首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fusarium mycotoxins deoxynivalenol (DON) and 3-acetyl-deoxynivalenol (3-acDON) were determined in grain samples from naturally infected and Fusarium culmorum inoculated plants in field experiments in Norway during 1992–1996. The mean DON content in trials with inoculated plants was 11.8 μg/g in spring oats, 11.3μg/g in winter wheat, 28.9 μg/g in spring wheat and 31.4 μg/g in spring barley. In the natural infection trials the mean DON content was 0.32 μg/g in spring oats, 0.22μg/g in winter wheat, 1.48μg/g in spring wheat and 0.54 μg/g in spring barley. Only small differences in DON content were observed among cultivars, and significant differences were found only in winter wheat in the inoculation trials, and in spring wheat in the natural infection trials. A significant correlation was observed between the 3-acDON and DON contents in the inoculated trials in all grain species, the mean ratio of 3-acDON to DON ranging from 0.011 in wheat to 0.071 in oats.  相似文献   

2.
ABSTRACT

In humid climates, the risk of nitrate leaching and topsoil loss due to erosion is high on bare soil in the fall after potato (Solanum tuberosum L.) harvest and in the spring with snowmelt. This 2-year study (2016–2017) compared three winter cover crops. Two of these are used as cash crops (winter rye [Secale cereale L.], winter wheat [Triticum aestivum L.]), and one is a winter-killed cover crop (spring barley, Hordeum vulgare L.). They were all seeded on two dates after potato harvest (end of September or first week of October) in Prince Edward Island, Canada. The measured parameters included soil nitrate measured at different times in fall and in the following spring and summer, splash detachment, C and N contents in splashed sediments, cereal straw dry matter yield, and cereal grain yield. In both years, all winter cover crops decreased splash detachment compared with the no winter cover control, with winter rye having the greatest reduction. A similar trend was observed for C and N contents in splashed sediments. There was a trend toward lower soil nitrate following winter cover crops in comparison with bare soil, but the trend was not consistent across trials and sampling dates. Winter wheat grain yield ranged from 4.5 to 7.6 Mg ha?1, while that associated with winter rye ranged from 3.2 to 5.1 Mg ha?1. Therefore, winter cereal seeded after potato harvest can constitute a good source of revenue while mitigating the risk of soil erosion and reducing nitrate leaching in some cases.  相似文献   

3.
Cereal rye (Secale cereale L.) is widely used as a winter cover crop to conserve soil residual nitrogen (N) in the mid‐Atlantic region of the United States. Cereal rye, however, has agronomic drawbacks that may make other winter small grain crops more desirable alternatives. Winter wheat (Triticum aestivum L.) is a small grain that could substitute for cereal rye as a cover crop because it would give growers the flexibility of using it as a cover crop or growing it to maturity. There is currently little information on early season N accumulation of winter wheat cultivars, which is critical for the success of a small grain cover crop. To determine the degree of variation in early season N accumulation and early season biomass yield in soft red winter wheat in the mid‐Atlantic region, twenty‐five commercially available cultivars were evaluated at Beltsville, MD in the 1996/1997 and 1997/1998 growing seasons. Acereal rye cultivar ("Wheeler") was included as a cover crop control. Samples of plant tissue were taken at Feekes growth stage 5 and at physiological maturity each year. There were significant differences among cultivars for early season N accumulation and biomass yield. A large group of wheat cultivars had similar early season N accumulation and biomass yield as the cereal rye cover crop control. This suggests that some cultivars of winter wheat may be as effective as cereal rye as a winter cover crop. Early season N accumulation was highly correlated (r=0.90***) with early season biomass yield rather than with plant N content. These results indicate that soft red winter wheat has potential as a dual grain and cover crop and could be considered an alternative to cereal rye as a winter cover crop for conserving residual soil nitrogen in the mid‐Atlantic region of the United States.  相似文献   

