首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In December 2001 and 2002, feces from reindeer calves treated with ivermectin were distributed on plots established on two types of forested reindeer pasture in northern Finland. The ungrazed plots were on an enclosure that had been fenced to prevent reindeer access for the last 6 years. The grazed plots were on an area that had been heavily stocked by reindeer during the last 5 years. After enclosures had been established, reindeer and large wildlife were prevented from entering by a fence. Topsoil samples (feces, vegetation, and soil) were collected monthly during the summers of the following 2 years, over a period of from 25 to 95 weeks after deposition. The samples were analyzed for ivermectin using HPLC. Although ivermectin degradation rapidly took place during the first spring, considerable residual ivermectin could be measured throughout the sampling time, showing that ivermectin in feces on pasture may not be photodegraded as rapidly as previously believed. The results support the need for further environmental evaluation studies on the use of ivermectin to control reindeer parasites.  相似文献   

2.
Soils were amended with either leaf litter or faeces from pill millipedes fed on the leaf litter, then incubated at 20 °C for 130 days whilst monitoring the respiration rates. Significantly more CO2 was respired from soil containing leaf litter than that amended with an equivalent weight of faecal matter, whilst the unamended soil exhibited a respiration rate similar to soil amended with faecal material. Consideration of these findings with recently observed differences in biochemical compositions of litter and faeces suggests that processing of plant litter by detritivores leads to more stabilised forms of organic matter by removal of biochemical components essential to the nutrient requirements of the invertebrate and the soil microbial biomass.  相似文献   

3.
《Applied soil ecology》2007,35(2):380-389
To compare the impact of parasite control agents in sheep faeces, 1 kg quantities of fresh faeces were spread uniformly over 1 m2 pasture plots in June 2001 (winter; a time of high earthworm activity). Faecal treatments applied to five replicate plots were C− (none), C+ (from untreated sheep), B (from sheep with an intra-ruminal bolus releasing a benzimidazole anthelmintic—‘albendazole’), ML (from sheep with a bolus releasing a macrocyclic lactone anthelmintic—‘ivermectin’), F (from sheep receiving a daily feed supplement containing chlamydospores of the nematophagous fungus, Duddingtonia flagrans). The disappearance of faeces was assessed visually over the 50 days following faecal application, then soil samples were taken to assess: (a) populations of earthworms and other soil macrofauna, (b) nematodes and other soil microfauna, and (c) the presence of D. flagrans in soil. Faecal disappearance was greatest in F and C+ plots and least in ML and B plots at 12 and 23 days (P < 0.05). Earthworm casting after 23 and 50 days was greater (P < 0.05) in plots with faeces (C+, ML, F, but not B) than in plots without faeces (C−). Greater earthworm activity in plots with faeces was reflected in greater numbers of earthworms, cocoons and greater biomass m−2 than in C− plots. On the basis of faecal dry weight applied, F plots had most earthworms and ML plots the least. After 50 days total nematodes in 0–5 cm soil showed a treatment effect (P < 0.001), being more abundant in F, C+ and B than in C− and ML plots; enchytraeids, rotifers, tardigrades and copepods showed no treatment effects. A few nematode taxa (Acrobeles, Alaimus, Pungentus, Tylencholaimus) showed significant treatment effects. The greatest effect among nematodes was in nematode channel ratio (NCR) (P < 0.008), with a decrease in F plots; changes in NCR may reflect the impact of earthworm activity on soil processes rather than a direct effect of the fungal treatment on nematodes. D. flagrans did not become established in the soil. During the trial conditions were favourable for earthworms and their activity was high in all treatments receiving faeces, with F and ML plots being the extremes. There was an apparent shift towards fungal-mediated decomposition in F plots. At the end of the 50-day trial, in a period when earthworms were active, there was no evidence of differential effects of any of the anthelmintic treatments on environmental indicators.  相似文献   

