首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two hydroponic experiments were conducted to investigate the antioxidant response of winter wheat (Triticum aestivum L.) to cadmium (Cd)-zinc (Zn) interactions, Seedlings of winter wheat (cv. Yuandong 977), were grown in modified Hoagland nutrient solution with the addition of increasing concentrations of Cd (0, 10, 25, 50 μM). In experiment 2, the seedlings of the same cultivar were treated with constant concentration of Cd (25 μM) and varying levels of Zn (0, 1, 10, 50 μM). Hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as the activities of three antioxidant enzymes, catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) were monitored to estimate the amount of oxidative stress and the antioxidant ability of seedlings treated with Cd and Zn for 10 days. The results showed that levels of H2O2 and MDA in experiment 1 were significantly increased with increasing Cd concentrations. The data indicated that Cd could induce oxidative stress and lipid peroxidation in the plants. While H2O2 and MDA levels were significantly reduced by addition of Zn in experiment 2, the activities antioxidant enzymes were enhanced. A concentration of 10 μM Zn appeared to be the optimal level in this experiment for seedlings' growth, chlorophyll synthesis and antioxidant status, indicating that Zn alleviated the oxidative stress induced by Cd.  相似文献   

2.
Cotton (Gossypium hirsutum L.) is a well-known and economically most beneficial crop worldwide while nickel (Ni) toxicity is a widespread problem in crops grown on Ni-contaminated soils. We investigated the response of silicon (Si) in cotton under Ni stress with respect to growth, biomass, gas exchange attributes, enzymatic activities, and Ni uptake and accumulation. For this, plants were grown in hydroponics for 12 weeks with three levels of Ni (0, 50, and 100 µM) in the presence or absence of 1 mM Si. Results showed that Ni significantly reduced the plant growth, biomass, gas exchange attributes, and pigment contents while Si application mitigated these adverse effects under Ni stress. Nickel stress significantly decreased antioxidant enzymes’ activities while increased malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EC) in leaves and roots. The application of Si enhanced the activities of antioxidant enzymes and reduced MDA, H2O2, and EC in plants. Nickel application significantly increased Ni concentration and accumulation in leaf, stem, and roots while Si application significantly decreased Ni in these plant parts. The present study indicates that Si could improve cotton growth under Ni stress by lowering Ni uptake and reactive oxygen species (ROS) and by increasing antioxidant enzymes activities.  相似文献   

3.
Abstract

The influence of silicon (Si) (2.5 mM), sodium chloride (NaCl) (100 mM), and Si (2.5 mM) + NaCl (97.5 mM) supply on chlorophyll content, chlorophyll fluorescence, the concentration of malondialdehyde (MDA), H2O2 level, and activities of superoxide dismutase (SOD; E.C.1.15.1.1.), ascorbate peroxidase (APx; E.C.1.11.1.11.), catalase (CAT; E.C.1.11.1.6.), guaiacol peroxidase (G-POD; E.C.1.11.1.7.) enzymes, and protein content were studied in tomato (Lycopersicon esculentum Mill c.v.) leaves over 10-day and 27-day periods. The results indicated that silicon partially offset the negative impacts of NaCl stress with increased the tolerance of tomato plants to NaCl salinity by raising SOD and CAT activities, chlorophyll content, and photochemical efficiency of PSII. Salt stress decreased SOD and CAT activities and soluble protein content in the leaves. However, addition of silicon to the nutrient solution enhanced SOD and CAT activities and protein content in tomato leaves under salt stress. In contrast, salt stress slightly promoted APx activity and considerably increased H2O2 level and MDA concentration and Si addition slightly decreased APx activity and significantly reduced H2O2 level and MDA concentration in the leaves of salt-treated plants. G-POD activity was slightly decreased by addition of salt and Si. Enhanced activities of SOD and CAT by Si addition may protect the plant tissues from oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. These results confirm that the scavenging system forms the primary defense line in protecting oxidative damage under stress in crop plants.  相似文献   

