首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactivity studies involving anthocyanin structures and their equilibrium forms will lead to better understanding of the properties of these antioxidants. Hydrogen-deuterium (H --> D) exchange reactions at various sites of the 3-glucosides of delphinidin (1), petunidin (2), malvidin (3), and the corresponding 3-glucosides of carboxypyranodelphinidin (4), carboxypyranopetunidin (5), carboxypyranomalvidin (6), and the flavonol quercetin 3-O-(6-alpha-rhamnopyranosyl-beta-glucopyranoside)(7) have been examined at room temperature in pure CD 3OD and in CD 3OD acidified with CF 3CO 2D. The H --> D exchange rate constants of H-6 and H-8 of 2 determined from (1)H NMR integration data were found to be independent upon pigment concentration (up to 4 x 10 (-2) M) and trifluoroactic acid concentration (0-15%, v/v), respectively. This suggest that these reactions follow first-order kinetics and unexpectedly to be independent of the acid concentration. H-6 and H-8 of the flavylium cation A-rings of 1- 3, and in the corresponding hydrogens of the hemiketal forms, exchanged with half-lives of approximately 100 h ( 1) and approximately 50 h ( 2 and 3), respectively. The pyranoanthocyanins (4-6) experienced no H --> D exchange for the analogous hydrogens, but H --> D exchange of H-beta (H-4)(t 1/2 approximately 25 h) for these compounds was observed. Only H-8 underwent significant H --> D exchange in 7. It is concluded that a stabilization of the sigma-complexes, assumed to be the intermediates in the reactions, takes place for the common anthocyanins (1-3) contrary to the pyranoanthocyanins (4-6).  相似文献   

2.
Eighteen triterpene saponins (1-18) from Medicago arborea leaves have been isolated and their structures elucidated by spectroscopic, spectrometric (1D and 2D NMR, FAB-MS, ESI-MS/MS), and chemical methods. They have been identified as glycosides of medicagenic, zanhic, and 2beta-hydroxyoleanolic acids, soyasapogenol B, bayogenin, and 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid. Twelve of them, identified as 3-O-beta-D-glucopyranosyl-28-O-[alpha-L-arabinopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid (3), 3-O-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranosyl-(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid (4), 3-O-[alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl(1-->2)-beta-D-glucopyranosyl]-2beta-hydroxyoleanolic acid (5), 3-O-beta-D-glucuronopyranosyl-28-O-[alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]medicagenic acid (6), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]bayogenin (9), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]-2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid (10), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (12), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranoside(1-->3)]-alpha-L-rhamnopyrano-syl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (13), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyrano-syl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (14), 3-O-[alpha-L-arabinopyranosyl-(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofurano-syl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (16), 3-O-[beta-D-glucopyrano-syl(1-->2)-beta-D-glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranosyl(1-->3)]-alpha-L-rhamno-pyranosyl (1-->2)-alpha-L-arabinopyranoside]zanhic acid (17), and 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyrano-side]medicagenic acid (18), are reported as new natural compounds. The presence of the aldehydic group on the sapogenin moiety of saponin 10 is discussed in the framework of a possible elucidation of the biosynthesis of these metabolites.  相似文献   

3.
An analysis of the polar extracts from sweet potato Ipomoea batatas (Convolvulaceae) led to the isolation of seven unknown aminoacyl sugars. On the basis of 1D, 2D NMR, and mass spectrometry data, the structures of the compounds were elucidated as: beta-D-fructofuranosyl-(2 --> 1)-alpha-D-[2-O-valyl]-glucopyranoside (1), beta-D-fructofuranosyl-(2 --> 1)-alpha-D-[2-O-tyrosyl]-glucopyranoside (2), beta-D-fructofuranosyl-(2 --> 1)-alpha-D-[2-O-threonyl]-glucopyranoside (3), beta-D-fructofuranosyl-(2 --> 1)-alpha-D-[2-O-hystidyl]-glucopyranoside (4), 2-beta-D-fructofuranosyl-(2 --> 1)-alpha-D-[2-O-alanyl]-glucopyranoside (5), beta-D-fructofuranosyl-(2 --> 1)-alpha-D-[2-O-tryptophanyl]-glucopyranoside (6), and beta-D-fructofuranosyl-(2 --> 1)-alpha-D-[2-O-glycyl]-glucopyranoside (7).  相似文献   