4.
Abstract

Emergence pattern of the perennial weed species Rumex crispus L. was studied under semi-field conditions. Seeds from three populations were harvested from the mother plants and sown in pots buried in an experimental field, either in late autumn or after winter storage at outdoor temperatures. Seeds were sown on the soil surface or covered by a 2-cm soil layer. In addition, some of the seeds sown in autumn were also subjected to mechanical disturbance in autumn or in spring. Population and soil cover both had a strong effect on total emergence. The light requirement of the species for germination was indicated by a higher rate of emergence from seeds sown on the soil surface than from covered seeds. Sowing date influenced the timing of emergence but not the total emergence. Autumn sowing led to earlier and more concentrated emergence, while seedlings from spring-sown seeds showed a more intermittent emergence pattern. Stirring after sowing had a positive effect on emergence compared with emergence from undisturbed, covered seeds. In all populations and treatments, emergence continued throughout the growing season, contradicting earlier findings that R. crispus seeds germinate mainly in early spring and autumn, and enter secondary dormancy during summer. The delay of emergence in seeds that had remained on the mother plant over winter indicates a certain level of dormancy, which was gradually broken in early summer.  相似文献   

5.
Samples from an old Scots pine forest at Ivantjärnsheden in the middle of Sweden were used to study predictability and patterns of variation of soil nematode communities. There were two annual sampling series (1974–75 and 1977–78) and one long-term series sampled in September ten times over a period of 25 years. The abundance and the composition of the fauna fluctuated rather considerably in both the annual and long-term series. In the annual series abundance and species composition varied in a way which can partly be explained by changes in temperature and moisture. Total nematode abundance was influenced by soil water contents as indicated by co-variations with precipitation. Although the variations in abundance and fauna composition were large no systematic changes could be detected during 25 years. The differences in faunal structure between the two annual series were greater than between the annual and the long-term series.In all series there was a distinct vertical stratification of the fauna. In the superficial moss and litter layers species belonging to Adenophorea (Plectus) dominated. In deeper layers members of Rhabditida (Acrobeloides) contributed a greater proportion of the fauna. Variations of the annual series indicate that coexistence of different nematode species is facilitated by differences in response to temperature and moisture. The abundance of fungal and bacterial feeders changed in a regular way. During the summer the proportions of fungal and bacterial feeders were almost equal, but during the wet and cold winter the proportion of bacterial feeders increased. Rapidly growing bacterial feeding species belonging to Rhabditida were common in late summer and early autumn, whereas the more slowly growing bacterial feeders belonging to Adenophorea were most abundant during the winter. Although the community fluctuated rather much the average values indicated a rather high degree of predictability and also a high similarity with nematode faunas of other pine forest soils.  相似文献   

6.
Humus material from an old stand of Scots pine and from an open area clearcut 13–15 years ago was incubated in the laboratory. The incubations were started in different years and the differences in nematode faunal development between the years were compared with site characteristics. In all incubations there was an increase in total nematode abundance. The total number and diversity of nematodes were higher in humus from the forest than from the clearing. The results indicated that biotic control mechanisms were much weaker in the humus from the clearcut area, where a strong dominance of Acrobeloides nanus occurred in most incubations. The differences in faunal development between years were rather large. A certain pattern of unpredictability indicated that the nematode fauna was a rather labile component of the community of soil organisms in a pine forest soil.  相似文献   

7.
ABSTRACT

Climate change brings increasing attention to winter sowing of traditionally spring sown crops. Crop stand height, soil coverage, grain yield and yield components of six winter pea varieties and one spring pea variety were compared in eastern Austrian growing conditions in 2014 and 2015. Crop stands of winter pea were taller up to the end of May before they declined and crop stands of spring pea were taller from early June on. Winter pea covered the soil at least partly over winter and showed faster soil coverage in spring. At the end of May, just some weeks before harvest, spring pea attained equal soil coverage. Grain yield of winter pea was almost double that of spring pea due to higher pod density whereas spring pea produced more grains pod?1 than four out of six winter pea varieties and a higher thousand grain weight than all winter pea varieties. Consequently, grain density was higher for winter pea while the single pod yield was higher for spring pea. Growing winter peas in Central Europe might be a good strategy for increasing grain legume productivity and thereby European feed protein production.  相似文献   

