首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of experiments was carried out in 2012–2014 in Pailin province, Cambodia, to determine the potential and agronomic requirements for a dry season sunflower crop. The research showed that the six high-oleic sunflower hybrids evaluated were similar for phenological development and yield but two varieties had <50% emergence and poor hybrid seed quality was seen as a constraint to planting under rainfed conditions. Sunflower receiving a basal application of 20:20:15 (N:P2O5:K2O) at 200 kg ha?1 produced achene yield of 2423 kg?1, while side-dressing with urea had no effect on yield. Application of s-metolachlor post-sowing pre-emergence was the most effective weed control treatment and significantly increased sunflower achene yield. Post-emergence weed control was not adequate to prevent yield loss from weed competition. The study showed that sunflower can be grown successfully as a dry season crop in North-West Cambodia when planted no-tillage on residual soil water remaining after maize harvest in October and November. The critical requirements for success are related to preservation and effective use of residual soil water and include minimal soil disturbance, adequate application of fertiliser at sowing, and pre-emergence control of weeds, especially grasses.  相似文献   

2.
The present experiment was conducted to investigate the effect of foliar spray of mineral nutrients on plant growth, seed yield, and quality attributes in onion cv. Pusa Riddhi at SPU, IARI, New Delhi during rabi 2013–14 and 2014–15. The experiment consisted of 16 treatments comprised of boron, zinc, calcium, and magnesium laid out in a completely randomized block design with two replications. The study revealed that the foliar zinc spray (625 g ha?1) produced higher seed scape height (105.35 cm) along with lower disease incidence (8.50%) than the other treatments. Whereas, higher number of seed scapes plant?1 (11.20) and productive seed scapes plant?1 (8.58) were observed in T10 (500 g ha?1) and combined spray of B + Zn + Ca (T14), respectively. The flowering traits, viz., umbellates umbel?1 (642.45), productive umbellates umbel?1 (579.35), and umbel diameter (7.38cm) were significantly (p ≤ 0.05) higher in T15 than other treatments. Similarly, higher seed yield and seed quality attributes were also observed in combined application of all minerals treatment (T15).  相似文献   

3.
Twenty nine germplasm lines of Chenopodium quinoa and two of Chenopodium berlandieri subsp. nuttalliae were evaluated for 12 morphological and 7 quality traits for two test seasons. The 19 traits were analyzed for cluster and principal component analysis. The first four PCs contributed 78.70 % of the variability among the germplasm lines. The first PC accounted for 39.5% of the variation and had inflorescence/plant, plant height and stem diameter as the traits with largest coefficients, all with positive sign. The characters with greatest positive weight on PC2 were days to maturity (0.309), inflorescence length (0.260) and branches/plant. All the germplasm lines were grouped into six clusters based on average linkage method. Cluster III had high values for seed yield and most of the quality traits but showed a small seed size. The dendrogram separated the two lines of C. berlandieri subsp. nuttalliae from the quinoa lines.  相似文献   

4.
在甘肃省河西地区内陆灌区连作8a的制种玉米田上,采用田间试验方法,研究了改土型专用肥与制种玉米田物理性质和玉米经济性状及效益间的关系。结果表明,影响玉米产量的因素依次是:CO(NH2)2>(NH4)2HPO4>PVA和ZnSO4.7H2O;因素间最佳组合是:PVA 30kg/hm2,CO(NH2)2 736kg/hm2,(NH4)2HPO4420kg/hm2,ZnSO4.7H2O 52kg/hm2。随着改土型专用肥施用量的增加,玉米田总孔隙度、毛管孔隙度、非毛管孔隙度、团聚体在增大,而容重在降低。改土型专用肥施用量增加后,玉米植物学性状、经济性状、产量在增加,但单位(1kg)改土型专用肥的增产量则随着改土型专用肥施肥量的增加而递减,出现报酬递减律。随着改土型专用肥施用量的增加,玉米边际产量、边际利润在递减,改土型专用肥施用量在1 350kg/hm2的基础上,再增加337.50kg/hm2,收益出现负值。经济效益最佳施肥量为1 350.01kg/hm2,玉米理论产量为6 700.99kg/hm2。  相似文献   

