首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abstract

Based on yield and fruit size data from a number of experiments implying effects of nitrogen nutrition, drip-irrigation, plant material and planting times, and including cultivars “Dania”, “Elsanta”, “Bogota” and “Pandora”, distinct negative relationships between fruit size and fruit number per plant or fruit/leaf ratio, were established. Apart from that, fruit size may be affected by plant material and cropping year, the latter probably related to weather conditions. Achene spacing was influenced by year, and increased by irrigation under drought conditions. Relevance of factors influencing fruit size is discussed. It is concluded that an increase in the number of flower meristems (or a more vigorous vegetative growth) might aggravate internal competition, which in turn impairs flower development, resulting in a reduced flower quality and consequently smaller fruits.  相似文献   

2.
Abstract

The effects of subirrigation and cylical (surface) irrigation on shoot growth and water stress of tomato grown in peat‐lite amended with 0, 4, 8, 12, and 16 kg Hydrogel/m were examined. While shoot growth showed a quadratic response to increasing Hydrogel rate with maximal growth occurring at the manufacturer's recommended rate (8 kg/m3), growth was greater with cyclical irrigation than with subirrigation. Subirrigation generally resulted in greater plant water stress than cyclical irrigation, but with ≤ 8 kg Hydrogel/m3 this differential irrigation effect diminished temporally. Initially, each kg Hydrogel/m3 increased peat‐lite water content by 9 percent but after 31 days, this value had increased to 27 percent and 16 percent with subirrigation and cyclical irrigation, respectively. The continued hydration resulted in a bulk volume increase sufficiently large with subirrigation to cause the Hydrogel‐amended peat‐lite to overflow the pots.  相似文献   

3.
ABSTRACT

This study covers the application of surfactant-modified clinoptilolite (SMC) in peat substrate on the growth of Orthosiphon stamineus. SMC added in peat substrate may increase nutrient availability to O. stamineus by controlling anionic nutrients (phosphate and nitrate) leach to the environment. The modification of clinoptilolite (Cli) by using hexadecyltrimethyl ammonium surfactant alters the surface charge of Cli from negative to positive which is likely to attract anions when applied in the substrates. In leachate study, there was a higher amount of phosphate? and nitrate released (19.67 and 139.00 mg/L, respectively) by the commercial propagating substrate (PS) in the first day of the experiment. However, the application of Cli and SMC in peat substrate significantly reduced the concentrations of both nutrients, especially when 20% of the SMC was added in the peat substrates. There were significant differences in the growth parameters of O. stamineus, particularly those grown in 10% Cli-amended peat substrate. Results of leachate and plant growth studies indicate that Peat + 20% SMC could be a potential substrate to replace the commercial PS as it reduces the release of phosphate and nitrate, at the same time allows maximum uptake of nitrogen and phosphorus, which promotes the growth and development of O. stamineus.  相似文献   

4.
A pot experiment was conducted to investigate factors contributing to phosphorous (P) efficiency of ornamental plants. Marigold (Tagetes patula) and poinsettia (Euphorbia pulcherima) were cultivated in a peat substrate (black peat 80% + mineral component 20% on a volume basis), treated with P rates of 0, 10, 35, 100, and 170 mg (L substrate)–1. During the cultivation period, plants were fertigated with a complete nutrient solution (including 18 mg P L–1) every 2 d. Both poinsettia and marigold attained their optimum yield at the rate of 35 mg P (L substrate)–1 and the critical level of P in shoot dry matter of both crops was 5–6 mg g–1. After planting, plant‐available P increased at lower P rates to a higher level for poinsettia than for marigold, but no significant change was observed at higher P rates. Balance sheet calculations indicated that at lower P rates more P was fertigated than was taken up by the plants. Root‐length density, root‐to‐shoot ratio, and root‐hair length of marigold were doubled compared to that of poinsettia. Root‐length density increased with crop growth, and 10 d after planting the mean half distance between roots exceeded the P‐depletion zone around roots by a factor of 3 and 1.5 for poinsettia and marigold, respectively. Thus, at this early stage poinsettia exploited only 10% of the substrate volume whereas marigold utilized 43%. Later in the cultivation period, the depletion zones around roots overlapped for both crops. Taking into account P uptake via root hairs, the simulation revealed that this was more important for marigold compared to poinsettia especially at low P‐supply levels. However, increase of P uptake due to root hairs was only 10%–20% at optimum P supply. For the two lower P levels, the P‐depletion profile around roots calculated for 10 d after planting showed that after 2 d of depletion the concentration at the root surface was below the assumed Km value (5 μM) and the concentration gradient was insufficient to fit the demand. A higher content of plant‐available P in the substrate was observed for poinsettia compared to marigold in the treatment with P application adequate for optimum growth, because more fertigated P was accumulated during early stages of cultivation due to lower root‐length density of poinsettia. The observed difference of root morphological parameters did not contribute significantly to P‐uptake efficiency, since P mobility in the peat substrate was high.  相似文献   