4.
《Cereal Chemistry》2017,94(4):677-682
Deoxynivalenol (DON) levels in harvested grain samples are used to evaluate the Fusarium head blight (FHB) resistance of wheat cultivars and breeding lines. Fourier transform near‐infrared (FT‐NIR) calibrations were developed to estimate the DON level and moisture content (MC) of bulk wheat grain samples harvested from FHB screening trials. Grains in a rotating glass petri dish were scanned in the 10,000–4,000 cm−1 (1,000–2,500 nm) spectral range using a Perkin Elmer Spectrum 400 FT‐IR/FT‐NIR spectrometer. The DON calibration predicted the DON levels in test samples with R 2 = 0.62 and root mean square error of prediction (RMSEP) = 8.01 ppm. When 5–25 ppm of DON was used as the cut‐off to classify samples into low‐ and high‐DON groups, 60.8–82.3% of the low‐DON samples were correctly classified, whereas the classification accuracy of the high‐DON group was 82.3–94.0%. The MC calibration predicted the MC in grain samples with R 2 = 0.98 and RMSEP = 0.19%. Therefore, these FT‐NIR calibrations can be used to rapidly prescreen wheat lines to identify low‐DON lines for further evaluation using standard laboratory methods, thereby reducing the time and costs of analyzing samples from FHB screening trials.  相似文献   

5.
Aluminum (Al) negatively interferes with the uptake or transport of different nutrients. The aim of our work was to compare the Al tolerance and micronutrient accumulation: iron (Fe), zinc (Zn) and manganese (Mn), in cereal species (winter wheat, spring wheat, winter rye, oats and barley) contrasting in Fe efficiency. Our previous screening in a calcareous soil showed that oats and barley were more Fe-efficient than spring wheat, winter wheat or winter rye. In Al stress conditions, both oats and barley exhibited more effectiveness in Fe acquisition and translocation from root to shoot in comparison to winter wheat, spring wheat and winter rye. Also, oats and barley responded to Al toxicity by less Al-retarded shoot biomass than other cereal species. A combination of tolerance mechanisms appears to have great importance for Al tolerance including mechanisms underlying Fe efficiency in cereal seedlings.  相似文献   

6.
Abstract

The lime and N requirements for triticale (X Triticosecale Wittmack) have not been established because of the relatively short history of the crop. This study was designed to evaluate the effects of lime and high N rates on triticale, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and rye (Secale cereale L.) on Dickson silt loam (Typic Paleudult) and Decatur silty clay loam (Rhodic Paleudult) in 1974–1976. The soils had pH values of 4.9 and 5.5 with no lime and 5.4 and 5.8, respectively, when limed as recommended. The fertilizer rates were 112, 140, and 170 kg N/ha. Yields and N, P, K, Ca, Mg, Mn, Fe, Al, Zn, Cu, and B were determined in straw and grain. Liming the Dickson soil increased the straw yields of barley at 112 kg N/ha and grain yields of the cultivars generally at the 170 kg N/ha rate. Liming the Decatur soil did not have consistent effects on straw yields but increased the grain yields of the wheat and rye cultivars. Increasing N rate increased the straw yields of wheat on Dickson but decreased the grain yields of barley in the same soil with no lime. Nitrogen fertilization did not have consistent effects on the Decatur soil. The N, P, K, Ca, Mg, and Mn compositions suggested that more differences occured at the species level than at the cultivar level.  相似文献   

7.
Maize (Zea mays) and wheat (Triticum aestivum) collected in the foothills of the Nepal Himalaya Mountains were analyzed for Fusarium species and mycotoxins: fumonisins, nivalenol (NIV), and deoxynivalenol (DON). Predominant species were Gibberella fujikuroi mating population A (F. moniliforme) in maize and F. graminearum in maize and wheat; G. fujikuroi mating population D (F. proliferatum), F. acuminatum, F. avenaceum, F. chlamydosporum, F. equiseti, F. oxysporum, F. semitectum, and F. torulosum were also present. Strains of G. fujikuroi mating population A produced fumonisins, and strains of F. graminearum produced NIV or DON. By immunoassay or high-performance liquid chromatography, fumonisins were >1000 ng/g in 22% of 74 maize samples. By immunoassay or fluorometry, NIV and DON were >1000 ng/g in 16% of maize samples but were not detected in wheat. Fumonisins and DON were not eliminated by traditional fermentation for producing maize beer, but Nepalese rural and urban women were able to detoxify contaminated maize by hand-sorting visibly diseased kernels.  相似文献   