5.
ABSTRACT

In this study, effects of foliar boron treatments on yield and yield components of fenugreek plants were assessed with the aid of principal component analysis (PCA) analysis. Experiments were conducted over the experimental fields of Erciyes University Agricultural Research and Implementation Center during the summer growing seasons of the years 2017 and 2018. Gürarslan fenugreek variety was used as the plant material of the experiments. Four different foliar boron (H3BO3) doses (control, 100, 200, 400, and 800 mg lt?1) were applied to fenugreek plants. Plant height, number of branches per plant, number of pods per plant, number of seeds per pod, pod length, the first pod height, thousand-seed weight, biological yield, seed yield, and harvest index were measured. Variance analysis revealed that only the seed yield of 2017 was significant (p < .05) and the other parameters were not found to be significant (p > .05). PCA analysis was performed to classify and characterize boron doses based on yield and yield components of fenugreek plants. PC1 and PC2 explained about 82% in total variation in 2017 and about 83% in 2018. In both years of the experiments, the greatest biological and seed yields were obtained from 800 mg lt?1 boron treatments. Therefore, 800 mg B lt?1 was recommended to get high seed yield from fenugreek plants.  相似文献   

6.
ABSTRACT

Understanding the genetic control of Fusarium wilt resistance is crucial in pigeonpea breeding programme. This study aimed to study the gene action controlling Fusarium wilt resistance, yield and yield components and select promising crosses possessing resistance to Fusarium wilt along with important agronomic yield traits. Six lines were crossed with four testers in a line x tester mating design. For Fusarium wilt reaction, F1’s progenies were evaluated in a sick field having inoculums of Fusarium wilt at one location for two seasons and in a pot as well. The F1’s and parents were evaluated for yield and yield components at two locations for two seasons using a row-column design with two replications. Results indicated that parents and crosses had highly significantly difference for yield and important agronomic traits. General combining ability (GCA) effects of lines and testers were also significant. Specific combining ability (SCA) was also significant for some crosses. Non-additive gene action was more important than additive gene action except for days to maturity and plant height. Crosses ICEAP 00932?×?TZA 2439 and ICEAP 00932?×?TZA 197 displayed small effects of SCA for Fusarium wilt and large SCA for most of yield traits and should be used for integrated disease management.  相似文献   

7.
Analysis of uppermost fully expanded leaves is useful to detect a deficiency of mineral nutrients such as phosphorus (P) and potassium (K) in soybean. Although, the leaf P or K status aids in fertilizer management, information on nutrient seasonal relationships with growth and yield traits at maturity are limited. To investigate this, soybean was grown under varying P or K nutrition under ambient and elevated CO2 concentrations. Results show significant relationships of the relative total biomass and yield‐related traits with the foliar P and K concentrations measured several times in the season across CO2 levels. However, the relationships established earlier in the season showed that the growth period between 25 and 37 d after planting (DAP), representing the beginning of flowering and pod, respectively, is the best for leaf sampling to determine the foliar P or K status. The leaf P and K status as well as the critical leaf P (CLPC) and K (CLKC) concentrations for traits such as seed yield peaked around 30 DAP (R2 stage) and tended to decline thereafter with the plant age. The CLPC and CLKC of seed yield indicate that the leaf P and K concentration of at least 2.74 mg g?1 and 19.06 mg g?1, respectively, in the uppermost fully expanded leaves are needed between 25 and 37 DAP for near‐optimum soybean yield. Moreover, the greatest impact of P and K deficiency occurred for the traits that contribute the most to the soybean yield (e.g., relative total biomass, seed yield, pod and seed numbers), while traits such as seed number per pod, seed size, and shelling percentages were the least affected and showed smaller leaf critical concentration. The CLPC or CLKC for biomass and seed yield was greater under elevated CO2 24–25 DAP but varied thereafter. These results are useful to researchers and farmers to understand the dynamics of the relationship of pre‐harvest leaf P and K status with soybean productivity at maturity, and in the determination of suitable growth stage to collect leaf samples.  相似文献   

