首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prepared 31 monoclonal antibodies (MAbs) against either FIPV strain 79-1146 or FECV strain 79-1683, and tested them for reactivity with various coronaviruses by indirect fluorescent antibody assay (IFA). Sixteen MAbs which reacted with all of the 11 strains of feline coronaviruses, also reacted with canine coronavirus (CCV) and transmissible gastroenteritis virus (TGEV). In many of them, the polypeptide specificity was the recognition of transmembrane (E1) protein of the virus. We succeeded in obtaining MAbs which did not react with eight strains of FIPV Type I viruses (showing cell-associated growth) but reacted with FIPV Type II (79-1146, KU-1) and/or FECV Type II (79-1683) (showing non-cell associated growth). These MAbs also reacted with CCV or TGEV. These MAbs recognized peplomer (E2) glycoprotein, and many antigenic differences were found in this E2 protein. These results suggest that FIPV Type II and FECV Type II viruses are antigenically closer to TGEV or CCV than to FIPV Type I viruses. Furthermore, the MAb prepared in this study has enabled discrimination between FIPV strain 79-1146 and FECV strain 79-1683, which was thought to be impossible by the previous serological method.  相似文献   

2.
采用蔗糖密度梯度离心,纯化浓缩犬冠状病毒(CCV)、猫冠状病毒(FCV)、猫传染性腹膜炎病毒(FIPV)、猪传染性胃肠炎病毒(TGEV)、猪呼吸道冠状病毒(PRCV)的细胞培养物,分别设计7,17,11,10和4对引物,构建了49个基因片段的克隆。煮沸裂解法制备质粒DNA,回收PCR扩增产物,点制冠状病毒基因芯片。抽提病毒总RNA,利用Cy3-dCTP随机渗入反转录PCR标记,与芯片进行杂交检测,淘汰交叉的克隆片段。结果表明:克隆CCV1,CCV2,CCV5和CCV7可特异诊断CCV,克隆FCV6,FCV7,FCV8和FCV9可特异诊断FCV,克隆FIPV2,FIPV7,FIPV8和FIPV9可特异诊断FIPV,克隆PRCV1,PRCV2和PRCV3可特异诊断PRCV,克隆TGEV3,TGEV4,TGEV5和TGEV6可特异诊断TGEV。将这些特异克隆扩增片段重新点制基因芯片,与病毒PCR产物杂交,未发现交叉现象。基因芯片检测比传统PCR敏感1000倍,可有效应用于这5种动物冠状病毒的检测与区分。  相似文献   

3.
Monospecific antisera were prepared in rabbits against canine coronavirus (CCV) and transmissible gastroenteritis virus of pigs (TGEV), and in 24 pigs and 3 cats against TGEV alone. Neutralizing antibody titres were higher for the immunizing than the heterologous virus, although cross-neutralization usually was detected. This confirmed that CCV and TGEV are distinct, but antigenically related coronaviruses. In sera from 41 dogs, CCV-neutralizing titres were on average 2.7 fold higher than TGEV-neutralizing titres, suggesting that CCV was the causal agent. Sera from 29 cats in colonies with feline infectious peritonitis (FIP) and known to contain TGEV-neutralizing antibody, were found to have titres 12.3 fold higher against CCV. The FIP virus (FIPV) is probably more closely related to CCV than TGEV as judged by antigens involved in virus neutralization.Antisera to two isolates of bovine coronavirus, three isolates of haemagglutinating encephalomyelitis virus, seven strains of avian infectious bronchitis virus and the 229E strain of human coronavirus all failed to neutralize CCV and TGEV. Thus CCV, TGEV and probably FIPV fall into a group of antigenically related agents, separable from other members of the family Coronaviridae, by both virus neutralization and immunofluorescence tests.  相似文献   

