect on shoot density and forage yield was assessed. Equivalent populations of perennial ryegrass were constructed with and without the stay‐green allele, following eight generations of backcrossing to perennial ryegrass. The stay‐green population, the normal population and the cv. AberStar were compared over two harvest years (2005 and 2006) in a field experiment with six application rates of N fertilizer (100, 200, 300, 400, 500 and 600 kg ha?1 annually). There were no significant interactions between level of N fertilizer and population in any of the traits measured. The mean annual dry‐matter (DM) yield over all populations and fertilizer levels was 6·45 t ha?1 lower in the second harvest year. Mean annual DM yields over all fertilizer levels of the normal population were higher than, or equal to, AberStar while those of the stay‐green population were significantly (proportionately 0·10–0·13) lower than the normal population. In 2005, the mean total yield of N in the herbage of the stay‐green population was 0·09 lower than that of the normal population and the mean concentration of N over all harvests was 1·5 g kg?1 DM higher. The shoot density of the stay‐green population after the last harvest in November 2006 was 0·18 lower than that of the normal population (3689 and 4478 shoots m?2 respectively).  相似文献   

7.
The effects of sward surface height (SSH) and daily herbage allowance (HA) on the defoliation pattern and grazing mechanics of early lactation dairy cows grazing on irrigated perennial ryegrass–white clover pasture were studied. The hypothesis tested was that SSH and HA affect intake and diet selection through their effects on the pattern of defoliation which is influenced by the resistance to prehension bites. Factorial combinations of two initial SSH (14 and 28 cm) and two daily HA (35 and 70 kg DM cow?1 d?1) were examined in a replicated experiment. The peak longitudinal tensile force required to break the sward portion encompassed in a 100 cm2 area [bite fracture force (BFF100)] was measured as an index of the resistance to prehension. The volume of herbage defoliated and herbage intake increased with SSH (P < 0·05) and HA (P < 0·01). Corresponding to an increase in HA from 35 to 70 kg DM cow?1 d?1, there was a proportional increase in the total defoliation area (TDA) and intake by 0·24 and 0·55 in the short sward compared with 0·16 and 0·32 in the tall sward respectively. The results of this experiment suggest that a consistent spatial pattern of reduction of the canopy exists during defoliation by cows and that the volume of sward canopy defoliated is the major variable affecting herbage intake. The BFF increased down the sward profile at a rate that was higher (P < 0·05) for the taller sward than for the shorter sward. It is proposed that a relatively lower resistance to prehension in the short sward compared with the tall sward explains the greater proportionate increase in TDA and intake corresponding to an increase in HA. The rate at which BFF100 increases down the sward profile is suggested as a sward physical variable that can influence the defoliation process. The estimated time and energy costs of prehension bites are discussed in the context that larger bites are handled more efficiently than smaller bites.  相似文献   

8.
Herbage allowance is one of the important pasture factors in the determination of intake by grazing livestock. Ingestive behaviour of 12 adult Angus cows (Bos taurus) was measured over a range of allowances (0·25 to 0·72 kg dry matter (DM) per 100 kg live weight (LW) for a 1-h period) of vegetative tall fescue (Festuca arundinacea Schreb.). A balanced change-over design was used to estimate direct, residual and permanent effects of herbage allowance on rate of DM intake, rate of biting and herbage DM intake per bite. In Experiment 1, herbage DM intake per meal increased linearly from 0·68 to 1·72 kg (100 kg LW)?1 as DM allowance increased from 0·25 to 0·72 kg (100 kg LW)?1 h?1. Cows grazed at ·30 kg (100 kg LW)?1 h?1 and stopped grazing when the sward was reduced to a height about 10 to 12 cm above the soil surface, approximately defined by the tops of pseudostems. In Experiment 2, herbage DM intake rates of 0·29, 0·47 and 0·42 kg (100 kg LW)?1 h?1 were recorded as cows grazed allowances of 0·43, 0·70 and 0·90 kg (100 kg LW)?1 h?1 for most of the 1-h grazing period. Limiting herbage DM allowances in Experiment 2 were associated with small reductions in rate of biting and herbage DM intake per bite as allowance declined. Sward DM density (>5 cm) was an important variable in the determination of herbage DM intake rates at lower herbage allowances.  相似文献   