4.
We examined the role of jasmonic acid (JA) in faba bean under cadmium (Cd) stress, which reduces the growth, biomass yield, leaf relative water content (LRWC) and pigment systems. Hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde [MDA]) levels increased by 2.78 and 2.24-fold, respectively, in plants under Cd stress, resulting in enhanced electrolyte leakage. Following foliar application to Cd-treated plants, JA restored growth, biomass yield, LRWC and pigment systems to appreciable levels and reduced levels of H2O2, MDA and electrolyte leakage. Proline and glycine betaine concentrations increased by 5.73 and 2.61-fold, respectively, in faba bean under Cd stress, with even higher concentrations observed following JA application to Cd-stressed plants. Superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase levels rose by 87.47%, 130.54%, 132.55% and 37.79%, respectively, with Cd toxicity, with further enhancement of antioxidant activities observed following foliar application of JA. Accumulation of Cd in roots, shoots and leaves was also minimized by external supplementation of JA. In conclusion, JA mitigates the negative impacts of Cd stress in faba bean plants by inhibiting the accumulation of Cd, H2O2 and MDA, and by enhancing osmolyte and antioxidant activities that reduce oxidative stress.  相似文献   

5.
Two hydroponic culture experiments were conducted to investigate cadmium (Cd)‐induced oxidative stress in winter wheat (Triticum aestivum L.) seedlings and the effects of L‐Galactono‐1, 4‐lactone (GalL), the biosynthetic precursor of the antioxidant ascorbate (AsA), on the oxidative stress induced by Cd. In experiment 1, with application of Cd (0, 10, 25, 50 µM) in nutrient solution, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels as well as membrane permeability in both shoots and roots were significantly increased, indicating Cd‐induced oxidative stress and lipid peroxidation as well as plasma‐membrane damage in the plants. In experiment 2, H2O2 levels in plants exposed to Cd were significantly reduced by the addition of GalL (25 mM), associated with increased activities of peroxidase (POD), indicating that GalL alleviated the oxidative stress induced by Cd. Unexpectedly, however, the MDA levels were not reduced by the addition of GalL. Does Cd also induce lipid peroxidation directly besides via formation of reactive oxygen species (ROS)? This needs further study.  相似文献   

6.
ABSTRACT

Silicon (Si) protects plants from multiple abiotic and biotic stresses The effect of exogenous Si levels (50, 75, and 100 mg kg?1) on the growth, boron (B) and Si uptake, lipid peroxidation (MDA), lipoxygenase activity (LOX; EC 1.13.11.12), proline, and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activities of major antioxidant enzymes (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.6 and ascorbate peroxidase, APX, EC 1.11.1.11) of barley (Hordeum vulgare L.) were investigated under glasshouse conditions. Increasing levels of Si supplied to the soil with 20 mg kg?1 B counteracted the deleterious effects of B on shoot growth. Application of B significantly increased the B concentration in barley plants. However, Si application decreased B concentrations. Increasing application of Si increased the Si concentration in barley plants. The concentration of H2O2 was increased by B toxicity but decreased by Si supply. Boron toxicity decreased proline concentrations and increased lipid peroxidation (MDA content) and LOX activity of barley. Compared with control plants, the activities of AA, SOD, CAT, and APX in B stressed plants grown without Si decreased, and application of Si increased their activities under toxic B conditions. The LOX activity was decreased by Si. Based on the present work, it can be concluded that Si alleviates B toxicity by possibly preventing oxidative membrane damage, both through lowering the uptake of B and by increasing tolerance to excess B within the tissues.  相似文献   

7.
Oxidative status of salicylic acid (SA) treated barley (Hordeum vulgare) plants grown under saline conditions was examined in a two-year field study during 2012–2013 and 2013–2014 growing seasons. Salinity caused a marked oxidative stress which was manifested as increased concentration of hydrogen peroxide (H2O2) and reduced grain yield of barley. Barley plants induced antioxidant system to tolerate salt stress, so that activities of four antioxidant enzymes: peroxidase, catalase, superoxide dismutase and glutathione reductase were enhanced by 22%, 28%, 57% and 44% in the first and by 33%, 20%, 45% and 68% in the second year, respectively. Foliar application of SA in concentration over 0.5 mM enhanced the activities of all four antioxidant enzymes and reduced H2O2 content and so enhanced yield. However, higher concentrations of SA reduced grain yield in salt stressed plants in both years, which could be attributed to the negative interaction of antioxidant enzymes with higher concentrations of SA as a non-enzymatic antioxidant. Furthermore, SA is in benzoic acid group and at very higher concentrations can act as an herbicide. It was concluded that SA modulated the oxidative stress through enhanced activities of antioxidant enzymes and reduced the salt-induced adverse effect thereby improving grain yield.  相似文献   