5.
Abstract

The influence of the addition of Chinese peat and Canadian peat on arbuscular mycorrhizal colonization, mycorrhizal effectiveness and host-plant growth was investigated in a pot experiment. Chinese peat or Canadian peat was mixed with Masa soil (weathered granite soil) at different levels (0, 25, 50, 100, 150 or 200 g kg?1) into which an arbuscular mycorrhizal fungus (AMF) Gigaspora margarita Becker & Hall was inoculated, and seedlings of Miscanthus sinensis Anderess were planted. There was a significant increase in plant growth with increasing amounts of Chinese peat. The growth-promoting effect of the AMF on the host was enhanced when the addition of Chinese peat was increased from 25 to 100 g kg?1. Root colonization and the number of spores proliferating increased with increases at low levels of Chinese peat (from 25 to 100 g kg?1), and decreased gradually with higher Chinese peat increments. Although plant growth and root colonization with the addition of Canadian peat increased slightly, Canadian peat suppressed mycorrhizal effectiveness. In contrast to Canadian peat, the addition of Chinese peat improved considerably the physical and chemical properties of the soil, which might result in the promotion of AM formation and mycorrhizal effectiveness.  相似文献   

6.
We assessed the response of the tomato variety “Tiny Tom” to the application of copper (Cu) and zinc (Zn) fertilizers in three tropical peat soils of Sarawak: mixed swamp forest, Alan forest and Padang Alan forest. Limed soils were used because peat soils in their natural condition are unsuitable to sustain healthy growth of most crops. Yield responses were correlated with added Cu and Zn using Mitscherlich model. Adequate levels of applied Cu and Zn were calculated as those which resulted in 90% of the maximum obtainable shoot dry weight. Application of Cu and Zn significantly (P ≤ 0.05) increased the shoot dry weight and the shoot Cu and Zn concentrations of tomato. Application of the equivalent of 8.3 kg Cu and 5.2 kg Zn per ha was required to achieve 90% of the maximum shoot dry weight. In tomato shoots, the critical concentration for Cu was 18 mg/kg and for Zn, 92 mg/kg. The corresponding concentrations for diethylenetriaminepentaaceticacid (DTPA) extractable Cu and Zn in the soils were 2.3 mg Cu kg ?1 and 3.6 mg Zn kg ?1 . However, the addition of Cu fertilizer also increased Zn uptake by tomato plant, probably by displacing native Zn that was weakly sorbed to the soil solid phase.  相似文献   

7.
8.
The effects of five salinity levels and four copper levels on growth and chemical composition of ‘Ghazvini, pistachio seedlings were studied under greenhouse conditions in a completely randomized design with three replications. Leaf area, stem height, shoot and root dry weights were determined on 24th week after planting. Copper (Cu), phosphorus (P), sodium (Na), and chlorine (Cl) total uptake in shoot and root of plant were measured. The results showed that salinity decreased growth parameters. Low levels of Cu application had no significant effect on leaf area, shoot and root dry weights while decreased stem height. The highest level of Cu (7.5 mg Cu kg?1 soil) significantly increased leaf area and shoot dry weight but decreased stem height. Salinity decreased Cu and P uptake in the shoot and root, but increased total sodium and chloride uptake. Cu application increased shoot total P uptake and decreased root total Na uptake.  相似文献   