9.
The effects of levels of application of potassium (K) fertilizer, and its interactions with both nitrogen (N) fertilizer and the growth interval between fertilizer application and harvesting on ryegrass herbage yield and chemical composition, and the fermentation, predicted feeding value, effluent production and dry-matter (DM) recovery of silage were evaluated in a randomized block design experiment. Twenty plots in each of four replicate blocks received either 0, 60, 120, 180 or 240 kg K ha?1, each at either 120 or 168 kg N ha?1. Herbage from the plots was harvested on either 24 May or 8 June and ensiled (6 kg) unwilted, without additive treatment, in laboratory silos. Immediately after harvesting, all plots received 95 kg N ha?1 and were harvested again after a 49-day regrowth interval. From the primary growth, herbage DM yields were 6·31, 6·57, 6·74, 6·93 and 6·93 (s.e. 0·091) t ha?1, herbage K concentrations were 15·5, 16·2, 19·1, 22·4 and 26·1 (s.e. 1·06) g kg?1 DM and herbage ash concentrations were 57, 63, 71, 73 and 76 (s.e. 0·9) g kg?1 DM, and for the primary regrowth herbage DM yields were 2·56, 2·73, 2·83, 2·94 and 2·99 (s.e. 0·056) t ha?1 for the 0, 60, 120, 180 and 240 g K ha?1 treatments respectively. Otherwise, the level of K fertilizer did not alter the chemical composition of the herbage at ensiling. After a 120-day fermentation period the silos were opened and sampled. The level of K fertilization had little effect on silage fermentation and had no effect on estimated intake potential, in vitro DM digestibility (DMD), DM recovery or effluent production. Increasing N fertilizer application increased silage buffering capacity (P < 0·05) and the concentrations of crude protein (P < 0·001), ammonia N (P < 0·01) and effluent volume (P < 0·01), and decreased ethanol concentration (P < 0·05) and intake potential (P < 0·05). Except for the concentrations of lactate and butyrate, delaying the harvesting date deleteriously changed the chemical composition (P < 0·001) and decreased intake potential (P < 0·001) and DMD (P < 0·001) of the silages. It is concluded that, other than for K and ash concentration, increasing the level of K fertilizer application did not alter the chemical composition of herbage from the primary growth or the resultant silage. Also, the level of K fertilizer application did not affect predicted feeding value, DM recovery or effluent production. Herbage yield increased linearly with increased fertilizer K application. Except for acetate and ethanol concentrations, there were no level of K fertilizer application by level of N fertilizer application interactions or level of K fertilizer application by harvest date interactions on silage fermentation or predicted feeding value. Increasing N fertilizer application from 120 to 168 kg ha?1 had a more deleterious effect on silage composition and feeding value than increasing K fertilizer application from 0 to 240 kg ha?1. Delaying harvesting was the most important factor affecting herbage yield and composition, and silage composition and had the most deleterious effect on silage feeding value.  相似文献   

10.
The effects of sowing date and nitrogen (N) fertilizer on the inter‐specific competition between dallisgrass (Paspalum dilatatum Poir.) and tall fescue (Festuca arundinacea Schreb.) in the humid Pampas of Argentina were investigated in two pot experiments where a constant soil moisture content was maintained. Tall fescue and dallisgrass seeds were sown either in the spring (October 2000) or in the autumn (March 2001) in mixed and mono‐specific stands with 0 or 100 kg N ha?1. In the spring, competition from tall fescue depressed dry‐matter (DM) yield of dallisgrass from 1·53 to 0·36 g DM per plant and tiller number from 9·4 to 3·7 tillers per plant in mixed and in mono‐specific stands, respectively, while tall fescue had 3–4 times higher DM yields in mixed stands. Leaf extension rate (LER) of tall fescue was higher (1·3 mm d?1) than that of dallisgrass (0·53 mm d?1). In the autumn, inter‐specific competition did not affect DM yield of dallisgrass and N fertilizer increased DM yield from 0·53 to 2·07 g DM per plant, tiller number from 6·8 to 14·2 tillers per plant and LER at the beginning of autumn from 1·2 to 2·12 mm d?1 in both species. As temperature decreased, LER was reduced in both species to 0·31 mm d?1 by late autumn. The number of leaves per tiller was not affected by treatment. Nitrogen fertilizer increased N concentration of above‐ground tissues of both species (18 g kg?1 DM in autumn and 20 g kg?1 DM in spring). It was concluded that a productive mixed pasture of dallisgrass and tall fescue can be obtained by sowing early in the autumn. The application of N fertilizer in this season is essential to ensure a high herbage yield and quality.  相似文献   