4.
Six triterpenoid saponins were isolated from the seeds of Chenopodium quinoa (Chenopodiaceae). Their structures were as follows: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); spergulagenic acid 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranoside (2); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (4); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (5); and spergulagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (6). Saponins 5 and 6 are new. The structures were characterized on the basis of hydrolysis and spectral evidence, including IR, UV, optical rotations, 1D- and 2D-NMR (HMQC and HMBC), ESIMS, and FABMS analyses.  相似文献   

5.
New dammarane-type saponins from the galls of Sapindus mukorossi   总被引:2,自引:0,他引:2  
Five new dammarane-type saponins, 3beta,7beta,20(S),22-tetrahydroxydammar-24-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, 3beta,7beta,20(S),22,23-pentahydroxydammar-24-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, 3beta,7beta,20(S),22,25-pentahydroxydammar-23-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, 25-methoxy-3beta,7beta,20(S),22-tetrahydroxydammar-23-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, and 25-methoxy-3beta,7beta,20(R)-trihydroxydammar-23-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, named sapinmusaponins A (1), B (2), C (3), D (4), and E (5), respectively, together with three known phenylpropanoid glycosides (6-8), were isolated from the galls of Sapindus mukorossi. The structures of these saponins were elucidated on the basis of spectroscopic analyses and chemical methods. Preliminary bioassay data revealed that saponins 1 and 3-5 showed moderate cytotoxic activity (ED50 approximately 9-18 microg/mL) against human tumor cell lines (Hepa59T/VGH, NCI, HeLa, and Med) and that 1-5 were inactive in vitro against HIV replication in H9 lymphocytes.  相似文献   

6.
Three new furostanol saponins named capsicoside E (1), capsicoside F (2), and capsicoside G (5) were obtained from the seeds of Capsicum annuum L. var. acuminatum along with known oligoglycosides (3, 4, and 6-10). On the basis of chemical and spectroscopic analyses, the structures of these new furostanol oligoglycosides were elucidated as 26-O-beta-D-glucopyranosyl-22-O-methyl-5alpha-furost-25(27)-en-2alpha,3beta,22xi,26-tetraol-3-O-beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (1), 26-O-beta-D-glucopyranosyl-(25R)-5alpha-furost-20(22)-en-2alpha,3beta,26-triol-3-O-beta-D-glucopyranosyl (1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (2), and 26-O-beta-D-gluco-pyranosyl-(25R)-5alpha-furosta-3beta,22xi,26-triol-3-O-beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-glucopyranosyl(1-->4)-beta-D-galactopyranoside (5). The isolated saponins showed higher antimicrobial activity against yeasts than against common fungi. Data indicated that the antiyeast activity was related to the combination of the oligosaccharide chain (S1, S2, or S3) with an O-methyl group at R(3) and the presence of a hydroxyl group at the C-2 position.  相似文献   

7.
Seven triterpene saponins were isolated from n-butanol fractions of blue cohosh (Caulophyllum thalictroides) roots and rhizomes. Their structures were established by spectral ((1)H NMR, (13)C NMR, 2D-NMR, and APCI-MS) techniques and chemical reactions as hederagenin 3-O-alpha-L-arabinopyranoside (1); caulophyllogenin 3-O-alpha-L-arabinopyranoside (2); hederagenin 3-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranoside (3); 3-O-alpha-L-arabinopyranosyl-hederagenin 28-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside (4); 3-O-alpha-L-arabinopyranosyl- caulophyllogenin 28-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside (5); 3-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranosyl- echinocystic acid 28-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside (6); 3-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-hederagenin 28-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside (7). All seven compounds were identified in this species for the first time.  相似文献   