4.
A plasmid, pG3BS, containing a cDNA clone from the 5' coding region of the peplomer glycoprotein gene appears to be specific for enteric transmissible gastroenteritis virus (TGEV) strains and for live-attenuated TGEV vaccines. This cDNA probe is used to differentiate porcine respiratory coronavirus (PRCV) isolates from TGEV field and vaccine strains by a slot blot hybridization assay. Probe pG3BS also hybridizes to canine coronavirus (CCV) RNA but does not hybridize to antigenically related feline infectious peritonitis virus (FIPV) RNA. The RNAs of 13 enteric TGEV isolates from the United States, Japan, and England, 4 US-licensed live-attenuated TGEV vaccines, and antigenically closely related CCV were detected by pG3BS. The RNAs of FIPV and 3 US isolates of PRCV did not react with pG3BS but were detected by a TGEV-derived plasmid, pRP3. Pigs infected with either PRCV or TGEV test serologically positive for TGEV antibody by the serum neutralization test. Characterization of the virus circulating in a swine herd by the pG3BS probe will differentiate between an enteric TGEV and a respiratory PRCV infection.  相似文献   

5.
为了比较冠状病毒基因相关性,获得特异基因克隆制备冠状病毒基因芯片,根据发布的基因序列,每种病毒设计4~17对引物,利用火鸡冠状病毒(TCV)原毒和蔗糖密度梯度离心纯化浓缩的犬冠状病毒(CCV)、猫冠状病毒(FCV)、猫传染性腹膜炎病毒(FIPV)、猪传染性胃肠炎病毒(TGEV)、猪呼吸道冠状病毒(PRCV)、牛冠状病毒(BCV)细胞毒,提取总RNA并反转录和PCR扩增。回收PCR产物连接pGEM-T-easy载体并转化大肠杆菌TGI,经PCR鉴定后测序。将所有基因片段的核苷酸序列和推导的氨基酸序列,分别与GenBank有关病毒相关基因片段的核苷酸序列进行分析比较,确定它们的同源性。通过对不同冠状病毒不同基因片段的克隆和测序,发现同一群冠状病毒核苷酸序列间具有较高的同源性。  相似文献   

6.
The infectivity and pathogenicity to newborn pigs of antigenically related coronaviruses from pigs (transmissible gastroenteritis virus; TGEV), cats (feline infectious peritonitis virus; FIPV), and dogs (canine gastroenteritis virus; CGEV) were studied by light, scanning electron, and immunofluorescence microscopy. Hysterectomy-derived, 12-hour-old pigs were orally given tissue culture or frozen preparations of 6 coronavirus strains (3 porcine, 2 feline, and 1 canine). The pigs were killed at regular intervals between 24 and 144 hours after exposure. Virulent TGEV and virulent FIPV produced necrosis of villous epithelium, resulting in villous atrophy in the jejunum and the ileum. Similar, but less extensive and severe lesions, were produced by the 4 other viruses. Coronaviral antigens were identified by immunofluorescence in villous epithelial cells of pigs that had been inoculated with virulent TGEV, attenuated TGEV, virulent FIPV, and tissue culture-adapted FIPV. In contrast, coronaviral antigens were not induced by the small plaque variant TGEV and virulent CGEV in the villous epithelium, but rather in cells of the lamina propria and crypt epithelium.  相似文献   

7.
Preexisting antibody to feline infectious peritonitis virus (FIPV) causes acceleration and enhancement of disease on subsequent infection of cats with FIPV. Other workers have shown that canine coronavirus (CCV) can infect cats subclinically, but have found no evidence of enhancement of, or protection against, subsequent FIPV infection. With various isolates of CCV, we determined that 1 strain of CCV can induce transient mild diarrhea in cats and, furthermore, that previous infection with CCV causes acceleration and enhancement of subsequent infection with FIPV. In addition, sequential inoculation of cats with another strain of CCV caused lesions indistinguishable from those of FIP, without exposure at any time to FIPV.  相似文献   