8.
Nanoparticles (NPs) have been reported to cause physiological effects on plant cells and tissue. This study traced the uptake and distribution of magnetic iron oxide nanoparticles (γ-Fe2O3 NPs) in citrus (Citrus reticulata) plants under hydroponic condition by fluorescent dye labeled γ-Fe2O3 NPs, and described a detailed evidence of physiological effects of 0–100 mg/L γ-Fe2O3 NPs on citrus plants by measuring the physiological parameters such as content of chlorophyll, malondialdehyde (MDA), soluble sugar, soluble protein, activity of antioxidant enzyme, and ferric reductase after 21 days exposure. Fluorescence images of citrus stem and root showed that citrus roots could absorb γ-Fe2O3 NPs but no translocation from roots to shoots was observed, since NPs aggregated or even clogged the vascular system. Physiological results showed that 20 mg/L γ-Fe2O3 NPs could significantly enhance chlorophyll content by 126.4%, while 50 and 100 mg/L of γ-Fe2O3 NPs decreased chlorophyll content by 27.8 and 35.4%, respectively. MDA contents in citrus leaves under 20–100 mg/L γ-Fe2O3 NPs exposure were increased by 37.8, 107.2, and 61.5%, respectively, while that in roots were decreased by 27.0,11.9, and 7.4%, respectively, with elevated SOD and CAT activity, suggesting that oxidative stress occurred in citrus leaves, but oxidative stress in roots was eliminated by antioxidant defense. It is noteworthy that although Fe(II)-EDTA treatment had a high level of chlorophyll content, it induced strong oxidative stress in citrus plants as well. Collectively, the various physiological responses of citrus plants to γ-Fe2O3 NPs exposure were closely correlated with the concentrations of NPs. γ-Fe2O3 NPs at proper concentrations, such as 20 mg/L, have the potential to ameliorate chlorosis of plants and be effective nanofertilizers for increasing agronomic productivity.  相似文献   

9.
A 28-day pot (sand culture) experiment was carried to evaluate the effects of phosphorus (P) application in alleviating Cd phytotoxicity in wheat plants. Different levels of P (0, 10, and 20 kg ha?1) were applied without and with 100 µM Cd. The results showed that 100 µM Cd concentration decreased plant biomass, chlorophyll contents, gas exchange attributes, and mineral nutrients in wheat plants. Cadmium stress increased tissue Cd and H2O2 concentrations. The activities of superoxide dismutases (SOD), peroxidase (POD) enzymes, increased while the activities of catalase (CAT), ascorbic acid (AsA), α-tocopherol, and phenolics decreased under Cd stress. Phosphorus supply increased shoot biomass, leaf area, photosynthetic pigments, and mineral nutrients and decreased Cd and H2O2 concentrations in shoots. Phosphorus application improved antioxidant enzyme activities and gas exchange attributes which emerged as an important mechanism of Cd tolerance in wheat. We conclude that P application contributes to decreased Cd concentrations in wheat shoots and increased gas exchange attributes and antioxidant enzymes and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat for sustained production of this important grain crop.  相似文献   

10.
Cadmium (Cd) is a major pollutant in soils as a result of extensive use of fertilizers, mining and industrial discharges. Zinc (Zn) and certain bacterial species have been known to alleviate Cd toxicity in plants. In this study, the individual and combined effects of the application of Zn and Pseudomonas species with the aim of reducing Cd stress in wheat cultivars were investigated. Plants (durum wheat and bread wheat) were exposed to different concentrations of Cd and Zn, and either P. putida or P. fluorescens in a growth chamber. Concentrations of Zn, Cd, chlorophyll (Chl), carotenoid, hydrogen peroxide (H2O2), and malondialdehyde (MDA), as well as antioxidant enzyme activities were assayed. The addition of Zn in soils reduced the toxicity of Cd in durum wheat more than in bread wheat even though there was more uptake of Zn in bread wheat. Analysis of variance showed that by using Zn fertilizer and Pseudomonas species the amounts of peroxidase (POD), polyphenoloxidase (PPO), MDA, and H2O2 were reduced at three growth stages. Surprisingly, with increasing Zn concentration, Cd concentration in plant tissue was slightly increased, which suggests that adding Zn to soil could facilitate Cd desorption from soil particles. Application of Pseudomonas and Zn could be a promising solution to reduce detrimental effects of Cd, especially in durum wheat.  相似文献   