11.
The object of this study was to determine the effect of closing date and date of harvest for conservation (accumulation period), on dry‐matter (DM) yield and forage quality of annual pasture in Western Australia. The field study comprised 48 plots, 2 m × 2 m, sown with either annual ryegrass (Lolium rigidum Gaud.) or Italian ryegrass (L. multiflorum Lam.), and mixed with subterranean clover (Trifolium subterraneum L.). Defoliation of swards until the end of winter was at the three leaves tiller–1 stage. In spring, once stem nodal development had commenced, swards were defoliated every 3–4 weeks. Swards were defoliated either twice with three leaves tiller–1 (accumulation period 1 commenced on 15 August); twice with three leaves tiller–1 and then once after 4 weeks (accumulation period 2 commenced on 11 September); twice with three leaves tiller–1 and then twice after 4‐week intervals (accumulation period 3 commenced on 9 October) or; twice with 3 leaves tiller–1 and then twice after 4‐week intervals and then once after 3 weeks (accumulation period 4 commenced on 30 October). From the commencement of the accumulation period, tiller density, DM yield and forage quality were determined weekly for up to 10 weeks. There was a positive quadratic association between DM yield and days after the commencement of the accumulation period. Yields were maximized from accumulation period 1 with 5·3, 6·6 and 9·5 t DM ha–1, and growth rates were 140, 128 and 145 kg DM ha–1 d–1, for Wimmera annual ryegrass and Richmond and Concord cultivars of Italian ryegrass respectively. In contrast, in vitro dry‐matter digestibility (IVDMD) and crude protein (CP) content were negatively associated with days after the commencement of the accumulation period, and initial values were greater than 0·80 and 180 g kg DM–1 for IVDMD and CP content respectively. The rate of decline in IVDMD d–1 for Wimmera annual ryegrass was 0·005, 0·019 and 0·012 d–1 for accumulation periods 1, 2 and 3, respectively, while for Italian ryegrass cultivars Richmond was 0·015, 0·011, 0·02 and 0·012 d–1 and Concord was 0·014, 0·009, 0·013 and 0·01 d–1, for the 4 accumulation periods respectively. It is recommended that annual and Italian ryegrass pastures be harvested between 10% and 20% inflorescence emergence when IVDMD will exceed 0·70 regardless of cultivar and/or defoliation practice prior to the commencement of the accumulation period.  相似文献   

12.
Development of simulation models of grazing beef cattle requires measurement of the components of the ingestive process and the establishment of relationships between these components and the structure of the sward. The ingestive behaviour of eight half-sib Angus steers (live weight (LW), x?= 270 kg) grazing alfalfa (Medicago sativa L.) was studied at three stages of maturity (26, 40 and 47 days of regrowth) and at four allowances of herbage dry matter (DM) (1·0, 1·5, 20 and 2·5 kg per 100 kg LW) at each of two daily grazing sessions. A tethering system of grazing was used in which the experimental unit was a tethered steer and its plot for one grazing session. Grazing sessions commenced at 08.00 and 14.00 h EDT. Intake (DM) increased linearly from 1·98 kg per steer session at a DM allowance of 1 kg (100 kg LW)?1 to 2 89 kg steer session at an allowance of 2·5 kg (100 kg LW) ?1 as utilization of herbage declined linearly from 0·69 to 0·43. Herbage DM in take per bite increased from 1 0 g at 1 kg (100 kg LW) ?1 allowance to 1·5 g at 2·5 kg (100 kg LW) ?1 allowance. Rates of biting were not affected by herbage allowance and averaged 21 bites min?1. Dry matter intake increased from 1·77 to 3 41 kg per steer session as the alfalfa matured and herbage mass changed from 1500 to 4656 kg ha?1. Mean rates of biting were 24 bites min?1 for steers grazing the youngest alfalfa and 16 bites min?1 for steers on the oldest forage. Herbage DM intakes per bite were 1·1 g and 1·7 g at the same stages. Rates of DM intake approached 2 kg h?1 and maximum daily DM intake was estimated at 2 75 kg (100 kg LW) ?1. Intake of alfalfa was limited by allowance and mass of herbage above a canopy horizon of 20 cm and, to a lesser extent, by the length of fast.  相似文献   