8.
Fusarium head blight, induced primarily by Fusarium graminearum, resulted in widespread damage to the Manitoba barley crops of 1993 and 1994, with contamination by deoxynivalenol (DON) and other 8-keto-trichothecenes. Visible Fusarium mold in samples of 1994 barley had little relationship to DON levels in the kernel as determined by gas chromatography-mass spectrometry (GC-MS). While samples of 1993 and 1994 barley showed a weak correlation between the logarithm of DON level and percentage of kernels infected by Fusarium graminearum (r = 0.79 and 0.71, respectively), the latter method is too lengthy and requires too much training for commercial application. A commercial enzyme immunoassay for DON gave results that correlated well with GC-MS methods (r = 0.95 and 0.89, respectively) in samples of 1993 and 1994 barley and afforded a rapid and convenient method for screening. In barley samples from 1994, DON, 15-acetylDON, 3-acetylDON and 3,15-diacetylDON were detected in the approximate ratio of 47:4:1:1. In view of the higher oral toxicities of 15-acetylDON and 3-acetylDON relative to DON, and the unknown oral toxicity of 3,15-diacetylDON, GC-MS assays might be advisable in samples positive for DON from enzyme immunoassay screening.  相似文献   

9.
Abstract

Winters are typically harsh in the northernmost agricultural areas of Europe, and winter rye (Secale cereale L.) and wheat (Triticum aestivum L.) are the only winter grain crops that can be grown. However, climate change is projected to result in milder winters, which may enable cultivation of winter crops to a greater extent in the future than is possible today. In this study we aimed at identifying main temperature, precipitation events and characteristics that have resulted in past poor overwintering of rye and wheat in their current production areas in Finland. Using long-term (1970–2006), multi-location datasets, we compared our findings with the projected major changes attributable to climate change. Mixed models were used to estimate mutually comparable overwintering damage to all experiments and logistic regression was used to determine whether climatic parameters are related to high levels of overwintering damage. Severity of overwintering damage, and associated yield penalties, fluctuate considerably on a year-to-year basis and no consistent reduction in variability was recorded during the study period. Particularly for wheat, severity of winter damage in any one year was associated negatively with area sown in the following year. There was no evidence of consistent genetic improvements in winter hardiness, but rye was more winter hardy than wheat. Current risks associated with rye production related to low temperatures could be alleviated in the future, although overwintering damage currently enhanced by high autumn precipitation could increase due to climate change. For wheat, fluctuating conditions hampered overwintering, which may be an even harder challenge in future when weather variation is projected to increase and extreme weather events are projected to become more common.  相似文献   

10.
The natural content of ochratoxin A in grain samples of 6 barley, 2 bread wheat and 1 durum wheat cultivars varied from <0.1 to 0.4 ng/g grain. Samples of the analysed cultivars were surface sterilized and kept in humidity chambers at 20°C and water activity (aw) 0.75 or aw 0.85 for 8 days. For both environments, the resulting grain equilibrium water content varied between cultivars of both barley and wheat, attributable to agronomic traits. The samples were then inoculated with Penicillium verrucosum and incubated for up to 23 weeks. With time, all cultivars had increasing ochratoxin A content, with maximum content in different barley cultivars ranging from 34 to 630 ng/g grain for aw 0.75, and 39 to 260 000 ng/g for aw 0.85. Corresponding values for the wheat cultivars were 25 to 2 300 ng/g and 650 to 5 200 ng/g. Significant varietal differences in ochratoxin A accumulation were observed for barley (P < 0.0001), attributable to equilibrium water content, amylose content and natural ochratoxin A, and for wheat (P < 0.0001), attributable to protein content and natural ochratoxin A. Barley ‘SW 1306 95/1203’ and ‘SW 906129 Waxy’, and wheat ‘SW 39103’ accumulated significantly less ochratoxin A than the other cultivars.  相似文献   

11.
Five different methods were compared to elucidate the total activity of the acidic phytate-degrading enzymes present in the seeds of rye, wheat, and barley. Phytate-degrading activity was studied at pH 5.0 by quantifying the liberated phosphate. Rye showed the highest acid phytate-degrading activity among the cereals studied. Using an aqueous extract, only 30-50% of the activity was found (rye, 3443 mU g(-1) of grain; wheat, 1026 mU g(-1) of grain; barley, 1032 mU g(-1) of grain) compared to that found by the direct incubation of the dry-milled cereal grains in a buffered phytate-containing solution (rye, 6752 mU g(-1) of grain; wheat, 2931 mU g(-1) of grain; barley, 2093 mU g(-1) of grain). Extending the extraction time resulted in an increase in extractable phytate-degrading activity by, at maximum, 10-15%. Extraction of phytate-degrading activity is strongly enhanced in the presence of Triton X-100 and the protease inhibitor phenylmethylsulfonyl fluoride (rye, 6536 mU g(-1) of grain; wheat, 2873 mU g(-1) of grain; barley, 2023 mU g(-1) of grain), suggesting at least a partial association with membrane structures and a degradation by proteolytic activity during extraction. In addition, it was shown that determining phytate-degrading activity by quantification of the liberated inorganic phosphate is more robust and precise than determining phytate-degrading activity by quantification of the residual phytate.  相似文献   