8.
Eight glycosides and a phenylpropanoid glycerol were isolated from Vitis vinifera cv. Gewurztraminer wine, and their structures were elucidated by MS and NMR spectroscopies. cis-1-(5-Ethenyl-5-methyltetrahydrofuran-2-yl)-1-methylethyl O-beta-D-apiofuranosyl-(1-->6)-O-beta-D-glucopyranoside, (E)-3,6, 9-trihydroxymegastigm-7-ene 9-O-beta-D-glucopyranoside, 2-phenylethyl O-beta-D-apiofuranosyl-(1-->6)-O-beta-D-glucopyranoside, and 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]propane-1,3-diol are reported for the first time as wine components.  相似文献   

9.
Extracts of soapnut, Sapindus mukorossi Gaertn. (Sapindaceae) showed molluscicidal effects against the golden apple snail, Pomacea canaliculata Lamarck. (Ampullariidae) with LC(50) values of 85, 22, and 17 ppm after treating 24, 48, and 72 h, respectively. Bioassay-directed fractionation of S. mukorossi resulted in the isolation of one new hederagenin-based acetylated saponin, hederagenin 3-O-(2,4-O-di-acetyl-alpha-l-arabinopyranoside)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (1), along with six known hederagenin saponins, hederagenin 3-O-(3,4-O-di-acetyl-alpha-l-arabinopyranoside)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (2), hederagenin 3-O-(3-O-acetyl-beta-d-xylopyranosyl)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (3), hederagenin 3-O-(4-O-acetyl-beta-d-xylopyranosyl)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (4), hederagenin 3-O-(3,4-O-di-acetyl-beta-d-xylopyranosyl)-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (5), hederagenin 3-O-beta-d-xylopyranosyl-(1-->3)-alpha-l-rhamnopyranosyl-(1-->2)-alpha-l-arabinopyranoside (6), and hederagenin 3-O-alpha-l-arabinopyranoside (7). The bioassay data revealed that 1-7 were molluscicidal, causing 70-100% mortality at 10 ppm against the golden apple snail.  相似文献   

10.
Model reactions between the polysaccharide amylose and the polyphenol (-)-epicatechin followed by partial enzymatic hydrolysis of the reaction products formed led to the detection of mono- and oligo-C-glucosylated flavan-3-ols by means of LC-MS/MS experiments. To confirm the structure of these putative flavan-3-ol/oligosaccharide conjugates, (-)-epicatechin was reacted with maltose and maltotriose, respectively, giving rise to a series of previously unreported flavan-3-ol/maltose and flavan-3-ol/maltotriose conjugates, namely, (-)-epicatechin-8-C-beta-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranoside, (-)-catechin-8-C-beta-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranoside, (-)-catechin-6- C-beta-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranoside, (-)-catechin-8-C-beta-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranoside, (-)-catechin-6-C-beta-D-glucopyranosyl-(4-->1)- O-alpha-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranoside, and (-)-epicatechin-6/8-C-beta-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranosyl-(4-->1)-O-alpha-D-glucopyranoside. Furthermore, quantitative analysis of flavan-3-ol-C-glucosides in an enzymatic total hydrolysate using a newly developed stable isotope dilution assay (SIDA) enabled a first insight into the yield of the formation of polyphenol/polysaccharide cross-links, for example, an amount of 14.0, 9.0, and 0.15 micromol of flavan-3-ol-6-C-beta-D-glucopyranoside, flavan-3-ol-8-C-beta-D-glucopyranoside, and flavan-3-ol-6- C,8-C-beta-D-glucopyranoside were per mmol (-)-epicatechin when reacted with amylose.  相似文献   