13.
This glasshouse study aimed to determine the relative importance of water-soluble carbohydrates (WSC) and current photosynthate on root and top regrowth of perennial ryegrass (Lolium perenne L.). Individual plants were arranged in one of two miniswards (Experiments 1 and 2) and underwent varying defoliation frequencies designed to obtain a gradient of WSC content at the final harvest of each treatment (H1), when all treatments were defoliated. In Experiment 1, the plants were defoliated either three times at the one new leaf per tiller stage of regrowth (treatment 3 × 1), once at the two-leaf and again at the one-leaf stage (treatment 2, 1), once at the one-leaf and again at the two-leaf stage (treatment 1, 2) or once only at the three-leaf stage (treatment 1 × 3), up to H1. Leaf and root growth and other parameters were assessed over 6 d after H1 in sunlight, and over a 4-week period in darkness, and related to initial plant WSC content. In Experiment 2, plant defoliation treatments were: 3 × 1, 1, 2 or 1 × 3. Leaf regrowth was assessed for 36 d until the plants had three fully expanded new leaves per tiller. Leaf regrowth in both experiments was significantly related to stubble WSC (below 50 mm height). In Experiment 1, plants were almost fully reliant upon plant reserves for the first 3 d of regrowth, with reliance decreasing up to 6 d. When regrowth of plants was compared after 1 week in light or in darkness, it was estimated that one-third of leaf regrowth was due to plant WSC reserves and the remainder due to photosynthesis. However, the capacity to photosynthesize and to grow roots after H1 was also significantly related to stubble WSC content. In Experiment 2, there was a significant difference (P<0·01) between defoliation treatments on leaf dry matter (DM) yield at 12 d (×1 leaf tiller?1) of regrowth, and this was, as in Experiment 1, significantly positively related to WSC content in the stubble. However, after 36 d of regrowth, DM yield of plants defoliated at 2 or 3 leaves tiller?1 up to H1 were similar, and both were significantly higher (P<0·01) than regrowth of plants defoliated at the one-leaf stage. After defoliation, the period of reliance on WSC reserves may be substantially increased in situations of shading (canopy competition or cloud cover) or if the new regrowth shoot is removed by regrazing.  相似文献   

14.
In a small-plot trial five grass varieties bromegrass cv. Grasslands Matua, perennial ryegrass CVS. Melle (diploid) and Bastion, Condesa and Meltra (tetraploid) were established as grass/white clover swards with white clover cv. Menna. Productivity was measured under 6-weekIy cutting both without N fertilizer (No) and with 100 kg N ha?1 applied in spring (N100) Evaluation was made over 2 harvest years, 1986–87. Total mean annual production of herbage dry matter (DM) in the first harvest year at No and No was 5·07 t ha?1 and 6·93 t ha?1 respectively. In year 2, corresponding values were 11·81 and 12·67 t ha?1. In year 1, Matua swards at No and N100 yielded 5·08 and 6·65 t DM ha?1 compared with 507 and 70 t DM ha?1 for the mean of the four ryegrass varieties. In year 2, corresponding values were 12·90 and 12·29 for Matua and 11·54 and 12·78 for the four ryegrasses. In year 1, the digestable organic matter in the dry matter (DOMD) of the Matua swards was lower than that of Melle, Bastion and Condesa at NO, particularly at the first cut. In year 2, differences in DOMD between treatments and varieties were not significant. The proportion of white clover was found to be higher in the No than the N100 treatment, and also higher in year 2 in most treatments. For the No treatment Matua swards had the highest proportion of white clover in year 1 (32% compared with 24% for the mean of the ryegrass varieties) but the lowest proportion in year 2 (27% compared with 60% for the ryegrasses). For the No treatment in year 1 clover production was also 43% higher, on average, from the tetraploid treatments than with Melle as the companion grass; for this comparison in year 2 the differences were not significant. It is concluded that Matua bromegrass/white clover swards receiving no N fertilizer may have a good potential under cutting management. However, the evidence from this trial is that in the second year the proportion of white clover is lower with Matua swards than with perennial ryegrass as the companion grass.  相似文献   

