首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycosylphosphatidylinositol (GPI) serves as a membrane anchor for a large number of eukaryotic proteins. A genetic approach was used to investigate the biosynthesis of GPI anchor precursors in mammalian cells. T cell hybridoma mutants that cannot synthesize dolichol-phosphate-mannose (Dol-P-Man) also do not express on their surface GPI-anchored proteins such as Thy-1 and Ly-6A. These mutants cannot form mannose-containing GPI precursors. Transfection with the yeast Dol-P-Man synthase gene rescues the synthesis of both Dol-P-Man and mannose-containing GPI precursors, as well as the surface expression of Thy-1 and Ly-6A, suggesting that Dol-P-Man is the donor of at least one mannose residue in the GPI core.  相似文献   

2.
Many proteins associated with the plasma membrane are known to partition into submicroscopic sphingolipid- and cholesterol-rich domains called lipid rafts, but the determinants dictating this segregation of proteins in the membrane are poorly understood. We suppressed the tendency of Aequorea fluorescent proteins to dimerize and targeted these variants to the plasma membrane using several different types of lipid anchors. Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts. Thus the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.  相似文献   

3.
Decay accelerating factor (DAF) is anchored to the plasma membrane by a glycophospholipid (GPI) membrane anchor covalently attached to the COOH-terminus of the protein. A hydrophobic domain located at the COOH-terminus is required for anchor attachment; DAF molecules lacking this domain are secreted. Replacement of the COOH-terminal hydrophobic domain with a signal peptide that normally functions in membrane translocation, or with a random hydrophobic sequence, results in efficient and correct processing, producing GPI-anchored DAF on the cell surface. The structural requirements for GPI anchor attachment and for membrane translocation are therefore similar, presumably depending on overall hydrophobicity rather than specific sequences.  相似文献   

4.
The endosomal compartment of polarized epithelial cells is a major crossroads for membrane traffic. Proteins entering this compartment from the cell surface are sorted for transport to one of several destinations: recycling to the original cell surface, targeting to lysosomes for degradation, or transcytosis to the opposite surface. The polymeric immunoglobulin receptor (pIgR), which is normally transcytosed from the basolateral to the apical surface, was used as a model to dissect the signals that mediate this sorting event. When exogenous receptor was expressed in Madin-Darby Canine Kidney (MDCK) cells, it was shown that phosphorylation of pIgR at the serine residue at position 664 is required for efficient transcytosis. Replacement of this serine with alanine generated a receptor that is transcytosed only slowly, and appears to be recycled. Conversely, substitution with aspartic acid (which mimics the negative charge of the phosphate group) results in rapid transcytosis. It was concluded that phosphorylation is the signal that directs the pIgR from the endosome into the transcytotic pathway.  相似文献   

5.
Activation of apical chloride channels in the gastric oxyntic cell   总被引:1,自引:0,他引:1  
Oxyntic cells that retain distinct morphological polarity between apical and basolateral membranes were isolated from the gastric mucosa of the amphibian Necturus. Patch-clamp techniques were applied to these cells to identify apical membrane ion channels associated with hydrochloric acid secretion. A single class of voltage-dependent, inwardly rectifying chloride channels was observed in the apical membranes of both resting and stimulated (acid-secreting) oxyntic cells. Stimulation of the cells with dibutyryladenosine 3',5'-monophosphate and isobutylmethylxanthine increased channel open probability and simultaneously increased apical membrane surface area. This chloride channel is probably responsible for electrogenic chloride secretion by the gastric mucosa and may also participate in the fluid- and enzyme-secretory functions of the oxyntic cell, analogous to the chloride channels found in the apical membranes of other exocrine cells.  相似文献   

6.
Apicomplexan parasites invade host cells and immediately initiate cell division. The extracellular parasite discharges transmembrane proteins onto its surface to mediate motility and invasion. These are shed by intramembrane cleavage, a process associated with invasion but otherwise poorly understood. Functional analysis of Toxoplasma rhomboid 4, a surface intramembrane protease, by conditional overexpression of a catalytically inactive form produced a profound block in replication. This was completely rescued by expression of the cleaved cytoplasmic tail of Toxoplasma or Plasmodium apical membrane antigen 1 (AMA1). These results reveal an unexpected function for AMA1 in parasite replication and suggest that invasion proteins help to promote parasite switch from an invasive to a replicative mode.  相似文献   