8.
Black cumin (Nigella sativa L.) is one of the important medicinal plants that used in food and pharmaceutical industries. In the present study, 32 Iran endemic black cumin genotypes were evaluated through randomized complete block design with three replications in 2016 and 2017 growing seasons to determine the extent of genetic diversity and character associations for agro-morphological and phytochemical traits. Results showed the significant differences between genotypes for all traits studied. Clustering analysis using agro-morphological and phytochemical traits grouped genotypes into the two distinct groups. The values of percentage of essential oil and fatty oil content varied from 0.65 to 0.1.36% and 25.30% to 35.02% between genotypes, respectively. The highest seed yield and fatty oil yield obtained for Arak genotype. GC and GC/MS analyses of essential oil and fatty oil compositions of the Arak genotype revealed that p-cymene and linoleic acid were main components, respectively. Stepwise regression analysis revealed that shoot dry mass, days to ripening and seed length were the most important traits associated with seed yield, fatty oil yield and essential oil yield. Hence, these traits can be considered as important indicators for early selection for seed yield and quality in black cumin breeding programs.  相似文献   

9.
Ninety-five common bean (Phaseolus vulgaris L.) landraces from Spain were evaluated in three different environments in northern Spain for their agronomic performance and seed quality. Significant differences among landraces were found for 14 quantitative traits related to phenology, yield and its components, and seed quality traits. Environmental effects were significant for all traits evaluated except for seeds pod?1, seed width/thickness, seed weight, and seed water absorption. Landrace by environment interactions were significant for all traits except for seeds pod?1 and seed water absorption. Selection of new breeding lines for agronomic performance and seed quality within landraces should be reliable because many of them are mixture of lines. Some heirloom varieties belonging to the types faba, caparrón,riñón,ganxet and tolosana had the best performances regarding to seed quality and yield. Principal component analysis revealed differences among environments affecting the performance of the bean landraces. Variation in the landraces seems to be organized in a different way in each one of the test environments, therefore, low plasticity and specific adaptation of Spanish bean landraces to different environments is derived from this study. Some landraces, especially those large and white seeded should be an useful resource for sustainable farming systems in different biogeographical areas and a worthy germplasm for the genetic improvement of agronomic value and seed quality.  相似文献   

10.
The application of manure compost is an effective way to increase soybean [Glycine max (L.) Merr.] yield and nitrogen (N) fertility in drained paddy fields. We investigated changes in soil N mineralization during soybean cultivation using reaction kinetics analysis to determine the contribution of increased N mineralization after manure compost application (at a rate of 0 to 6?kg?m?2) on N accumulation and seed yield of soybean under drained paddy field conditions. The seed yield and N accumulation decreased markedly in the second and third year of the experiment, but soil N mineralization increased in both years. No decrease in soil N mineralization occurred even after two soybean crops. Soil N availability was not the main cause of decreased soybean yield in the second and third years. The differences in plant aboveground N content between plots with and without manure compost was similar to the increase in N mineralization caused by manure compost application in the second and third years. The application of 6?kg?m?2 of manure compost increased the amount of ureide-N and nitrate-N in soybean in the third year. Our results suggest that manure compost application increases soil N mineralization and soybean N2 fixation, resulting in increased N accumulation and seed yield. However, the soybean yield remained less than 300?g?m?2 in the second and third years (i.e., below the yield in the first year) at all levels of manure compost application due to the remarkable decrease of N accumulation in the second and the third crops.  相似文献   