15.
The mechanisms that terminate meals of cattle grazing lucerne (Medicago sativa L.) are not well defined. Sub-acute bloat may lead to cessation of grazing and, consequently, surface active substances used in the treatment and prevention of bloat, such as poloxalene, may extend grazing meals and increase herbage intake. Twelve mature Angus cows (Bos taurus) were offered 0, 12·5 and 25·0 g poloxalene in 0·5 kg of crushed maize (Zea mays L.) kernels each day, immediately before two consecutive 1-h measured parts of a grazing meal on 21- to 24-day-old lucerne swards with a herbage dry matter (DM) mass (> 5 cm) of 2·03 t ha?1 and herbage DM mass allowance of 3·55 kg hd?1h?1. Total herbage DM intake was 2·52 kg hd?1 during the first hour and 1·54 kg hd?1 during the second hour of the 2-h grazing meal. Differences in herbage intake were attributable to a cessation of grazing. Mean rates of biting were 26·3 and 14·8 bites min?1 and mean DM intakes per bite were 1·82 and 4·38 g during the first and second part of meals, respectively. Poloxalene treatments caused a small linear decline in grazing time during the first part of meals and a larger increase in grazing time during the second part of meals. Lower rates of DM intake caused by poloxalene were offset by increases in grazing time. It was concluded that poloxalene moderated ingestive behaviour within grazing meals of immature lucerne and this response may have been at least partly due to the relief of sub-acute bloat.  相似文献   

16.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

17.
The use of imaging spectroscopy to predict the herbage mass of dry matter (DM), DM content of herbage and crude fibre, ash, total sugars and mineral (N, P, K, S, Ca, Mg, Mn, Zn and Fe) concentrations was evaluated. The experimental system used measured reflectance between 404 and 1650 nm at high spatial (0·28–1·45 mm2) and spectral resolution. Data from two experiments with Lolium perenne L. mini‐swards were used where the degree of sward damage or N‐fertilizer application varied. Regression models were calibrated and validated and the potential reduction in prediction error with multiple observations was estimated. The mean prediction errors for DM mass, DM content and N, total sugars, ash and crude fibre concentrations were 235–268 kg ha?1, 9·6–16·8 g kg?1, 2·4–3·4 g kg DM?1, 16·2–27·7 g kg DM?1, 5·8–6·5 g kg DM?1 and 8·4–10·4 g kg DM?1 respectively. The predictions for concentrations of P, K, S and Mg allowed identification of deficiency levels, in contrast to the concentrations of Na, Zn, Mn and Ca which could not be predicted with adequate precision. Prediction errors of DM mass may be maximally reduced to 95–142 kg ha?1 with 25 replicate measurements per field. It is concluded that imaging spectroscopy can provide an accurate means for assessment of DM mass of standing grass herbage. Predictions of macronutrient content and feeding value were satisfactory. The methodology requires further evaluation under field conditions.  相似文献   

18.
The selection and feeding of perennial ryegrass (Lolium perenne L.) varieties (PRV) or perennial grass species (PGS) may affect enteric methane (CH4) output because of changes in the fermentation dynamics in the rumen as a result of differences in herbage chemical composition. The objective of this study was to determine the effects of PRV and PGS harvested throughout the growing season on herbage chemical composition, and in vitro rumen fermentation variables and CH4 output per unit of feed using a batch culture technique. Seven PRV (Experiment 1: Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella) and six perennial grasses [Experiment 2: perennial ryegrass (Navan), perennial ryegrass (Portstewart), cocksfoot, meadow fescue, tall fescue, timothy; defined as PGS], managed under a simulated grazing regime, were incubated for 24 h with buffered rumen fluid in two separate experiments. The CH4 output per unit of feed dry‐matter (DM) incubated was not affected (P > 0·05) by PRV (range of mean values across PRV of 23·9–25·3 (SEM 0·41) mL g?1 DM) or by PGS (25·6–26·6 (SEM 0·37) mL g?1 DM). The CH4 output per unit feed DM disappearing during the in vitro rumen incubation was not affected by PRV (33·9–35·1 (SEM 0·70) mL g?1 DM), and although there was an overall PGS effect (P < 0·05; 37·2–40·3 (SEM 0·71) mL g?1 DM), none of the paired contrasts between PGS were significant when analysed using Tukey adjusted comparisons. This outcome reflected either small‐scale or a lack of treatment effects on individual herbage chemical composition (e.g. 454–483 g NDF kg?1 DM, 215–224 g CP kg?1 DM and 94–122 g water‐soluble carbohydrate (WSC) kg?1 DM across PRV; 452–506 g NDF kg?1 DM, 208–243 g CP kg?1 DM and 73–131 g WSC kg?1 DM across PGS) and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the grasses examined, produced within the management regimes operated, would reduce enteric CH4 output per unit of feed in vivo. However, the technique utilized did not take account of animal × PRV or PGS interactions, such as potential differences in intake between animals, that may occur under farm conditions.  相似文献   