9.
Quality of vegetable seedlings is affected by nursery management practices, essentially growing media. For sustainable greenhouse horticulture, it is important to characterize biologically based approaches to improve plantlet quality. Here, we investigate the possibility of developing a biotized growth substrate for nursery production using date palm wastes (DPWs) peat as an alternative to commercial sphagnum peat and indigenous arbuscular mycorrhizal fungi (AMF). A greenhouse experiment was established using different rates of DPWs peat to substitute commercial peat in both conventional and organic nursery production systems. Lettuce seedlings were inoculated or not with native AMF isolated from plots with conventional or organic production system (CM and OM respectively). When lettuce plantlets attained commercial size, a microscopic observation revealed that the establishment of mycorrhizal association was successful in all mixtures of growing media. Significant increase in growth parameters (height shoot, number and area of leaves, shoot and root biomass) were observed on plantlets inoculated with indigenous AMF isolated from organic plot compared to those isolated from conventional plot and to control (without AMF). Commercial peat partial substitution with DPWs peat in proportion of 25–50% improves better lettuce performance than complete-peat use. Consequently, these mixtures seem to be an appropriate formulation for sustainable nursery production.  相似文献   

10.
ABSTRACT

Cool and wet soils at the time of soybean [Glycine max (L.) Merrill] planting in the northern Great Plains may reduce early crop growth and retard nitrogen (N) fixation. Application of N as starter fertilizer may increase initial growth of soybean, but may also negatively impact N fixation when environmental conditions improve. The objective of this study was to evaluate the impact of low rates of N applied at planting on soybean N fixation and crop growth in the northern Great Plains. A field experiment (2000–2002) was established within a two-year corn [Zea mays (L.)] soybean rotation using a split-plot design with four replications. Whole plots were no-tillage (NT) and conventional tillage (CT) and the split plots were starter fertilizer (two sources × four rates) treatments. Nitrogen sources were either ammonium nitrate (AN) or urea (UR) each applied at 0, 8, 16, and 24 kg N ha?1. Biomass in both 2000 and 2001 growing seasons increased significantly with increasing N rate at both growth stages (R1 and R7) and at the R1 stage in 2002. Ureide concentration and relative ureide decreased with increasing N rate at the R1 stage in all years, indicating a decrease in N fixation up to that point in crop development. This decrease in N fixation was not present at the R7 stage, but the significant increase in plant growth including yield was still present, indicating possibly that starter fertilizer can positively impact soybean production in the cool environmental conditions of the northern Great Plains. However, the positive impact on plant growth and yield is dependent on in-season environmental conditions and time of planting.  相似文献   

11.
探究地面覆沙与供氮水平对陇东旱塬苹果幼树氮素吸收、分配及利用的影响,为实现半干旱区苹果园合理施氮、提高氮素利用率提供科学依据。该研究以3 a生富士苹果幼树为材料,采用二因素裂区设计,田间设置主区为地面管理措施,清耕(对照CK)和覆沙(SM),副区为2个供氮水平,5 g 15N-尿素(N1),5 g15N-尿素+75.5 g普通尿素(N2)。利用15N同位素示踪技术,分别于6月(果实膨大期)、8月(新梢停止生长期)和10月(落叶前)3个生育期对植株各器官15N丰度和全氮量进行测定分析。结果表明:1)地面覆沙增加了幼树地上部生物量累积,覆沙条件下供氮有利于生育后期地上部和总生物量累积;清耕条件下高供氮量(CKN2)可有效增加地下部干物质量,但SMN1处理于落叶前(10月)地下部生长极快,与CKN2差异不显著(P>0.05)。地面覆沙和供氮水平及二因素互作显著影响果实和多年生枝的Ndff值(氮素含量来自肥料氮的百分比)(P<0.05),二因素互作对果实Ndff值累积作用较多年生枝更大。6月和8月,地面覆沙条件下SMN1处理多年生枝和细根Ndff值最高,分别为2.26%、3.21%和3.67%、5.89%。当年生育周期内,二因素及二因素协同作用对果实15N分配率有极显著影响(P<0.01),对其他器官存在部分显著(P<0.05)或极显著(P<0.01)影响,贮藏器官是树体最大的15N利用器官,其次为营养器官、生殖器官。整个生育期内,植株15N利用率为3.38%~38.00%,表现为地面覆沙SM>CK,地面覆沙显著提高苹果幼树的15N利用率(P<0.05),而供氮水平的升高对树体15N利用率的影响大多情况下并不显著(P>0.05)。综合分析认为,该试验条件下较低的供氮水平(N1)及有效的地面覆沙措施(SM)既可促进幼树总生物量累积,又能提高氮素利用效率,从而优化农业生态系统中氮肥投入。  相似文献   