11.
以感白叶枯病的水稻品种日本晴(Oryza sativa L. cv. Nipponbare)为材料,在溶液培养条件下,研究了硅对接种白叶枯病菌后的水稻病情指数、叶片丙二醛(MDA)和过氧化氢(H2O2)含量以及超氧化物岐化酶(SOD)、过氧化氢酶(CAT)、脂氧合酶(LOX)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性的影响。结果表明,施硅能显著降低水稻白叶枯病的病情指数,防治效果达62.86%。接种白叶枯病菌后48 h内,施硅处理的水稻植株,叶片中丙二醛(MDA)和过氧化氢(H2O2)含量显著升高;显著提高感病植株叶片中脂氧合酶(LOX)和超氧化物歧化酶(SOD)活性;降低过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性;促进过氧化氢(H2O2)在植物体内积累,加强膜脂过氧化作用。因此,硅可通过参与植株体内代谢,调节抗氧化系统酶活性,激发机体过敏反应(HR),增强植株对白叶枯病抗性。  相似文献   

12.
The effects of boron (B) and high irradiance (HI) on the growth and activities of antioxidant enzymes have been investigated in cowpea plants (Vigna unguiculata L. Walp. ‘P152’). A significant decrease in root and shoot lengths were observed in B-deficient (0 ppm) and B-excess (50 ppm) plants compared to B-sufficient (0.5 ppm) plants. Under B and B + HI stress, significant increase in membrane permeability (EC), lipid peroxidation (MDA) and hydrogen peroxide (H2O2) were observed in B-deficient and B-excess leaves. Under B and B + HI stress, the superoxide dismutase (SOD) activity was found to be significantly high whereas the peroxidase (POX), polyphenol oxidase (PPO) activities and the non-enzymatic antioxidants, ascorbic acid and proline accumulation were found to be significantly decreased in B-deficient and B-excess leaves which showed the B inefficiency and susceptible nature of the cowpea plants to B and B + HI stress.  相似文献   

13.
In order to understand how salicylic acid (SA) is involved in modulating rice responses to cadmium (Cd) toxicity, particularly in Cd immobilization, a series of hydroponic experiments were conducted to examine changes in cell wall composition, activities of the enzymes related to lignin synthesis including phenylalanine ammonia-lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), subcellular Cd distribution, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and lignin and non-protein thiols (NPT) in rice roots under Cd stress with or without the pretreatment of SA. Results showed that Cd treatment decreased root biomass by 40% compared with the control (no Cd treatment) and pretreatment with SA significantly mitigated the Cd-induced inhibition of root growth. There was no significant difference in root cell wall composition or lignification between the treatment with Cd alone and the treatment with Cd with SA. No effects were observed for SA pretreatment on the activities of PAL, POD, or PPO under Cd stress. Furthermore, soluble Cd concentrations in root cells were significantly higher in the treatment with Cd with SA than in the treatment with Cd alone. However, H2O2 and MDA concentrations in rice roots were significantly lower but NPT levels were higher in the treatment with Cd with SA than in the treatment with Cd alone, which indicated that SA alleviated Cd-induced oxidative damage. It seems to suggest that SA-mediated enhancement of Cd tolerance was not due to enhanced Cd retention in the cell wall but to enhanced Cd bindings with thiols (─SH) group. The effects of SA-enhanced Cd tolerance were discussed with regard to H2O2 signaling pathways.  相似文献   