11.
Carotenoid metabolites are common plant constituents with significant importance for the flavor and aroma of fruits. Three new carotenoid derivatives, (2E,4E)-8-hydroxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid 1-O-beta-D-glucopyranosyl ester (1), (2Z,4E)-8-beta-D-glucopyranosyloxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid (3), and 3,9-dihydroxymegastigmast-5-ene-3-O-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (5), as well as three known compounds, have been isolated from the ethanolic extract of peels of Cydonia vulgaris, the fruit of a shrub belonging to the same family as the apple. All the compounds were identified by spectroscopic techniques, especially 1D and 2D NMR. Antioxidant activities of all the isolated metabolites were assessed by measuring their ability to scavenge DPPH radical and superoxide radical (O2*-) and to induce the reduction of Mo(VI).  相似文献   

12.
Twenty-four saponins have been identified in alfalfa roots, including 13 medicagenic acids, 2 zanhic acids, 4 hederagenins, 1 soyasapogenol A, 2 soyasapogenol B's, 1 soyasapogenol E, and 1 bayogenin glycoside. Ten of the identified compounds, including 3-O-[beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl]-28-O-beta-D- glucopyranoside medicagenate, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta -D-glucopyranoside] medicagenic acid, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-beta- D-glucopyranoside medicagenate, 3-O-[beta-D-glucuronopyranosyl methyl ester]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1--> 2)-alpha-L-arabinopyranoside] medicagenate, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-galactopyranosyl(1-->2)-be ta-D-glucuronopyranosyl]-21-O-alpha-L-rhamnopyranoside soyasapogenol A, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)glucopy ranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl (1- ->2)-alpha-L-arabinopyranoside] medicagenate, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)glucopy ranosyl]-28-O-?beta-D-xylopyranosyl(1-->4)-)-[beta-D-apiofurano syl-(1 -->3)]- alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside? medicagenate, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyra nosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-O-?beta-D-xylopyranosyl(1-->4)-[beta-D-apiofurano side-(1-->3)]- alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside?zanhic acid, and 3-O-[beta-D-galactopyranosyl(1-->2)-beta-D-glucuronopyranosyl]-28- O-b eta-D-glucopyranoside bayogenin, were not reported before, and their structures were established by spectral (FAB-MS and NMR) techniques. In addition, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-galactopyranosyl(1-->2)-be ta-D-glucuronopyranoside] soyasapogenol E was identified in the roots for the first time.  相似文献   

13.
Six novel pyranoanthocyanins were identified by HPLC-ESI-MSn in black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) juice. The two major compounds, namely, the vinylcatechol adducts of cyanidin 3-O-(6-O-feruloyl-beta-D-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside and cyanidin 3-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, respectively, were isolated by a combination of high-speed countercurrent chromatography with semipreparative HPLC. Their structures were fully elucidated by means of one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry. The four remaining pigments were characterized as the vinylphenol and vinylguaiacol adducts of cyanidin 3-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, the vinylguaiacol adduct of cyanidin 3-O-(6-O-feruloyl-beta-D-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, and the vinylcatechol adduct of cyanidin 3-O-(6-O-sinapoyl-beta-d-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside. These compounds are formed during storage of the juice through the direct reaction of either caffeic, ferulic, or coumaric acid with the respective genuine anthocyanins.  相似文献   

14.
An extensive phytochemical analysis of the polar extracts from bulbs of shallot, Allium ascalonicum Hort., led to the isolation of two new furostanol saponins, named ascalonicoside A1/A2 (1a/1b) and ascalonicoside B (4), respectively, along with compounds 2a and 2b, most likely extraction artifacts. On the basis of 2D NMR and mass spectrometry data, the structures of the novel compounds were elucidated as furost-5(6)-en-3beta,22alpha-diol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (1a), its epimer at position 22 (1b), and furost-5(6),20(22)-dien-3beta-ol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (4). This is the first report of furostanol saponins in A. ascalonicum. High concentrations of quercetin, isorhamnetin, and their glycosides were also isolated and described.  相似文献   