7.
Granulocyte and natural killer (NK) cell Fc receptors for immunoglobulin G (CD16) differ in only a few amino acids, yet have phosphatidylinositol glycan (PIG) or polypeptide membrane anchors, respectively. Mutagenesis shows that anchoring is regulated by a serine residue near the PIG anchor attachment site in the extracellular domain. The NK cell isoform was not expressed on the surface of COS cells unless cotransfected with a subunit that was expressed in NK cells and that was identical to the gamma subunit of the high affinity IgE Fc receptor (Fc epsilon RI). However, the CD16 sequence and not expression of the gamma subunit is dominant in regulating PIG reanchoring.  相似文献   

8.
The effective area, resistance, and configuration of the apical and basolateral cell membranes of the bullfrog gastric mucosa were studied as a function of acid secretion rate, by alternating-current impedance methods. The drop in transepithelial resistance with acid secretion is attributed to the great increase in apical membrane area (hence conductance) associated with tubulovesicles. There is no evidence of a change in basolateral membrane resistance or of apical membrane premeability per unit area.  相似文献   

9.
In prion and Alzheimer's diseases, the roles played by amyloid versus nonamyloid deposits in brain damage remain unresolved. In scrapie-infected transgenic mice expressing prion protein (PrP) lacking the glycosylphosphatidylinositol (GPI) membrane anchor, abnormal protease-resistant PrPres was deposited as amyloid plaques, rather than the usual nonamyloid form of PrPres. Although PrPres amyloid plaques induced brain damage reminiscent of Alzheimer's disease, clinical manifestations were minimal. In contrast, combined expression of anchorless and wild-type PrP produced accelerated clinical scrapie. Thus, the PrP GPI anchor may play a role in the pathogenesis of prion diseases.  相似文献   

10.
A glycan-phosphatidylinositol-specific phospholipase D in human serum   总被引:17,自引:0,他引:17  
A group of proteins anchored to the cell by phosphatidylinositol (PI) has recently been identified. The significance of this new class of membrane anchor is unknown; one possibility is that it facilitates release of the molecule by phospholipases. In fact, phospholipase C enzymes specific for the complex carboxyl-terminal glycolipids of these proteins have been isolated from African trypanosomes and from hepatocyte plasma membranes. This study reports the discovery of a glycan-PI-specific phospholipase D in human serum that cleaves both the membrane form of the variant surface glycoprotein of African trypanosomes and its glycolipid precursor, but not phosphatidylethanolamine, phosphatidylcholine, or phosphatidylinositol. Decay-accelerating factor, another PI-anchored molecule, is also cleaved by the enzyme and converted from a hydrophobic to a soluble protein. The enzyme is Ca2+-dependent, heat labile, and not affected by the inhibitor of serine proteases, phenylmethylsulfonylfluoride. Its function is not known, but the present findings indicate that it participates in the metabolism of glycolipid-anchored membrane proteins.  相似文献   

11.
Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.  相似文献   

12.
The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) hypothesis suggests that pairs of proteins known as vesicle (v-) SNAREs and target membrane (t-) SNAREs interact specifically to control and mediate intracellular membrane fusion events. Here, cells expressing the interacting domains of v- and t-SNAREs on the cell surface were found to fuse spontaneously, demonstrating that SNAREs are sufficient to fuse biological membranes.  相似文献   

13.
Pathways of protein secretion in eukaryotes   总被引:123,自引:0,他引:123  
Protein secretion from cells can take several forms. Secretion is constitutive if proteins are secreted as fast as they are synthesized. In regulated secretion newly synthesized proteins destined for secretion are stored at high concentration in secretory vesicles until the cell receives an appropriate stimulus. When both constitutive and regulated protein secretion can take place in the same cell a mechanism must exist for sorting the correct secretory protein into the correct secretory vesicle. The secretory vesicle must then be delivered to the appropriate region of plasma membrane. Transfection of DNA encoding foreign secretory proteins into regulated secretory cells has provided insight into the specificity of sorting into secretory vesicles.  相似文献   