8.
Sheep faeces enclosed in terylene mesh bags were placed in two contrasting microenvironments within a semi-arid rangeland dominated by Atriplex vesicaria Hew ex Benth., and one within an irrigated pasture. Groups of bags were retrieved and their contents analysed at 3-monthly intervals over a total of 20 months. Sheep faeces from semi-arid rangeland and irrigated pastures were used at each site. Irrespective of source, microenvironment, and season, the amount of faecal material remaining on the semi-arid rangeland sites decreased consistently by approximately 2% month?1. The rate of disappearance for faeces placed under irrigated pastures was 2.5% month?1.The retention of N in the faeces was proportionately greater than the retention of faecal material. The presence of faecal pellets increased the mineral and total N of the soil beneath bags in the betweenbush microenvironment, but not the mineral-N content beneath bags placed under bushes of A. vesicaria in semi-arid rangeland.After 20 months, the proportion of total and inorganic P remaining in the faecal material placed under bushes was 50 and 40% respectively, and in faecal material placed between bushes the corresponding figures were 30 and 20% More Truog “available” P accumulated in soil under bags placed between bushes than under bags placed below bushes. The amount of total and inorganic P remaining after 20 months in the faecal pellets on the irrigated pastures was 20 and 10% respectively. The small loss of organic P from the faecal material indicated an absence of mineralization.  相似文献   

9.
ABSTRACT

A pot experiment was carried out to investigate the tolerance of cucumber plants (Cucumis sativus L.) to root-knot nematode after inoculation with Glomus intraradices. Plants were inoculated with G. intraradices for four weeks and then transplanted in soil treated with Meloidogyne incognita for a further five weeks. The low phosphorus (P) loamy soil was amended with 50 and 100 mg P kg?1 soil. Mycorrhizal colonization increased shoot dry weight, shoot length, leaf numbers, root fresh weight and shoot P concentration, whereas nematode penetration and reproduction were significantly decreased. Similarly, P fertilization usually increased shoot growth and significantly decreased the number of galls and the number of egg masses and eggs per g root. Our results indicate that inoculation with G. intraradices and P fertilizer confer tolerance of cucumber plants to M. incognita by enhancing plant growth and by suppressing reproduction and/or galling of nematodes during the early stages of plant growth.  相似文献   

10.
The effect of soil fauna-mediated leaf litter (faecal pellets) versus mechanically fragmented (finely ground) leaf litter on biomass production of rice (Oryza sativa, var. Primavera) was assessed in pot tests. Rice seedlings were either grown in soil samples amended with faecal pellets of diplopods and isopods fed on leaf litter of a legume cover crop (Pueraria phaseoloides (Roxb.) Benth) and a peach palm (Bactris gasipaes) or in soil amended with finely ground leaf litter. The addition of faecal pellets caused a significant and dose-related increase in plant biomass compared to pure soil. Ground leaf litter induced a significantly smaller positive effect on plant biomass development with Pueraria litter > Bactris litter > mixed primary forest litter. In contrast, soil microbial biomass development during the 4 weeks plant test was higher in the soil amended with ground litter as compared to soil amended with feacal pellets. The results show a clear positive effect of the soil fauna on soil fertility and indicate differences in the availability of nutrients from the organic substrates to higher plants and soil microorganisms.  相似文献   

11.
Plant‐pathogenic nematodes are a major cause of crop damage worldwide, the current chemical nematicides cause environmental damage, but alternatives such as biological control are less effective, so further understanding of the relationship between nematodes, nematicides, biological control agents and soil and rhizosphere microorganisms is needed. Microbial populations from roots of cabbage and tomato plants infested with the root‐knot nematode Meloidogyne incognita were compared with those from plants where the nematode was controlled by the nematicide aldicarb, or a nematophagous fungus with biological control potential, Pochonia chlamydosporia. The total numbers of culturable bacteria and fungi in rhizosphere soil were similar in all three treatments for both plants, around 100‐fold more than in control soil in which there were no plants. However, there were clear differences in the catabolic diversity, assessed by Biolog EcoPlate? carbon substrate utilization assays, between microbial populations from unplanted soil and the rhizosphere. In cabbage, a poor host for M. incognita, the rhizosphere population from P. chlamydosporia‐treated plants was distinct from the population from untreated and aldicarb‐treated plants. In tomato, a host susceptible to the nematode, the catabolic diversity of populations from aldicarb‐ and P. chlamydosporia‐treated plants was similar and differed from the untreated, nematode‐infested plants. The genetic diversity of the fast‐growing heterotrophic bacteria in the tomato rhizosphere, indicated by PCR fingerprinting with ERIC primers, was very different in the infested roots, whereas the profiles of isolates from both aldicarb‐ and P. chlamydosporia‐treated roots were similar. Evidently, nematodes have a greater impact on the rhizosphere population of a susceptible host, tomato, than a poor one, cabbage, and nematode‐infested roots are colonized by a different subpopulation of soil microbes from that on plants where infection is controlled, illustrating differences in root morphology and physiology.  相似文献   