12.
Abstract

The relationship between nutrient uptake and root growth of cotton (Gossypium hirsutum L.) was studied under field conditions. This basic information could be beneficial when making best management decisions concerning the time of application and placement of fertilizer. A field study was conducted in North Alabama on a fertile Dewey silt loam (clayey, kaolinitic, thermic Typic Paleudult). Aboveground whole plants were harvested at approximately 10‐day intervals beginning at 211 cumulative heat units (CHU) after planting (37 days after planting: 4‐true leaves). Root length of harvested plants was also measured by depth and distance from the plant. Maximum root length was obtained at 1174 CHU (117 days after planting), while dry matter continued to increase until a maximum was obtained at 1317 CHU (128 days after planting). Maximum root length density of 1.60 cm cm3 was obtained in the surface 0–15 cm layer in the in‐row position at 912 CHU (99 days after planting). After first bloom approximately 70% of the cotton root system was in the surface 30 cm of soil. Average daily influx of S per m of root length increased with plant age until 1317 CHU (near cut‐out), after which influx declined. Nitrogen (N), calcium (Ca), and iron (Fe) influx peaked very early in the season (291–469 CHU) followed by a general decrease with plant age. Maximum daily influx of potassium (K), phosphorus (P), magnesium (Mg), copper (Cu), manganese (Mn), and zinc (Zn) per meter of root occurred at approximately peak‐bloom (764–912 CHU, 87–99 days after planting) and decreased with plant age. Copper, Fe, Mn, and Zn influx rates were ~ 1000 times lower as compared to the other nutrients.  相似文献   

13.
Abstract

Greenhouse experiments were carried out to study the influence of gyttja, a sedimentary peat, on the shoot dry weight and shoot concentrations of zinc (Zn) and boron (B) in one bread wheat (Triticum aestivum L., cv. Bezostaja) and one durum wheat (Triticum durum L., cv. Kiziltan) cultivar. Plants were grown in a Zn‐deficient (DTPA‐Zn: 0.09 mg kg?1 soil) and B‐toxic soil (CaCl2/mannitol‐extractable B: 10.5 mg kg?1 soil) with (+Zn = 5 mg Zn kg?1 soil) and without (?Zn = 0) Zn supply for 55 days. Gyttja containing 545 g kg?1 organic matter was applied to the soil at the rates of 0, 1, 2.5, 5, and 10% (w/w). When Zn and gyttja were not added, plants showed leaf symptoms of Zn deficiency and B toxicity, and had a reduced growth. With increased rates of gyttja application, shoot growth of both cultivars was significantly enhanced under Zn deficiency, but not at sufficient supply of Zn. The adverse effects of Zn deficiency and B toxicity on shoot dry matter production became very minimal at the highest rate of gyttja application. Increases in gyttja application significantly enhanced shoot concentrations of Zn in plants grown without addition of inorganic Zn. In Zn‐sufficient plants, the gyttja application up to 5% (w/w) did not affect Zn concentration in shoots, but at the highest rate of gyttja application there was a clear decrease in shoot Zn concentration. Irrespective of Zn supply, the gyttja application strongly decreased shoot concentration of B in plants, particularly in durum wheat. For example, in Zn‐deficient Kiziltan shoot concentration of B was reduced from 385 mg kg?1 to 214 mg kg?1 with an increased gyttja application. The results obtained indicate that gyttja is a useful organic material improving Zn nutrition of plants in Zn‐deficient soils and alleviating adverse effects of B toxicity on plant growth. The beneficial effects of gyttja on plant growth in the Zn‐deficient and B‐toxic soil were discussed in terms of increases in plant available concentration of Zn in soil and reduction of B uptake due to formation of tightly bound complexes of B with gyttja.  相似文献   