12.
Effects of varied irrigation and zinc (Zn) fertilization (0, 7, 14, 21 kg Zn ha‐1 as ZnSO47.H2O) on grain yield and concentration and content of Zn were studied in two bread wheat (Triticum aestivum), two durum wheat (Triticum durum), two barley (Hordeum vulgare), two triticale (xTriticosecale Wittmark), one rye (Secale cereale), and one oat (Avena sativa) cultivars grown in a Zn‐deficient soil (DTPA‐extractable Zn: 0.09 mg kg‐1) under rainfed and irrigated field conditions. Only minor or no yield reduction occurred in rye as a result of Zn deficiency. The highest reduction in plant growth and grain yield due to Zn deficiency was observed in durum wheats, followed by oat, barley, bread wheat and triticale. These decreases in yield due to Zn deficiency became more pronounced under rainfed conditions. Although highly significant differences in grain yield were found between treatments with and without Zn, no significant difference was obtained between the Zn doses applied (7–21 kg ha‐1), indicating that 7 kg Zn ha‐1 would be sufficient to overcome Zn deficiency. Increasing doses of Zn application resulted in significant increases in concentration and content of Zn in shoot and grain. The sensitivity of various cereals to Zn deficiency was different and closely related to Zn content in the shoot but not to Zn amount per unit dry weight. Irrigation was effective in increasing both shoot Zn content and Zn efficiency of cultivars. The results demonstrate the existence of a large genotypic variation in Zn efficiency among and within cereals and suggest that plants become more sensitive to Zn deficiency under rainfed than irrigated conditions.  相似文献   

13.
This report describes a method to estimate the bulk deoxynivalenol (DON) content of wheat grain samples with the single‐kernel DON levels estimated by a single‐kernel near‐infrared (SKNIR) system combined with single‐kernel weights. The described method estimated the bulk DON levels in 90% of 160 grain samples to within 6.7 ppm of DON when compared with the DON content determined with the gas chromatography–mass spectrometry method. The single‐kernel DON analysis showed that the DON content among DON‐containing kernels (DCKs) varied considerably. The analysis of the distribution of DON levels among all kernels and among the DCKs of grain samples is helpful for the in‐depth evaluation of the effect of varieties or fungicides on Fusarium head blight (FHB) reactions. The SKNIR DON analysis and estimation of the single‐kernel DON distribution patterns demonstrated in this study may be helpful for wheat breeders to evaluate the FHB resistance of varieties in relation to their resistance to the spread of the disease and resistance to DON accumulation.  相似文献   

14.
Abstract

Incidence of grass tetany on small grain pastures has been related to forage Mg content and K/Ca + Mg ratio. The objective of this study was to relate P, K, Ca, Mg, and the K/Ca + Mg ratio in winter forage to specie and variety. In one year on unlimed soil with low pH, rye forage tended to be higher in P than oats, barley, or wheat. P content increased the next year on higher pH soil with less specie differences. K differed little with specie, and was higher in November than later harvests. Rye tended to be higher in Ca both years, especially in the early harvest. Percent Mg was lower for wheat the first year on the low pH soil than the other species, and percent Mg increased in all species at all harvests the next year on higher pH soil with wheat having similar Mg levels to the other species. The K/Ca + Mg ratio of wheat was higher than rye, oats, and barley on the low pH soil. Liming reduced this ratio to near 2.2 on all species. Grass tetany has been reported more likely to occur when K/Ca + Mg is over 2.2, and this study suggests rye, followed closely by oats and barley, would maintain lower ratios than wheat under conditions of low Mg availability.  相似文献   