12.
Abstract

Nine biennial field experiments, 2000–2004, in south Sweden, 55–56°N, with winter wheat following winter oilseed rape, peas, and oats, were used to estimate the impact of a future milder climate on winter wheat production in central Sweden, 58–60°N. The trials included studies 1) on losses during winter of soil mineral nitrogen (Nmin, 0–90 cm soil), accumulated after the preceding crops in late autumn, 2) on soil N mineralisation (Nnet) during the growing season of the wheat (early spring to ripeness) and 3) on grain yield and optimum N fertilisation (Opt-N rate) of the wheat. Average Nmin in late autumn following winter oilseed rape, peas, and oats was 68, 64, and 45 kg ha?1, respectively, but decreased until early spring. Increased future losses of Nmin during the winter in central Sweden due to no or very short periods with soil frost should enhance the demand for fertiliser N and reduce the better residual N effect of winter oilseed rape and peas, compared with oats. Their better N effect will then mainly depend on larger Nnet (from March to maturity during the winter wheat year). Owing to more plant-available soil N (mainly as Nnet) Opt-N rates were lower after oilseed rape and peas than after oats despite increased wheat yields (700 kg ha?1) at optimum N fertilisation. In addition to these break crop effects, a milder climate should increase winter wheat yields in central Sweden by 2000–3000 kg ha?1 and require about 30–45 kg ha?1 more fertiliser N at optimum N fertilisation than the present yield levels. Increased losses and higher N fertilisation to the subsequent winter wheat in future indicates a need for an estimation of the residual N effect at the individual sites, rather than using mean values as at present, to increase N efficiency.  相似文献   

13.
Ten leguminous trees, four exotic species (Australian Acacia) and six indigenous species (three Sahelian Acacia spp. and three Sesbania spp.), were grown for 4 months in a natural Sahelian soil inoculated with or without the endomycorrhizal fungus, Glomus intraradices. In control trials, the determinant factor structuring the soil nematode fauna was the plant species, related plants having a similar influence on the nematode community in the soil. Soil nematode abundance increased from exotic acacias (3.3 g-1 dry soil) to native acacias (11.5 g-1 dry soil) and Sesbania species (17.6 g-1 dry soil). Plant feeding nematodes (mainly Scutellonema and Tylenchorhynchus) were significantly less abundant under exotic acacias (1.4 g-1 dry soil) than under native acacias (7.2 g-1 dry soil) or Sesbania species (7.3 g-1 dry soil). Bacterial feeding nematode density increased from exotic acacias (1.2 g-1 dry soil) to native acacias (3.0 g-1 dry soil) and Sesbania species (7.7 g-1 dry soil) as total densities. However, the differences in the structure of the nematode communities between plant groups were suppressed in the presence of the mycorrhizal fungus. In fact, no difference in nematode densities remained between plant groups when G. intraradices developed in several dominant taxa belonging to different trophic groups, particularly: Tylenchorhynchus, Apelenchina, Cephalobus and Dorylaimoidea. This study clearly indicated that inoculation with the arbuscular mycorrhizal fungus G. intraradices diminished the plant-specific effect on the structure of the soil nematode community.  相似文献   

14.
Abstract: Soil quality indicators and nematode abundance were characterized in a loessial soil under long‐term conservation tillage to evaluate the effects of no‐till, double‐disk, chisel, and moldboard plow treatments. Indicators included soil electrical conductivity (EC), soil texture, soil organic matter (SOM), and total particulate organic matter (tPOM). Nematode abundance was positively correlated with EC, silt content, and total POM and negatively correlated with clay content. Clay content was the main source of variation among soil quality indicators and was negatively correlated with nematode abundance and most indicators. The gain in SOM in the no‐till system amounted to 10887 kg over the 24 years or 454 kg ha?1 year?1, about half of this difference (45%) resulting from soil erosion in plowed soils. The balance of gain in SOM with no till (249 kg ha?1 year?1) was due to SOM sequestration with no till. No‐till management reduced soil erosion, increased SOM, and enhanced soil physical characteristics.  相似文献   