11.
Field experiments were conducted to evaluate the effects of zinc (Zn) fertilization on yield potentiality and quality of promising wheat varieties during winter seasons of 2013–14 and 2014–15 at the research farm of the Indian Agricultural Research Institute, New Delhi. Among genotypes, HD 2967 genotype proved as best in realizing the highest grain yield (4.89 Mg ha?1), net returns and benefit–cost ratio besides increased protein (13.4%) and wet gluten (29.4%) content in grain. Highest grain Zn concentration and recovery efficiency (RE) recorded in HD 2851 and HD 2687, respectively. HD 2932 registered lowest grain hardiness index (GHI) followed by PBW 343, indicating their better bread-making quality. With respect to Zn fertilization, application of 1.25 kg Zn Zn–ethylene diamine tetra acetic acid (Zn–EDTA) + 0.5% foliar spray at maximum tillering and booting stages resulted in the highest yields, grain Zn concentration and RE followed by 2.5 kg Zn (ZnSO4·7H2O) + 0.5% foliar spray at both stages. These treatments are also superior most with respect to grain quality parameters such as protein, wet gluten and starch content. From profitability viewpoint, 2.5 kg Zn (ZnSO4·7H2O) + 0.5% two foliar sprays were most remunerative with maximum net returns and benefit–cost ratio.  相似文献   

12.
Abstract

Polyhalite (PH), a naturally occurring multinutrient fertilizer containing potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), has improved tomato (Solanum lycopersicum L.) production in Brazil but a specific response by tomato to the S in PH is not confirmed. We compared four S sources – PH, sulfate of potash (SOP), sulfate of potash magnesia (SOPM), and single super phosphate (SSP) – applied at a target application rate of 40?kg?S?ha?1 to fertilizers with no S (muriate of potash, MOP), and no K or S at commercial application rates in three commercial fields in Brazil with nitrogen (N), phosphorus (P), and K applied at recommended rates of 355, 500, and 200–300?kg?ha?1, respectively. Consistent across locations, PH increased total yields over the control, MOP, and SSP, with SOP and SOPM higher than the control but not MOP or SSP. Only PH increased marketable yields compared to the control. Yields increased linearly with fruit numbers per plant which were higher for PH than the control or MOP, indicating higher fruit set in PH contributed to yield differences. While fertilizers increased leaf K and S concentrations and soil test K and SO4–S, yield differences did not appear to be related solely to either K or S fertilization, nor to Mg fertilizers to which there was no response. Leaf and fruit Ca concentrations were higher in PH than the control and MOP at some locations suggesting Ca improved fruit set in PH. Results suggest tomato likely responded to the multinutrient content or solubility pattern of PH.  相似文献   