14.
Abstract

Salinity is one of the serious abiotic stresses that has adverse effects on plant growth. The aim of this study was to investigate the effect of sodium chloride (NaCl) on germination and growth parameters of tomato plant as well as the role of Ca2+as an ameliorating agent. 100?mM NaCl and two concentrations of calcium (5 and 10?mM) were applied to tomato seeds and seedlings. This study was carried out in a Completely Randomized Design (CRD) with a total of six treatments each comprising of three replicates. The application of 100?mM of NaCl delayed the germination time by 27.6%, reduced the seedling length and seedling vigor by 24.33% and germination stress tolerance by 27.6% as compared to control. Salinity also reduced the plant growth (root and shoot length, root fresh and dry weight, shoot fresh and dry weight, membrane stability, relative water content and leaf area), whereas the application of calcium mitigated the negative effects of salinity on germination and growth to a greater extent. With increased calcium concentration, growth and germination increased significantly both alone and in the salt-affected plant. 10?mM calcium showed best results and enhanced the promptness index by 20.7%, seedling length and vigor by 15.1% and GSI by 20.7%. It also improved root fresh and dry weight, shoot fresh and dry weight, relative water content and leaf area. Similarly, 5?mM calcium also increased plant height and membrane stability index. The present study suggests that application of Ca2+ enhanced the growth of tomato plant under saline conditions.  相似文献   

15.
蚯蚓堆肥用作苹果育苗基质的应用研究   总被引:3,自引:0,他引:3  
本研究采用穴盘栽培的方式,以不同比例的蚯蚓堆肥替代草炭调配育苗基质配方,用于苹果的育苗效果研究,通过比较苹果苗生长状况,以为蚯蚓堆肥在果树育苗上的应用提供参考。试验设置4个处理,包括传统草炭基质处理(对照)、蚯蚓堆肥25%、50%、100%替代草炭基质处理,对苹果苗的株高、茎粗、叶片光合色素含量、壮苗指数、根系形态和根系活力指标进行测定和分析。结果发现:与对照相比,蚯蚓堆肥不同比例替代草炭(25%、50%、100%)均能够增加苹果苗的地上生物量,以全替代(100%)的效果最为显著,全替代处理下苹果苗的存活率提高了15%,根系长度、根表面积、根体积、根尖数、根干重和根系活力分别增加了23.40%、47.61%、5.88%、38.57%、20.17%、228.75%。因此,蚯蚓堆肥可以全替代草炭用作苹果苗的育苗基质,且不仅能够降低成本,还可以促进农业废弃物的循环转化,降低环境风险。  相似文献   