8.
Specific pathogen free kittens were vaccinated with an unattenuated field isolate of canine coronavirus (CCV) either by aerosol or subcutaneously, and received boosting vaccinations four weeks later. Aerosolisation elicited a homologous virus-neutralising (VN) antibody response that increased steadily over a four-week period and levelled off one to two weeks after revaccination. The initial aerosolised dose produced an asymptomatic infection with excretion of CCV from the oropharynx up to eight days after vaccination; virus shedding was not detected, however, after the second inoculation. Cats vaccinated subcutaneously developed low VN antibody titres after the first CCV dose and experienced a strong anamnestic response after the second dose. Neutralising antibody titres then levelled off one to two weeks after revaccination at mean values somewhat lower than in cats vaccinated by aerosol. CCV was not isolated from the oropharynx after either subcutaneous dose. Four weeks after CCV boosting inoculations, vaccinated cats and sham-vaccinated control cats were divided into three subgroups and challenged by aerosol with the virulent UCD1 strain of feline infectious peritonitis virus (FIPV UCD1) at three different dosage levels. Five of six cats (including sham-vaccinated controls) given the lowest challenge dose showed no signs of disease, while all other cats developed lesions typical of feline infectious peritonitis (FIP). The five surviving cats developed FIP after subsequent challenge with a fivefold higher dose of FIPV. Thus heterotypic vaccination of cats with CCV did not provide effective protection against FIPV challenge.  相似文献   

9.
A new monoclonal antibody (mAb), CCV2-2, was compared with the widely used FIPV3-70 mAb, both directed against canine coronavirus (CCoV), as a diagnostic and research tool. Western blot showed that both anti-CCoV mAbs only reacted with a protein of 50 kD, a weight consistent with the feline coronavirus (FCoV) viral nucleocapsid. A competitive inhibition enzyme-linked immunosorbent assay showed that the 2 recognized epitopes are distinct. Preincubation of CCV2-2 mAb with FCoV antigen suppressed the immunostaining. Formalin-fixed, paraffin-embedded sections from brains of 15 cats with the dry form of feline infectious peritonitis (FIP) were examined by immunohistochemistry. Immunohistochemistry was performed with both anti-CCoV mAbs, either on consecutive or on the same sections. A myeloid-histiocytic marker, MAC 387, was also used to identify FIP virus-infected cells. In all regions where MAC 387-positive cells were present, positive staining with the CCV2-2 mAb was systematically detected, except at some levels in 1 cat. In contrast, none or only a few cells were positive for the FIPV3-70 mAb. Double immunostaining showed macrophages that were immunopositive for either CCV2-2 alone or alternatively for CCV2-2 and FIPV3-70 mAbs. This reveals the coexistence of 2 cohorts of phagocytes whose FIP viral contents differed by the presence or absence of the FIPV3-70-recognized epitope. These findings provide evidence for antigenic heterogeneity in coronavirus nucleocapsid protein in FIP lesions, a result that is in line with molecular observations. In addition, we provide for the first time morphologic depiction of viral variants distribution in these lesions.  相似文献   

10.
Replication of feline infectious peritonitis virus (FIPV) in feline cell cultures was inhibited after incubation of cells with either human recombinant leukocyte (alpha) interferon (IFN) or feline fibroblastic (beta) IFN for 18 to 24 hours before viral challenge exposure. Compared with virus control cultures, FIPV yields were reduced by ranges of 0.1 to 2.7 log10 or 2 to 5.2 log10 TCID50 in cultures treated with human alpha- or feline beta-IFN, respectively; yield reductions were IFN dose dependent. Sensitivity to the antiviral activities of IFN varied with cell type; feline embryo cells had greater FIPV yield reductions than did similarly treated feline kidney or feline lung cells. Comparison of the virus growth curves in IFN-treated and virus control cultures indicated marked reduction in intracellular and extracellular FIPV in IFN-treated cultures. Compared with virus control cultures, intracellular and extracellular infectivity in IFN-treated cultures was delayed in onset by 12 and 30 hours, respectively, and FIPV titers subsequently were reduced by 3 to 3.5 and 5 log10 TCID50, respectively. Frequently, immunofluorescent and electron microscopy of IFN-treated cells or cell culture fluids did not reveal virus; however, even in cultures without viral cytopathic changes, small amounts of virus occasionally persisted in cells.  相似文献   