13.
A field experiment has been conducted to determine the effects of different irrigation water and AMF (Arbuscular Mycorrhizal Fungi) biofertilizer, photosynthesis activator and traditional fertilizer dry bean (Phaseolus vulgaris L.) on yield and growth parameters in Nevsehir Province of Turkey in 2015. The experiment has been carried out using three replications in a split plot design with three different irrigation types as main plots and AMF biofertilizer (ERS), photosynthesis activator (Multigreen-Mg), traditional fertilization (TF-Control), ERS + Mg, ERS + TF and TF + Mg applied as subplots. The number of pods per plant, the length of pods, the number of grains per pod, the weight of grains per plant, the yield of grains, 1000 seed weight, the number of grains per plant, protein yield, arbuscular mycorrhizal fungi rate have been evaluated as yield and growth criteria in the study. In the experiment, as well as the treatment x irrigation interaction, the plant height, pod number per plant, pod lenght, grain number per pod, grain weight per plant, grain yield, 1000 seed weight, grain number per plant, protein rate/grain, protein yield, root weight and AMF colonization parameters, were the other studied properties that were found to be significant. The results obtained were 877.6 mm for I100 irrigation treatment, 512.2 mm for I50 irrigation treatment and 40.19 mm water for I30 irrigation treatment. Regarding the growth parameters of dry bean, the highest PH was in ERS + Mg (67.66 cm), the lowest PH was in ERS (54.33 cm); In I50, the highest Plant Height (PH) was in ERS + Mg (65.66 cm), the lowest PH was in TF-Control (53.00 cm); and in I30, the highest PH was in TF-Control (50.66 cm), and the lowest PH was again in ERS + Mg (44.33 cm). For protein yield (PY) value, ERS + Mg, ERS + TF, TF + Mg have been placed in the same group, in I100 and I50 irrigation treatment. The highest value was ERS + TF (34.90 kg da?1) in I100, The lowest value was TF-control (19.90 kg da?1) in I30 irrigation treatment. In terms of mycorrhiza colonization ratio, ERS has been ranked first in all irrigation treatments, while the highest mycorrhiza colonization has been observed in I30 irrigation treatment (26.30%). ERS was followed by ERS + Mg (23.33%). As expected, the lowest mycorrhiza colonization ratio in all irrigation treatments have been observed in TF-control treatment, while the highest mycorrhiza colonization ratio has been respectively observed in I30 and I50 irrigation topics. The highest root weight (RW) in I100 irrigation treatment was observed in ERS (15.06 g plant?1) and it was observed in ERS (19.05 g plant?1; 26.30 g plant?1) in I50 and I30 irrigation treatments. The lowest RW in all irrigation treatments has been observed in TF + Mg (4.43 g plant?1, 6.40 g plant?1, 10.26 g plant?1), respectively.  相似文献   

14.
Due to the high levels of crude protein in the achene, sunflower (Helianthus annuus L.) is one of the main oilseeds grown worldwide, particularly for the oil and meal production for animal feed. Despite these advantages, there are few studies on nutrient use efficiency under tropical conditions, especially nitrogen (N). The experiment was conducted in greenhouse conditions to evaluate the effects of N sources and rates on sunflower achene yield (AY), yield and physiological components, and nutritional status of sunflower. The five N sources (calcium nitrate (Ca(NO3)2), potassium nitrate (KNO3), ammonium nitrate (NO3NH4), ammonium sulfate ((NH4)2SO4), and urea (CO(NH2)2)), and four N rates (0, 50, 100, and 200 mg kg?1) were studied. AY was reduced with the ammonia sources application from the 100 mg N kg?1. Plant height and capitulum dry weight (CDW), capitulum diameter, shoot dry weight (SDW), and chlorophyll content were significantly related with N sources and rates. Except for potassium (K), the N rates changed the N, P, Ca, Mg, and S concentration in the leaves and N concentration in achene. In the comparison of sources, on the average of N rates, urea application was more effective than the other N fertilizers in the AY.  相似文献   

15.
In order to assess the effectiveness of foliar‐applied potassium (K+, 1.25%) using different salts (KCl, KOH, K2CO3, KNO3, KH2PO4, and K2SO4) in ameliorating the inhibitory effect of salt stress on sunflower plants, a greenhouse experiment was conducted. Sodium chloride (150 mM) was applied through the rooting medium to 18 d–old plants and after 1 week of salt treatment; different K+‐containing salts were applied twice in 1‐week interval as a foliar spray. Salt stress adversely affected the growth, yield components, gas exchange, and water relations, and also caused nutrient imbalance in sunflower plants. However, foliar‐applied different sources of potassium improved shoot and root fresh and shoot dry weights, achene yield, 100‐achene weight, photosynthetic rate, transpiration rate, stomatal conductance, water‐use efficiency, relative water content, and leaf and root K+ concentrations of sunflower plants grown under saline conditions. Under nonsaline conditions, improvement in shoot fresh weight, achene yield, 100‐achene weight, photosynthetic and transpiration rates, and root Na+ concentration was observed due to foliar‐applied different K sources. Of the different salts, K2SO4, KH2PO4, KNO3, and K2CO3 were more effective than KCl and KOH in improving growth and some key physiological processes of sunflower plants.  相似文献   