15.
Soil nematode communities were investigated at eight semi-natural steppe grasslands in the National Park Seewinkel, eastern Austria. Four sites were moderately grazed by horses, cattle and donkeys, four were ungrazed. Nematodes were sampled on four occasions from mineral soil, and their total abundance, diversity of genera, trophic structure and functional guilds were determined. Altogether 58 nematode genera inhabited the grasslands, with Acrobeloides, Anaplectus, Heterocephalobus, Prismatolaimus, Aphelenchoides, Aphelenchus, Tylenchus and Pratylenchus dominating. Mean total abundance at sites was 185–590 individuals per 100 g soil. Diversity indices did not separate communities well, but cluster analysis showed distinct site effects on nematode generic structure. Within feeding groups the relative proportion of bacterial-feeding nematodes was the highest, followed by the fungal- and plant-feeding group. Omnivores and predators occurred in low abundance. The maturity indices and plant parasite indices were characteristic for temperate grasslands, but the abundance of early colonizers (c-p 1 nematodes) was low. A high density of fungal-feeding c-p 2 families (Aphelenchoidae, Aphelenchoididae) resulted in remarkably high channel index values, suggesting that decomposition pathways are driven by fungi. Nematode community indices of all sites pointed towards a structured, non-enriched soil food web. At most sites, grazing showed little or no effect on nematode community parameters, but total abundance was higher at ungrazed areas. Significant differences in the percentage of omnivorous nematodes, the sum of the maturity index, the number of genera and Simpson's index of diversity were found at one long-term grazed pasture, and this site was also separated by multi-dimensional scaling (MDS).  相似文献   

16.
Abstract

Application of nitrogen (N) in early spring is often recommended for low shoot density winter wheat in northern temperate areas such as Sweden. Regional N-strategy field trials in such areas generally show no relationship between early N and grain yield but the effects on shoot numbers and other yield components are seldom investigated. This study quantified the effect of three N fertilization strategies on the number of tillers at GS30-31 and the grain yield of winter wheat with low shoot density in early spring, in order to evaluate the importance of early N application. The investigations were carried out from 1999–2002 in four annual field experiments on a clay soil in south-west Sweden using winter wheat (cvs. Kosack and Tarso) with shoot densities in early spring ranging from 360–850 shoots m?2. A positive relationship between time of first N application as number of days before GS30 and increase in number of shoots from GS20-21 to GS30-31 was observed. The relationship was strongest in experiments with the lowest shoot density in early spring (360–560 shoots m?2) and the additional increase with each day of earlier availability of N before GS30 was 11 shoots m?2. In wheat with this low shoot density in early spring, N was needed before GS30 to avoid yield reductions. Whether N was applied and available 24 or 13 days before GS30 did not affect yield, despite significantly more shoots being present at GS30-31 with earlier N application.  相似文献   

17.
The family Tylenchidae is a large group of soil nematodes but their feeding habits are not fully known. We studied the fungal-feeding abilities of nematodes in the genus Filenchus. We measured population growth rates (PGRs) of six nematode isolates, representing three Filenchus species, when feeding on seven fungal species on two types of culture media. On Potato Dextrose Agar (PDA) Filenchus misellus, Filenchus discrepans and an unidentified Filenchus sp. generally showed moderate to large PGRs on saprophytic fungi (Rhizoctonia solani, Chaetomium globosum, Coprinus cinereus, Flammulina velutipes) and low PGRs on plant-pathogenic fungi (Fusarium oxysporum, Pythium ultimum). In soil medium amended with chopped soybean plant material or wheat bran, the status of most of the fungi as food for the nematodes was similar to that on PDA, although PGRs tended to be lower in the soil medium. However, C. globosum, a good food on PDA, only supported low PGR in soil for each of the three nematodes. The PGRs of F. misellus on C. globosum in soil were still low even when types and amounts of organic matter amendments were varied. A nematophagous fungus, Pleurotus ostreatus (oyster mushroom), was determined to be a food for Filenchus on PDA or in soil, based on PGR measurements corrected for extraction efficiency. To determine whether fungal species and culture media affected nematode extraction efficiencies and, consequently, the apparent PGRs, we compared efficiencies between R. solani, C. globosum and C. cinereus, and between PDA and soil. The relatively low extraction efficiencies across fungal species in soil seemed responsible for the lower nematode PGRs in soil than on PDA. On PDA generally, fungal species did not affect the assessment. In soil, effects of fungal species on extraction were significant, but not consistent, across nematode species. Nevertheless, the extraction efficiency differences in soil were considered not to affect assessment of the three fungi as food for the nematodes. The confirmation that three Filenchus species reproduce by feeding on fungi in soil suggests that fungal-feeding is not an unusual habit in the field, in this genus. We believe that in community studies, nematodes in the genus Filenchus should be considered fungal feeders or root and fungal feeders, rather than only plant feeders. Our confirmation of fungal-feeding habits in the genus Filenchus supports the hypotheses that plant-feeding nematodes evolved from those feeding on fungi.  相似文献   