15.
The relationship between seasonal agricultural drought and detrended yields (within a period from 1961 to 2000) of selected crops was assessed in the conditions of the Czech Republic, which are to some extent representative of a wider area of Central Europe. Impact of water stress was analyzed using time series of yields for 8 crops (spring barley, winter wheat, grain maize, potato, winter rape, oats, winter rye and hay from permanent meadows) for 77 districts in the Czech Republic (average district area is 1025 km2). Relative version of Palmer’s Z-index (rZ-index or rZ-i) was used as a tool for quantification of agricultural drought. The monthly values of the rZ-index for each individual district were calculated as the spatial average (only for the grids of arable land). The study showed that severe droughts (e.g., in 1981 and 2000) are linked with significant reduction in yields of the main cereals and majority of other crops through the most drought prone regions. We found a statistically significant correlation (p  0.05) between the sum of the rZ-index for the main growing period of each crop and the yield departures of spring barley within 81% (winter wheat in 57%, maize in 48%, potato in 89%, oats in 79%, winter rye in 52%, rape in 39%, hay in 79%) of the analyzed districts. This study also defined the crop-specific thresholds under which a soil moisture deficit (expressed in terms of rZ-index) leads to severe impact at the district level. This can be expressed as the sum of the monthly rZ-index during the period of high crop sensitivity to drought; for spring barley it is ?5, winter wheat ?5, maize ?9, rape ?12, winter rye ?10, oat ?4, potato ?6 and for hay ?3. The length of the sensitive period is also crop-specific and includes the months that are important for the yield formation. The results show that yields of spring barley (and spring crops in general) are significantly more affected by seasonal water stress than yields of winter crops and hay from permanent meadows. The study proved that a severe drought spell during the sensitive period of vegetative season does have a quantifiable negative effect, even within more humid regions. These results demonstrate that, at least in some areas of the CR (and probably most of Central Europe), drought is one of the key causes of interannual yield variability.  相似文献   

16.
Abstract

Four small grain species, barley, oat, rye, and wheat were harvested at six growth stages to investigate their nutritive quality as a possible replacement for corn silage. Crude protein (CP), in vitro dry matter disappearance (IVDMD), neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin contents were measured on fresh and ensiled samples. The IVDMD, an estimate of forage ruminant digestibility, of all species generally decreased from the vegetative (765–854 g kg‐1) through the milk stage (505–662 g kg‐1) and then remained unchanged or increased slightly through hard dough with the exception of oats which often decreased during later stages of growth. The IVDMD of rye was usually lower than the other species from the milk to hard dough stage. The IVDMD of barley was generally higher than the other species at the soft and hard dough stages. The NDF, ADF, and lignin fractions usually increased from the vegetative to milk stages and remained unchanged or increased slightly through the hard dough stage. The ADF and lignin are negatively associated with forage digestibility while NDF values are negatively related to dry matter intake. The ADF of rye was generally higher than the other species at the milk and soft dough stages. Rye and barley contained more lignin than the other species from the heading through hard dough stage. Crude protein content generally decreased from the vegetative through milk stages and then leveled off or decreased slightly through the hard dough stage. Crude protein of oats was lower than other species at the vegetative stage, while rye generally contained more crude protein than the other species at the vegetative and boot stages. These data in combination with forage yield data reported in an associated paper suggest that small grains can offer a nutritious source of animal feed for farmers in the southeastern United States. Rye tended to stand out among the species at the early stages of growth (vegetative to boot) as a highly digestible green chop or grazing crop that is also high in protein. Barley and wheat stand out as excellent high yielding, nutritious silage choices at the soft dough stage.  相似文献   

17.
Colonization behaviour of two enterobacterial strains on cereals   总被引:4,自引:0,他引:4  
 Two diazotrophic enterobacterial strains, Pantoea agglomerans D5/23 and Klebsiella pneumoniae CC12/12, were observed in sterile and non-sterile hydroponic and soil experiments in order to determine, by means of an immunological detection method (double antibody sandwich enzyme linked immunosorbent assay), their colonization sites, their migration within individuals of different plant species, and their ability to compete with indigenous organisms. To investigate the interaction between bacteria and plants, root and shoot samples were analysed using electron microscopy. Field experiments were performed to determine the growth-promoting abilities of the bacterial strains. In field experiments, inoculation with P. agglomerans led to an increase in the grain yield of different wheat (Triticum aestivum) cultivars. The same strain was also able to colonize the rhizosphere and the phyllosphere of different cereals due to its ability to migrate within the plant. Roots and media were colonized 10–100 times more intensively than shoots, with about 106 cells g–1 root and 104 cells g–1 shoot. We found that P. agglomerans colonized the root and plant-growth medium of wheat to a greater extent than those of rye (Secale cereale) and barley (Hordeum vulgare), whereas the colonization of shoots was higher in rye and barley compared to wheat. Furthermore, while cell numbers of K. pneumoniae in media and roots were 10 times higher than cell numbers of P. agglomerans, only the latter markedly increased root growth. We were able to detect significant differences in colonization numbers between treatments even if the data were not normally or log-normally distributed or the variances were not homogenous. Received: 14 June 1999  相似文献   