16.
Boron (B) deficiency hampers cotton (Gossypium hirsutum L.) growth and productivity globally, especially in calcareous soils. The crop is known as a heavy feeder of B; however, its reported plant analysis diagnostic norms for B-deficiency diagnosis vary drastically. In a 2-year field experiment on a B-deficient [hydrochloric acid (HCl)–extractable 0.47 mg B kg?1], calcareous, Typic Haplocambid, we studied the impact of soil-applied B on cotton (cv. CIM-473) growth, productivity, plant tissue B concentration, and seed oil composition. Boron was applied at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kg B ha?1, as borax (Na2B4O7·10H2O), in a randomized complete block design with four replications, along with recommended rates of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Boron use improved crop growth, decreased fruit shedding, and increased boll weight, leading to seed cotton yield increases up to 14.7% (P < 0.05). Improved B nutrition of plants also enhanced seed oil content (P < 0.05) and increased seed protein content (P < 0.05). Fiber quality was not affected. Fertilizer B use was highly cost-effective, with a value–cost ratio of 12.3:1 at 1 kg B ha?1. Fertilizer B requirement for near-maximum (95% of maximum) seed cotton yield was 1.1 kg B ha?1 and HCl-extractable soil B requirement for was 0.52 kg ha?1. Leaf tissue B requirement varied with leaf age as well as with plant age. In 30-day plants (i.e., at squaring), B-deficiency diagnosis critical level was 45.0 mg kg?1 in recently matured leaves and 38.0 mg kg?1 in youngest open leaves; at 60 days old (i.e., at flowering), critical concentration was 55.0 mg kg?1 in mature leaves and 43.0 mg kg?1 in youngest leaves. With advancement in plant age critical B concentration decreased in both leaf tissues; that is, in 90-day-old plants (i.e., at boll formation) it was 43.0 mg kg?1 in mature leaves and 35.0 mg kg?1 in the youngest leaves. As critical concentration range was narrower in youngest leaves (i.e., 35–43 mg kg?1) compared with mature leaves (i.e., 43–55 mg kg?1), B concentration in youngest leaves is considered a better indicator for deficiency diagnosis.  相似文献   

17.
Soybean [Glycine max (L.) Merr.] shoot nitrogen (N) traits are important for seed production and may hold potential for improving seed yield and quality. Field experiments were established to survey shoot N traits in i) plant introductions, ii) a recombinant inbred line (RIL) population, and iii) modern cultivars. A wide range of N concentrations was observed at beginning seed fill for leaves, petioles, and stems and at maturity for stems. Significant genotypic variations in stem N traits were found in modern cultivars and the RIL population. Molecular marker analysis identified multiple loci associated with stem N concentration. Significant relationships between various tissue N traits and seed yield and quality were also observed. These results illustrate the importance of N dynamics in vegetative tissues for soybean yield and seed composition. The observed variation in N traits indicates that selecting for vegetative N traits could potentially increase yield and improve seed quality.  相似文献   

18.
Boron (B) deficiency frequently occurs on soils that are low in organic carbon (C) (<1.0% organic C), pH (soil pHCa <5.0), and clay content (<5% clay). Acid sands with these soil properties are common in south-western Australia (SWA). Moreover, hot calcium chloride (CaCl2) extractable B levels are commonly marginal in the acid sands of SWA. This study examined the effects of soluble and slow release soil-applied B fertilizer and foliar B sprays on crops most likely to respond to B fertilizer on these soils, canola (oil-seed rape, Brassica napus L.) and lupin (Lupinus angustifolius L.).