14.
The effects of interaction between cadmium chloride (CdCl2) and iron (Fe)- ethylenediaminetetraacetic acid (EDTA) were studied in rice plant. The seedlings of rice were treated with 0, 50, and 100 μM CdCl2 supplemented with 5, 10 and 20 ppm Fe as Fe-EDTA for 30 days. Plants were grown under controlled condition. In all the plants treated with CdCl2, growth parameters [relative leaf growth rate (RLGR), specific leaf area (SLA), and leaf water content area (LWCA)], soluble, and unsoluble sugars contents decreased. Addition of Fe-EDTA moderated cadmium effects. Under CdCl2 stress without Fe, malondialdehyde (MDA) content, proline content, catalase (CAT) and peroxidase (POD) activity increased, however, in solutions containing both CdCl2 and Fe-EDTA, MDA content, proline content and activities of antioxidant enzymes decreased. In 50 μM CdCl2, total protein content increased but in 100 μM decreased. With increasing Fe in solutions containing CdCl2, protein content decreased. The results indicated that with increasing Fe-EDTA in CdCl2 treated plants, the effects of toxicity of Cd decreased.  相似文献   

15.
为探讨外源乙烯缓解玉米(Zea mays)幼苗镉(Cd)毒害的生理机制,通过水培试验研究了Cd处理下,外源乙烯对玉米幼苗相关生理指标与Cd的亚细胞分布的影响,以不做任何处理为空白对照,以Cd处理和(NH42SO4处理为试验对照。结果显示,相对Cd处理,乙烯和(NH42SO4处理可显著降低Cd胁迫下玉米幼苗H2O2和丙二醛(MDA)含量,使净光合速率分别提升1.23倍和1.22倍;显著降低抗氧化物酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)]活性,抗氧化物质[抗坏血酸(AsA)、谷胱甘肽(GSH)]含量则显著上升。另外,相对于Cd处理,乙烯+Cd处理可使玉米幼苗ATP硫酸化酶活性、谷胱甘肽还原酶(GR)活性、半胱氨酸和还原型谷胱甘肽(GSH)含量分别上升54.43%、27.93%、50.77%和49.85%,而对非蛋白硫醇(NPT)和植物螯合素(PCs)含量无显著性影响。在乙烯+Cd处理的基础上添加GSH合成抑制剂BSO(buthionine sulfoximine)可导致玉米叶片GSH含量显著降低,H2O2含量上升,光合速率下降。外源乙烯可显著降低Cd胁迫下玉米叶片Cd含量,而显著提升根部细胞壁和液泡中Cd含量。因此,外源乙烯一方面通过提升玉米叶片GSH和AsA含量,增强叶片非酶促抗氧化能力,而非通过抗氧化酶促反应和NPT、PCs的螯合作用;另一方面则通过根细胞壁的固定作用和液泡区室化作用,减少Cd向玉米叶片中的转移,从而缓解Cd毒害。研究结果可为乙烯作为潜在的作物重金属拮抗剂提供理论依据。  相似文献   

16.
Brassica rapa is frequently used as a vegetable for human consumption and can accumulate metals that are bioavailable in soils. We studied the oxidative stress induced by 25 μM cadmium (Cd) and 50 μM copper (Cu) on Brassica rapa leaves and evaluated the intracellular antioxidative plant response mechanisms and the accumulation of these metals. With this purpose, hydrogen peroxide (H2O2) concentration, lipid peroxidation, and enzymatic and nonenzymatic responses was determined. The obtained results indicate that Cd and Cu induced different plant responses. Oxidative stress induced by Cu was characterized by increased lipid peroxidation and free proline levels. Guaiacol peroxidase and ascorbate peroxidase showed a relevant role in H2O2 removal. Cadmium did not influence lipid peroxidation, H2O2, proline and glutathione contents, and the enzymatic response mainly involves superoxide dismutase and ascorbate peroxidase. It was concluded that both excess Cu and Cd induced oxidative stress but plant response is characterized by different antioxidative response mechanisms.  相似文献   

17.
Abstract: Understanding plant responses to drought stress is essential, and there is a need to know possible physiological mechanisms of damage and drought avoidance for the genetic improvement of crops. Therefore, we investigated the effects of silicon (Si) on shoot and root growth, leaf relative water content (RWC), stomatal resistance (SR), lipid peroxidation (MDA), membrane permeability (MP), proline and hydrogen peroxide (H2O2) accumulation, nonenzymatic antioxidant activity, and the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of 12 sunflower cultivars grown under drought conditions. Silicon applied to the soil counteracted the deleterious effects of drought in 6 of the 12 sunflower cultivars. In general, SR and H2O2, proline, and MDA content were increased in all the cultivars under drought stress. However, application of Si decreased their levels and alleviated membrane damage (MP) significantly by increasing leaf RWC. The CAT activity was significantly decreased by drought stress, but supplemental Si increased it. In general, SOD and APX activities of the cultivars were increased by drought and decreased by application of Si. The nonenzymatic antioxidant activity of the cultivars was significantly increased by Si under drought stress. Based on the present work, it can be concluded that applied Si alleviates drought stress in sunflower cultivars by preventing membrane damage, although the cultivars showed genotypic variation in response to applied Si.  相似文献   