11.
Twelve pregnant sows were inoculated oral-nasally 8 weeks before farrowing with attenuated transmissible gastroenteritis virus (TGEV), tissue culture-adapted canine coronavirus (CCV), or fluids from mock-infected culture (controls). A 2nd dose of the same inoculum, one-half oral-nasally and one-half intramammarily, was given 6 weeks later. Neutralizing antibodies for TGEV and CCV were demonstrated in sera, colostrum, and milk whey from the virus-vaccinated sows. Homologous geometric mean neutralizing titers were generally 4-fold higher than were heterologous titers. After challenge exposure of the nursing pigs with virulent TGEV, average morbidity and mortality for the pigs were 81% and 34% (mortality range = 11% to 63%), respectively, in the TGEV-vaccinated group; 83% and 39% (mortality range = 15% to 83%), respectively, in the CCV-vaccinated group; and 97% and 84% (mortality range = 78% to 100%), respectively, in the controls. Seemingly, sera from swine exposed to CCV could test serologically positive for TGEV-neutralizing antibody, and TGEV and CCV share at least 1 common neutralizing determinant that may be involved in protection.  相似文献   

12.
The Type II feline infectious peritonitis virus (FIPV) infection of feline macrophages is enhanced by a monoclonal antibody (MAb) to the S protein of FIPV. This antibody-dependent enhancement (ADE) activity increased with the MAb that showed a neutralizing activity with feline kidney cells, suggesting that there was a distinct correlation between ADE activity and the neutralizing activity. The close association between enhancing and neutralizing epitopes is an obstacle to developing a vaccine containing only neutralizing epitopes without enhancing epitopes. In this study, we immunized cats with cell lysate with recombinant baculovirus-expressed N protein of the Type I FIPV strain KU-2 with an adjuvant and investigated its preventive effect on the progression of FIP. Cats immunized with this vaccine produced antibodies against FIPV virion-derived N protein but did not produce virus-neutralizing antibodies. A delayed type hypersensitivity skin response to N protein was observed in these vaccinated cats, showing that cell mediated immunity against the FIPV antigen was induced. When these vaccinated cats were challenged with a high dose of heterologous FIPV, the survival rate was 75% (6/8), while the survival rate in the control group immunized with SF-9 cell-derived antigen was 12.5% (1/8). This study showed that immunization with the cell lysate with baculovirus-expressed N protein was effective in preventing the progression of FIP without inducing ADE of FIPV infection in cats.  相似文献   

13.
An enteric coronavirus that is antigenically closely related to feline infectious peritonitis virus (FIPV) is ubiquitous in the cat population. This virus has been designated feline enteric coronavirus to differentiate it from FIPV. The virus is shed in the feces by many seropositive cats; in catteries it is a cause of inapparent to mildly severe enteritis in kittens 6 to 12 weeks of age. The virus may produce a more severe enteritis in young specific-pathogen-free kittens. Feline enteric coronavirus selectively infects the apical columnar epithelium of the intestinal villi, from the caudal part of the duodenum to the cecum. In severe infections, there are sloughing of the tips of the villi and villous atrophy. Many cats recovering from the disease remain carriers of the virus. Recovered cats, observed for 3 to 24 months, remained healthy and did not develop peritonitis, pleuritis, or granulomatous disease. The relationship of feline enteric coronavirus and FIPV was studied. Although the viruses were antigenically similar, they were distinctly different in their pathogenicities. The enteric coronavirus did not cause feline infectious peritonitis in coronavirus antibody-negative cats inoculated orally or intraperitoneally nor in coronavirus antibody-positive cats inoculated intraperitoneally or intratracheally. Serologic tests, using FIPV, canine coronavirus, and transmissible gastroenteritis virus of swine as substrate antigens in fluorescent antibody procedures may not accurately identify FIPV infection. These tests do not appear to distinguish between FIPV and this feline enteric coronavirus.  相似文献   