16.
  【目的】  明确低氮胁迫对7种苹果砧木生长及生理生化特性的影响,为耐低氮苹果砧木的选育和氮高效吸收利用生理机制的研究提供理论依据。  【方法】  沙培试验以改良1/2 Hoagland营养液为基础,设定硝态氮含量正常水平(NN,5 mmol/L NO3–)和低氮胁迫(LN,0.5 mmol/L NO3–)两个处理,供试苹果砧木包括矮化砧T337、Nic29、Pajam2、B9、71-3-150和半矮化砧青砧2号、乔化砧山定子(Malus baccata L. Borkh.),均为一年生健康苗。处理60天后,测定砧木新稍生长、物质积累、根系形态、叶片和根系硝酸还原酶活性、植株氮累积量,利用隶属函数模糊评价法比较不同苹果砧木的耐低氮能力。  【结果】  在正常供氮条件下,乔化砧山定子的植株总干重和氮利用效率明显高于其他5种矮化砧;矮化砧中Pajam2的植株干物质积累量最大,B9的根冠比最高;矮化砧Nic29的新梢生长速率和叶片硝酸还原酶(NR)活性显著高于其余6种砧木;半矮化砧青砧2号的根系NR活性显著高于其余砧木,有利于植株的氮累积。与正常供氮相比,低氮条件下,T337、Nic29和山定子的新稍生长均受到显著抑制;B9、Pajam2和青砧2号的新稍生长未受明显影响;而71-3-150的新稍生长速率提高,叶面积增大,根系中干物质积累量增加,植株根冠比显著增大,为正常供氮处理的2.59倍。低氮条件下,T337、B9、Pajam2和山定子根系总表面积和总根长均显著降低,T337降幅最大;而71-3-150的根系总表面积、总根长、根系总体积、根尖数等根系参数显著升高;Nic29的根系总表面积、总根长和根总体积升高,但根尖数减少,根系分枝数也升高。低氮胁迫条件下,苹果砧木叶片NR活性减小,B9、Nic29、Pajam2和山定子根系中NR活性较正常供氮分别提高了3.70、5.16、2.85和5.14倍。低氮条件下,T337、B9、Pajam2和青砧2号的叶片、茎干和根系中氮累积量均趋于降低,植株氮累积量减小,青砧2号降幅最大,但B9、Nic29、Pajam2和青砧2号的氮利用效率均显著提高,青砧2号的增幅最大;而71-3-150的根系和植株氮累积量均显著升高。基于7种苹果砧木生长、根系参数、氮代谢酶活性、氮累积量和氮利用效率等19个指标的耐低氮胁迫指数,结合隶属函数模糊评价法和聚类分析将7种砧木分为3种耐性类型:第Ⅰ类为耐性强的砧木(71-3-150);第Ⅱ类为耐性较弱的砧木(Nic29、山定子、B9和青砧2号);第Ⅲ类为耐性最弱的砧木(Pajam2和T337)。  【结论】  在正常供氮条件下,乔化砧木山定子和半矮化砧青砧2号在植株干物质积累、根系发育和养分吸收利用等方面均强于矮化砧,但其对低氮胁迫适应性较弱。低氮条件下,苹果砧木通过提高氮利用效率适应养分亏缺,耐性强的砧木植株生长受抑制程度较小,并通过调节自身生理特性,增加根系中的物质和养分积累,提高植株根冠比,以适应低氮环境。  相似文献   

17.
Chile's seedling production industry has been growing for the last 10 years, and demand has actually reached 1250 million seedlings per year. This system has special relevance due to the high cost of seeds. In addition, there is an increasing demand for substituting synthetic agrochemicals. Therefore, the potential use of plant growth-promoting rhizobacteria (PGPR) in tomato production has been investigated. Before sowing, the micro-organisms provided by Biogram S.A. were inoculated into the substrate diluted in 250 mL/L unchlorinated water. The experiment was laid out in a ‘split-plot’ design with the two plant substrates as main plots and the inoculants as subplots, including six replicates per treatment. Tomato seedlings were grown using two different plant substrates: a mixture of 70% peat and 30% perlite by volume, and a substrate with 20% peat, 20% perlite and 60% compost by volume, both inoculated with Bacillus subtilis or Pseudomonas fluorescens or Bioroot®, which is a commercial product containing B. subtilis, P. fluorescens, Trichoderma harzianum, yeast, algae and Nocardia. For control, uninoculated tomato seedlings were grown on the respective plant substrates. Variance analysis did not identify significant interactions between substrate type (main plots) and inoculation treatment (subplots), P ≤ 0.05. There were significant differences between inoculants (P ≤ 0.05). Means were compared by using the Tukey's multiple range test. Tomato growth in terms of leaf area (cm2/plant) and shoot and root dry weight (g/10 plants) was improved for the seedlings grown on the substrate with 70% peat and 30% perlite, compared to the compost containing an alternative that is valid for both uninoculated perlite peat and all inoculated treatments where perlite peat was outstanding. Inoculation with Bioroot® improved the leaf area, shoot dry weight, root dry weight, radical contact area, volume of roots and root forks compared with the control without inoculation, when both plant substrates were analysed together. Thus, inoculation with Bioroot® can be recommended as an alternative to tomato seedling growers' dependence on synthetic agrochemicals.  相似文献   