19.
This study investigated the effects of levels of supplementation with maize grain and herbage allowance (HA) on grass herbage and maize intake, animal performance and grazing behaviour in two replicated grazing experiments with Angus beef cattle in Argentina. In Experiment 1, the response to increasing HA (2·5, 5·0 and 7·5 kg DM herbage 100 kg?1 live weight (LW) d?1 with and without 0·5 kg DM maize grain 100 kg?1 LW d?1) was investigated. In Experiment 2, the responses to level of maize grain offered (0, 0·5 and 1·0 kg DM maize grain 100 kg?1 LW d?1) at an HA of 2·5 kg DM herbage 100 kg?1 LW d?1 and an HA of 5·0 kg 100 kg?1 LW d?1 without maize grain were assessed. In Experiment 2, soyabean meal was added to control the crude protein concentration in the diet. Two methods were used for intake estimations: pre‐ and post‐feeding herbage mass difference, and the use of the n‐alkane and 13C technique. The latter predicted most accurately the metabolizable energy requirements calculated from live weights and liveweight gain of beef cattle attained in each treatment in both experiments. Increasing HA significantly increased herbage intake and liveweight gain (P < 0·01), and general quadratic relationships between these variables could be fitted across experiments despite differences in animal and pasture characteristics. Increasing the amount of maize grain offered significantly reduced herbage intake and grazing time, but increased liveweight gain and digestibility of the diet. Substitution rate increased with increasing HA in Experiment 1 but was not affected by level of maize supplementation in Experiment 2. These relationships will aid the development of grazing management models for Argentinean conditions.  相似文献   

20.
The effects of continuous stocking by sheep at sward surface heights (SSH) of 3, 5, 7 and 9 cm in grass/clover (GC) and nitrogen-fertilized grass (GN) swards were examined in relation to herbage mass and quality, clover content, tiller density and rates of herbage production and senescence in two periods in each of three grazing seasons (1987-89). The GN swards received a total of 300 kg N ha?1 each year in six equal dressings from March; GC swards received a single dressing of 50 kg N ha?1 in March each year. Herbage mass measured from ground level increased linearly with SSH with overall mean herbage masses of 0·89, 1·38, 1·78 and 2·12 t OM ha?1 (s.e.m.0·024, P < 0·001) at SSH of 3, 5, 7 and 9 cm respectively. GN and GC swards had mean herbage masses of 1·58 and 1·51 t OM ha?1 (s.e.m. 0·051, NS) respectively. Mean N content of herbage on GN swards was greater than that on GC swards and declined with increasing SSH. Crude, fibre (CF) content of herbage was similar for both sward types and increased with increasing SSH. Clover content of GC swards remained low throughout the experiment, ranging from 0·002 to 0·074 of herbage mass. However, from tissue turnover rates it was estimated that its contribution to herbage production was in the range of 0·049–0·219 of net herbage growth. Total growth increased with increasing SSH in both sward types, with maximum growth rates in GN swards of 143 and 130 kg DM ha?1 d?1 and in GC swards of 88·2 and 85·4 kg DM ha?1 d?1 in Periods 1 (up to early July) and 2 (after July) respectively. Senescence rates ranged between 13·3 and 50·1 kg DM ha?1 d?1 and tended to be higher in Period 2 than in Period 1. Net production increased with increasing SSH in Period 1, while in Period 2 net production declined at SSH above 6·5 cm. The increased net herbage production in taller swards was not associated with greater utilized metabolizable energy production at sward heights above 5 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号