14.
Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.  相似文献   

15.
Feline infectious peritonitis (FIP) is a terminal disease of cats caused by systemic infection with a feline coronavirus (FCoV). FCoV biotypes that cause FIP are designated feline infectious peritonitis virus (FIPV), and are distinguished by their ability to infect macrophages and monocytes. Antigenically similar to their virulent counterparts are FCoV biotypes designated feline enteric coronavirus (FECV), which usually cause only mild enteritis and are unable to efficiently infect macrophages and monocytes. The FCoV spike protein mediates viral entry into the host cell and has previously been shown to determine the distinct tropism exhibited by certain isolates of FIPV and FECV, however, the molecular mechanism underlying viral pathogenesis has yet to be determined. Here we show that the FECV strain WSU 79-1683 (FECV-1683) is highly dependent on host cell cathepsin B and cathepsin L activity for entry into the host cell, as well as on the low pH of endocytic compartments. In addition, both cathepsin B and cathepsin L are able to induce a specific cleavage event in the FECV-1683 spike protein. In contrast, host cell entry by the FIPV strains WSU 79-1146 (FIPV-1146) and FIPV-DF2 proceeds independently of cathepsin L activity and low pH, but is still highly dependent on cathepsin B activity. In the case of FIPV-1146 and FIPV-DF2, infection of primary feline monocytes was also dependent on host cell cathepsin B activity, indicating that host cell cathepsins may play a role in the distinct tropisms displayed by different feline coronavirus biotypes.  相似文献   

16.
17.
From the reasons that canine coronavirus (CCV) grows more efficiently than feline coronavirus in a cell culture and they are mutually related in their antigenicities, an enzyme-linked immunosorbent assay (ELISA) using CCV-infected feline kidney (CRFK) cells as substrate antigens was developed for detection of anti-coronavirus antibodies in cats. It was indispensable for generating coronavirus-specific ELISA antibody activities that the sample was applied to the mock-infected, normal CRFK cells in parallel with the CCV-infected cells and then the optical density values given by the mock-infected cell antigen were subtracted from those given by the virus-infected cell antigen. On the basis of ELISA antibody titers obtained in sera from the cats experimentally infected with CCV and from the spontaneous feline infectious peritonitis (FIP) cases, the ELISA described in the present study was found to be applicable as a simple and easy serologic test which was able to detect anti-coronavirus antibodies as efficiently as the indirect immunofluorescence assay with homologous FIP virus.  相似文献   

18.
ABSTRACT: The feline infectious peritonitis virus (FIPV) is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA), an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT) to bind cellular cyclophilins (CyP), dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP) but not CyP) did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.  相似文献   

19.
The types of feline coronaviruses that are prevalent throughout Japan were determined by competitive enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody (MAb) to feline infectious peritonitis virus (FIPV) Type II and neutralizing test using Type II FIPV as challenge virus. A total of 1,079 cat serum samples were tested by indirect fluorescent antibody (IFA) assay for FIPV Type II antigen, all 42 sample from natural cases of FIP, 138 of 647 (21.3%) from cases with some chronic diseases and 57 of 390 (14.6%) from apparently non-diseased cases were positive. Of the 42 cases with FIP, 29 (69%) and 13 (31%) were found to have infection with FIPV Types I and II, respectively. Of the cases with chronic diseases, 111 (80.4%) were shown to have infection with FIPV or FECV Type I, while 14 (10.1%) with FIPV or FECV Type II. All of the 57 apparently non-diseased cases seemed to have been infected with FIPV or FECV Type I. These results indicated that feline coronavirus Type I is more high prevalent in Japan.  相似文献   

20.
Non-immune kittens passively immunized with feline serum containing high-titered antibodies reactive with feline infectious peritonitis virus (FIPV) developed a more rapid disease after FIPV challenge than did kittens pretreated with FIPV antibody-negative serum. Antibody-sensitized, FIPV challenged—kittens developed earlier clinical signs (including pyrexia, icterus, and thrombocytopenia) and died more rapidly than did non-sensitized, FIPV-challenged kittens. Mean survival time in sensitized kittens was significantly (P < 0.05) reduced compared to non-sensitized kittens (mean ± SEM, 10.0 ± 0.6 days vs. 28.8 ± 8.3 days, respectively). Lesions induced included fibrinous peritonitis, disseminated pyogranulomatous inflammation and necrotizing phlebitis and periphlebitis. FIPV antigen, immunoglobulin G, complement (C3) and fibrinogen were demonstrated in lesions by immunofluorescence microscopy.The pathogenesis of dengue hemorrhagic fever (DHF) in persons bears striking resemblance to that of FIP in experimental kittens. In both FIP and DHF, non-neutralizing antibody may promote acute disease by enhancement of virus infection in mononuclear phagocytes or by formation of immune complexes, activation of complement and secondary vascular disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号