18.
《Journal of plant nutrition》2013,36(8):1397-1411
Abstract

The objective of the experiment was to examine response of immature apple trees to application of mono-ammonium phosphate (MAP) fertilizer on replant problem soil. The study was carried out during 2001–2003 under a greenhouse on ‘Jonagold’ apple trees/M.9 EMLA planted singly in 50 L polyethylene containers filled with a sandy loam soil with low status of both organic matter and phosphorus (P) in soil solution. This soil originated from an apple orchard unfertilized with P for 23 years. The biological test showed the presence of specific replant disease in the soil. Immediately before apple tree planting, the soil was mixed with MAP at rates of 1, 2, and 3 g L? 1. Trees grown in the soil untreated with MAP served as a control. Each year apple trees were drip-irrigated and supplied with nitrogen (N) at differentiated rates to achieve a level of 50 g N per plant. The results showed that MAP application increased soil solution P status. Simultaneously, MAP supply at rates of 2 and 3 g L? 1 caused a drop in soil pH value in the last two years of the experiment. MAP treatments increased both dry weight and length of fine roots (< 2 mm in diameter), vigor of trees, the number of flower clusters per tree, flower intensity, the number of fruits per tree, and P concentrations in leaf and fruit tissues. Fruits from MAP-supplied trees were firmer than those of the control trees. Mean fruit weight, titratable acidity, and soluble solids concentration of ‘Jonagold’ apples at harvest were not influenced by MAP treatment. Fruits from MAP-supplied apple trees had increased calcium concentration only in one year. It is concluded that pre-plant application of MAP at a rate of 1g L? 1can be recommended on coarse-textured soils with low P status in soil solution to increase precocity of apple trees. However, MAP-supplied apple trees have to be watered to avoid the risk of osmotic stress.  相似文献   

19.
Abstract

A solution culture study was conducted to determine the effects of cadmium (Cd) application on Cd accumulation and growth of two durum wheat (Triticum turgidum L. var durum) cultivars. Arcola and DT618 were grown in nutrient solution for 13 days. Cadmium application to nutrient solution significantly (P 0.05) decreased root and shoot biomass, leaf area, leaf mass, total root length, and chlorophyll a and b concentration of the first leaf. The deleterious effects of Cd on plant growth were explained by a modified version of Weibull distribution function of the form, y = a.exp(b.√Cd), where ‘y’ is the growth parameter, ‘a’ is plant growth in the absence of Cd, and ‘b’ is reduction in growth with per unit increase in solution Cd. Total root length was decreased the most (80%) and chlorophyll b concentration of the first leaf decreased the least (9%) with per unit increase in solution Cd. Although the two cultivars were significantly different in some growth characteristics, both responded similarly to increase of Cd concentration in solution. Cadmium concentration in roots and shoots increased significantly (P ≤ 0.05) with Cd application, but due to concomitant decrease in growth the Cd content of plants remained constant at solution Cd concentrations of 5 μm or above. We concluded that seedlings of durum cultivars with different growth potential responded similarly to Cd application in nutrient solution.  相似文献   

20.
生物氢烷工程沼渣用于油菜及菠菜育苗的效果   总被引:5,自引:3,他引:2  
为探究将生物氢烷工程沼渣应用于蔬菜育苗基质生产的可行性,以油菜品种"华绿四号"、菠菜品种"先锋菠菜"为材料,按不同体积比将生物氢烷工程沼渣与土壤或草炭、蛭石和珍珠岩三者混配作为育苗基质,通过穴盘育苗试验研究生物氢烷工程沼渣对基质理化性质和油菜、菠菜幼苗生长的影响。结果表明:添加生物氢烷工程沼渣可显著改善基质的容重、总孔隙度、有机质含量、pH值和电导率EC(electronical conductivity)值等理化性质;适宜配比的生物氢烷工程沼渣对幼苗生长发育有一定的促进作用,其中T6(生物氢烷工程沼渣20%、草炭30%、蛭石25%、珍珠岩25%)的基质配方较为适宜,T6中油菜出苗率显著高于CK3(草炭50%、蛭石25%、珍珠岩25%)(P0.05),提高了14.3%,菠菜出苗率提高了12.4%,幼苗的株高、茎粗、单株叶面积显著高于或接近CK3(P0.05),幼苗根冠比和壮苗指数与CK3无显著差异;添加生物氢烷工程沼渣可使幼苗地下部生物量显著升高(P0.05),促进根系生长,使幼苗地上部、地下部生物量分配更加均衡。因此,生物氢烷工程沼渣具有一定的肥效,可部分替代草炭用于叶菜育苗基质生产,但使用前可考虑进行好氧堆肥处理进一步腐熟或与氮肥配施以提高肥效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号