14.
Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.  相似文献   

15.
屠宰健康荷斯坦奶牛,制备乳腺组织冰冻切片,免疫荧光双重标记检测,比较单克隆和多克隆α5、β1亚基一抗的特异性(FITC标记二抗),用SMMHC多克隆一抗,TRITC标记二抗特异标识肌上皮细胞来辅助定位靶信号,Hoechst33258复染细胞核,在激光共聚焦显微镜下连续断层扫描并拍照。结果表明,借助对肌上皮细胞和细胞核染色定位清晰可见乳腺结构,α5、β1亚基主要分布在导管和腺泡腔上皮细胞膜、外围肌上皮细胞膜和间质中的成纤维细胞膜上,前者在面向腔和靠近基膜的细胞顶侧和基底侧表达均较强,后者仅在基底侧细胞膜上。对于具有极性分布的细胞膜抗原单克隆一抗定位更准确。α5、β1亚基定位在相同区域表明,α5β1异二聚体具有在导管和腺泡基底侧极性分布的表达特点,α5亚基在面向导管和腺泡腔的上皮细胞顶膜上表达,而β1亚基不表达或弱表达,显示该区域存在非α5β1异二聚体形式的α5亚基。  相似文献   

16.
Glycoprotein B (gB) is the most conserved component of the complex cell-entry machinery of herpes viruses. A crystal structure of the gB ectodomain from herpes simplex virus type 1 reveals a multidomain trimer with unexpected homology to glycoprotein G from vesicular stomatitis virus (VSV G). An alpha-helical coiled-coil core relates gB to class I viral membrane fusion glycoproteins; two extended beta hairpins with hydrophobic tips, homologous to fusion peptides in VSV G, relate gB to class II fusion proteins. Members of both classes accomplish fusion through a large-scale conformational change, triggered by a signal from a receptor-binding component. The domain connectivity within a gB monomer would permit such a rearrangement, including long-range translocations linked to viral and cellular membranes.  相似文献   

17.
Electrostatic interactions with negatively charged membranes contribute to the subcellular targeting of proteins with polybasic clusters or cationic domains. Although the anionic phospholipid phosphatidylserine is comparatively abundant, its contribution to the surface charge of individual cellular membranes is unknown, partly because of the lack of reagents to analyze its distribution in intact cells. We developed a biosensor to study the subcellular distribution of phosphatidylserine and found that it binds the cytosolic leaflets of the plasma membrane, as well as endosomes and lysosomes. The negative charge associated with the presence of phosphatidylserine directed proteins with moderately positive charge to the endocytic pathway. More strongly cationic proteins, normally associated with the plasma membrane, relocalized to endocytic compartments when the plasma membrane surface charge decreased on calcium influx.  相似文献   

18.
Decay accelerating factor (DAF) belongs to a novel group of membrane proteins anchored to the cell surface by a glycophospholipid membrane anchor that is covalently attached to the carboxyl terminus of the protein. The last 37 amino acids of membrane DAF, when fused to the carboxyl terminus of a secreted protein, are sufficient to target the fusion protein to the plasma membrane by means of a glycophospholipid anchor. This approach provides a novel means of targeting proteins to the cell-surface membrane.  相似文献   

19.
20.
The surface membrane of cells is studded with morphologically distinct regions, or domains, like microvilli, cell-cell junctions, and coated pits. Each of these domains is specialized for a particular function, such as nutrient absorption, cell-cell communication, and endocytosis. Lipid domains, which include caveolae and rafts, are one of the least understood membrane domains. These domains are high in cholesterol and sphingolipids, have a light buoyant density, and function in both endocytosis and cell signaling. A major mystery, however, is how resident molecules are targeted to lipid domains. Here, we propose that the molecular address for proteins targeted to lipid domains is a lipid shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号