18.
 In long-term field experiments on sandy loam and loamy sand soils, the influence of conservation and conventional tillage on soil and rhizosphere microorganisms was studied. Conservation tillage stimulated rhizosphere bacteria on winter wheat, winter barley, winter rye and maize in different soil layers. Particularly the populations of Agrobacterium spp. and Pseudomonas spp. were increased. On the sandy loam, N2 fixation and nodulation of pea plants were significantly increased. No influence of different soil tillage was determined on the colonization of the rhizosphere by mycorrhiza and saprophytic fungi. Stubble residues infected with Gaeumanomyces graminis were infectious for a longer time on the soil surface than after incorporation into the soil. Received: 10 March 1998  相似文献   

19.
Leguminous pre-crops are an important source of green manure in organic crop rotations for improving soil fertility and achieving high yields of cereals. We aimed to study the potential of various leguminous species, other than the traditionally cultivated red clover (Trifolium pratense L.), as green manure pre-crops for subsequent cereals. The use of different legume species enables to exploit advantages of specific legumes in organic cereal production. In order to test the legumes as pre-crops for cereals, we carried out trials located in the temperate climate zone of northeast Europe (58°44′59.41″ N, 26°24′54.02″ E). We sowed the following perennial legumes as pre-crops: red clover, alsike clover (Trifolium hybridum L.) and Washington lupine (Lupinus polyphyllus Lindl.), biennial white sweet clover (Melilotus albus Medik.) and annual Alexandria clover (Trifolium alexandrinum L.), and crimson clover (Trifolium incarnatum L.). Timothy (Phleum pratense L.) was used as a control. The leguminous pre-crops were followed by three spring cereals (barley, oat and spring wheat) and two winter cereals (rye and winter wheat). We tested the first-year after-effect (all cereals) and second-year after-effect (only barley and oat) of pre-crops on the grain yield of cereals. Perennial and biennial legume species produced the highest dry matter yield and contained the highest amount of nutrients, especially nitrogen, compared to annual species. All subsequent cereals produced significant extra yields after each leguminous pre-crop in the following two years, although the effect was smaller in the second year. The most suitable pre-crops for spring cereals were red and alsike clover followed by lupine, whereas the best pre-crops for winter cereals were sweet clover and annual clovers. Our results show the potential of various leguminous pre-crop species as valuable sources of green manure in organic crop rotation.  相似文献   

20.
Abstract

Although ergosterol is considered to be a suitable indicator of mould growth in cereal grains, there are few reference values available for Scandinavian conditions. We have determined the ergosterol levels in Swedish grain of different origins: cleaned food-grade wheat from a commercial mill, feed-grade cereals (oats and barley) with different odours and cereals (winter wheat, “American wheat”, triticale and rye) from various field trials conducted in south-central Sweden in 1990. Specific objectives were to elucidate the relationships between ergosterol levels and numbers of mould colony forming units (CFU) and between ergosterol and grain odour.

Ergosterol levels in the food-grade wheat ranged between 2.4 and 2.8 μg/g DW, and between 3.0 and 5.6 μg/g DW in the field trial cereals, while values in most of the feed grain samples ranged from 8–15 μg/g DW. The levels agree with other published data for European grains.

A positive correlation was found between numbers of colony-forming units and ergosterol concentration. The degree of correlation was higher when numbers of CFU were determined on dichloran-glycerol 18% agar with a low water activity (aw = 0.95) than on malt extract agar (aw = 0.99). There was no agreement between ergosterol levels and grain odour, since even samples described as having a fresh smell had high ergosterol levels. However, the highest level (33 μg/g DW) was found in a sample with a pronounced musty odour, and the lowest (1.1 μg/g DW) in a sample that smelled as if it had been heat damaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号