18.
Summary The nematode community in litter and soil was examined for a year in the Chihuahuan desert, before and after supplemental rainfall application. Proportions of nematode-active or anhydrobiotic forms and population densities were determined for 3 treatments: control (natural rainfall), a single, large (25-mm) monthly irrigation pulse, and 4 smaller (6-mm) irrigations spaced at weekly intervals. In litter the greatest nematode abundance was in the 6 mm week–1 treatment (48 nematodes 20 g–1 litter). Bacteriovores and fungivores accounted for approximately 95% of the numbers and biomass in all treatments. In soil, water amendments had no significant effect (P < 0.05) on annual mean densities of total nematodes, fungivores, bacterivores, or omnivore predators. Phytophage densities were greater on both irrigation treatments, with highest densities (9268 m–2) in the 6 mm week–1 soils, which was 5.9% of the total soil nematode density. Total densities of individual trophic groups were not significantly different before or after rainfall. Soil nematode densities fluctuated independently with trophic group, month, and season. Bacterial feeders and omnivore predators were the largest contributor to total soil nematode density and biomass. Prior to irrigation, there were no differences in the percentage of anhydrobiotes on the three treatments. Anhydrobiotes decreased after irrigation in all treatments, and were significantly lower in soils of the larger, monthly irrigation. Nematodes were inactive (anhydrobiotic) and decoupled from decomposition processes when soil water matric potentials reached –0.4 MPa.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

19.
Abstract

The peanut requires a readily available source of Ca in the fruiting zone during fruit development. Field studies were conducted for three years on two soils to compare rates of fine and coarse gypsum material applied to peanuts shortly after planting and at early flowering in supplying Ca to the peanut fruit and its effect on yields. The fine and coarse gypsum was applied at three rates and at two different times in randomized complete block experiments. At approximately every four weeks, composite soil samples were collected at 0–5 and 5–10 cm depths and extracted with (0.05N HC1 + 0.025N H2 SO4) extractant. On the Lakeland soil fine gypsum applied at early flowering gave higher Ca levels at the 0–10 cm depth than coarse material applied shortly after planting or at early flowering. Yield data showed that at low rates coarse gypsum applied at planting was superior to early flowering application. In most instances on the Greenville soil, coarse gypsum applied at planting produced higher levels of Ca than fine or coarse gypsum applied at early flowering. There was no yield response to gypsum application.  相似文献   

20.
ABSTRACT

In humid climates, the risk of nitrate leaching and topsoil loss due to erosion is high on bare soil in the fall after potato (Solanum tuberosum L.) harvest and in the spring with snowmelt. This 2-year study (2016–2017) compared three winter cover crops. Two of these are used as cash crops (winter rye [Secale cereale L.], winter wheat [Triticum aestivum L.]), and one is a winter-killed cover crop (spring barley, Hordeum vulgare L.). They were all seeded on two dates after potato harvest (end of September or first week of October) in Prince Edward Island, Canada. The measured parameters included soil nitrate measured at different times in fall and in the following spring and summer, splash detachment, C and N contents in splashed sediments, cereal straw dry matter yield, and cereal grain yield. In both years, all winter cover crops decreased splash detachment compared with the no winter cover control, with winter rye having the greatest reduction. A similar trend was observed for C and N contents in splashed sediments. There was a trend toward lower soil nitrate following winter cover crops in comparison with bare soil, but the trend was not consistent across trials and sampling dates. Winter wheat grain yield ranged from 4.5 to 7.6 Mg ha?1, while that associated with winter rye ranged from 3.2 to 5.1 Mg ha?1. Therefore, winter cereal seeded after potato harvest can constitute a good source of revenue while mitigating the risk of soil erosion and reducing nitrate leaching in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号