15.
Two major anthocyanins were isolated from the acidified methanolic extract of eggplant (Solanum melongena L.) by column chromatography and preparative high-performance liquid chromatography. These anthocyanins were interconvertible under room light illumination condition. By means of tandem time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy, their structures were identified and elucidated as delphinidin 3-[4-(cis-p-coumaroyl)-l-rhamnosyl(1-->6)glucopyranoside]-5-glucopyranoside (compound 1) and delphinidin 3-[4-(trans-p-coumaroyl)-l-rhamnosyl-(1-->6)glucopyranoside]-5-glucopyranoside (compound 2), respectively. The results indicated that nasunin comprised cis and trans isomers of the p-coumaric acid moiety in its structure.  相似文献   

16.
Nine flavones and adenosine have been identified in aerial parts of alfalfa, and their structures were established by spectral (FABMS and NMR) techniques. Five of the identified compounds, including apigenin 7-O-[beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[2-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[2-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], apigenin 7-O-[2-O-p-coumaroyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], and luteolin 7-O-[2-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, have not been reported before in the plant kingdom. Additionally, five known compounds, including apigenin 7-O-beta-D-glucuronopyranoside, apigenin 4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[beta-D- glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], luteolin 7-O-beta-D-glucuronopyranoside, and adenosine, were identified.  相似文献   

17.
Four new steroidal saponins from the seeds of Allium tuberosum   总被引:3,自引:0,他引:3  
Four new steroidal saponins, 26-O-beta-D-glucopyranosyl-(25S,20R)-20-O-methyl-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (1); 26-O-beta-D-glucopyranosyl-(25S,20R)-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L- rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (2); 26-O-beta-D-glucopyranosyl-(25S,20S)-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L- rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (3); and 26-O-beta-D-glucopyranosyl-(25S,20S)-5alpha-furost-22(23)-en-3beta,20,26-triol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside (4), have been isolated from the seeds of Allium tuberosum. Their structures were established by spectroscopic studies such as MS, IR, NMR, and 2D-NMR and the results of acid hydrolysis and named tuberosides F, G, H, and I, respectively.  相似文献   

18.
Three new spirostanol saponins have been isolated from the seeds of Allium tuberosum. On the basis of acid hydrolysis and comprehensive spectroscopic analysis, their structures were established as tuberoside J, (25R)-5alpha-spirostan-2alpha,3beta,27-triol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside; tuberoside K, (25R)-5alpha-spirostan-2alpha,3beta,27-triol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside; and tuberoside L, 27-O-beta-D-glucopyranosyl-(25R)-5alpha-spirostan-2alpha,3beta,27-triol 3-O-alpha-D-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranoside.  相似文献   

19.
Four steroidal glycosides including deltoside and nolinofuroside D and two novel saponins were isolated from underground parts of Allium nutans L. On the basis of the spectral (LSIMS and NMR) analysis, the structures of the new compounds were established as 25R Delta(5)-spirostan 3beta-ol-3-O-?alpha-L-rhamnopyranosyl(1-->2)-[beta-D-glucopyranosyl(1 -->4)]-O-beta-D-galactopyranoside? and 25R Delta(5)-spirostan 1beta, 3beta-diol 1-O-beta-D-galactopyranoside. On the basis of the extraction efficiency, the concentration of saponins was established to be about 4% of dry matter, which makes this species a good source of steroidal saponins for commercial use.  相似文献   

20.
Three new furostanol oligoglycosides, 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosyl-22alpha-methoxy-25R-furost-5-ene-3beta,17alpha,26-triol (1), 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosylfurost-5-ene-3beta,17alpha,22alpha,25,26-pentol (2), and 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosylfurost-5-ene-3beta,22alpha,25,26-tetrol (3), named lycianthosides A-C, together with known flavone glycosides were isolated from Lycianthes synanthera leaves, an edible plant of the Solanaceae family that grows naturally in Guatemala. The nutrient composition of the raw leaves was also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号