At 25 sites over three years, canola was grown with (0.34 kg ha-1) or without B applied as borax [sodium tetraborate decahydrate (Na2B4O7·10H2O) 11% B], and this was followed by nine experiments with B rates [0, 0.55, 1.1 kg ha?1, applied as borax or calcium borate (ulexite, NaCaB5O6(OH)6·5(H2O), 13% B] and foliar sprays (0.1% solution of solubor, 23% B) in 2000–2001. A further five sites of B rates and sources experiments were carried out with lupin in 2000–2001. Finally, foliar B sprays (5% B w/v as a phenolic complex) at flowering were tested on seven sites in farmers’ canola crops for seed yield increases. No seed yield increases to soil-applied B were found while foliar B application at flowering increased canola seed yield in only one season across seven locations. By contrast, borax fertilizer drilled with the seed at sowing decreased canola seed yield in nine of 34-farm sites, and decreased lupin yield in two of five trials. Toxicity from drilled boron fertilizer decreased yield could be explained by decreases in plant density (by 22–40%) to values lower than required for optimum seed yield. Seedling emergence was decreased by borax applied at sowing but less so by calcium borate. Foliar B spray application never reduced seed yield due to toxicity effects.

Boron fertilizer drilled with the seed increased the B concentration in plant dry matter at early to mid-flowering. Boron application decreased the oil concentration of grain of canola at four sites. The oil yield of canola was significantly decreased at seven sites.

Notwithstanding the marginal B levels on acid sands of the SWA region, care needs to be taken on use of borax fertilizer as toxicity was induced in canola and lupin; with 0.34 to 1 kg B ha?1(3-10 kg borax ha?1) at sowing depressing seed yield, mostly by decreasing plant density. Rather than making general recommendation for B fertilizer application based on 0.01M CaCl2 soil extractable B, soil and plant analysis should be used to diagnose B deficiency and B fertilizer use limited to calcium borate or foliar borax rather than soil-applied borax on low B sands.  相似文献   

19.
Removal of early fruiting branches with greater potassium doses caused more source and no sink at early stages of growth, leading to improved yield, yield components, and fiber quality traits in Bt cotton. The study used manual alteration of plant architecture (F1, no branch removal; F2, removal of first fruiting branch; F3, removal of first and second fruiting branches; F4, removal of all squares from first fruiting branch; F5, removal of all squares from first and second fruiting branches) and potassium rates (50, 100, and 150 kg ha?1) in a randomized complete block design and was repeated for 2 years (2011 and 2012). Increasing potassium application increased total bolls per plant and cotton yield to the greatest levels in F3 and F5, against lowest level in the control. Ginning out turn, fiber length, seed oil, and seed protein content were influenced by fruiting branch or square removal but the difference was less. Increasing potassium improved seed and fiber quality.  相似文献   

20.
Experiments were conducted in 2009–2010 at the Agricultural and Natural Resources Research Center of Yazd, Iran, to study the effect of nitrogen levels and plant growth-promoting rhizobacteria (PGPR) containing Azotobacter sp. and Azospirillum sp. on seed yield, its components and quality traits of sesame cultivars. Treatments were arranged in a factorial experiment based on randomized complete block design with nitrogen rates (0 (control), 25 and 50 kg N ha?1), cultivars (Darab-14, GL-13 and local) and N-fixing bacteria levels (non-inoculation and inoculation) were applied with three replications. Nitrogen fertilizer significantly increased yield and yield components, but reduced oil content in 2010. Inoculating seeds with PGPR increased yield and yield components of sesame cultivars compared to the control treatment. Seed yield in PGPR inoculation with half a rate of N fertilizer treatment was more than seed yield in the full rate of N fertilizer without a PGPR inoculation treatment. N fertilizer and PGPR application significantly decreased saturated fatty acids (palmitic and stearic acid) while it significantly increased unsaturated fatty acids (oleic and linoleic acid). Oleic acid had a significant negative correlation with linoleic acid (r = ?0.79). The result showed that an application of PGPR could be usefully applied to reduce use of chemical fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号