18.
A sand culture experiment was carried out to study the effects of sulfur deprivation on heat stress tolerance of two cluster bean (Cymopsis tetragonoloba L. Taub) cultivars (GC-1 and Pusa Nau Bahar (PNB)). Three weeks old sulfur-starved and sulfur-supplemented plants were subjected to heat stress (45°C/35°C) treatment for 24 h. Total dry weight, chlorophyll content, Chlorophyll a:b ratio, electrolyte leakage, malondialdehyde (MDA) accumulation, H2O2 content, sugar, glucose-6-phosphate (G-6-P), fructose-6-phosphate (F-6-P), ascorbate and glutathione concentrations and antioxidant enzyme activity (superoxide dismutase (SOD) and catalase (CAT)) were monitored, at the end of the heat stress treatment. Heat stress enhanced and sulfur starvation depleted the contents of sugar metabolites, but the accumulation of sugar, G-6-P and F-6-P were not related with heat stress tolerance. Antioxidant enzyme activities of SOD and CAT were influenced significantly more by sulfur starvation than heat stress. The results showed that under heat stress, the addition of sulfur helps to mitigate the oxidative damage in both the cultivars. However, GC-1 was more heat tolerant as it was characterized by significantly higher total dry weight, chlorophyll content, ascorbate and glutathione content and lower H2O2, MDA, electrolyte leakage than PNB.  相似文献   

19.
To check the efficacy of potassium in alleviating oxidative stress under salt stress, salt-tolerant (Indent-1) and salt-sensitive (Red Ball) tomato (Lycopersicon esculentum Mill.) genotypes were exposed to three levels of sodium chloride (NaCl) (0, 75, 150 mM) and two levels of potassium (4.5 and 9 mM) in solution and foliar form. Thirty days of treatments revealed that increasing NaCl stress increased lipid peroxidation (malondialdehyde, MDA) and correspondingly the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione reductase GR) in both genotypes. However, higher potassium (K) level in solution or foliar spray during the salt-induced stress decreased MDA and antioxidant activity and increased the growth in salt-tolerant genotype than in the salt-sensitive genotype. Decrease in MDA concentration, activity of antioxidant enzymes, and increase in the growth of tomato plants by the application of potassium under salt stress suggest that potassium is an effective ameliorating agent against salt-induced oxidative damage.  相似文献   

20.
重金属污染已成为全球范围的主要问题之一,其中土壤镉(Cd)污染已成为当今社会普遍关注的问题。镉是植物生长发育的非必需元素,极小浓度即可产生较大危害。一氧化氮(NO)是一种氧化还原信号分子和活性氮(RNS), 参与植物对重金属镉胁迫的应答。长春花(Catharanthus roseus)是我国广泛栽培的兼具园林绿化和抗癌药源等有重要价值的多年生草本花卉植物。为了解镉胁迫下外源NO 对园林地被植物生理响应的调控机制,采用盆栽试验研究了外源NO(硝普钠SNP)对镉胁迫下长春花幼苗生长、 活性氧代谢、 质膜ATPase酶和5'-核苷酸酶活性以及矿质营养元素吸收的影响。结果表明, 25 mg/kg 镉胁迫严重抑制长春花幼苗的生长,显著增加地上部和根系镉的富集量,抑制对大量元素和微量元素的吸收。施加0.45、 0.90、 1.80 mg/kg 的SNP显著降低镉从根系向地上部的转运,缓解因镉胁迫对钾(K)、 钙(Ca)、 镁(Mg) 和 铁(Fe)、 铜(Cu)、 锌(Zn) 吸收产生的抑制效应,降低镉胁迫的毒害作用,促进植物生长。镉胁迫下,丙二醛(MDA)含量和活性氧(O2和H2O2)水平显著升高。施加低浓度 SNP 能够显著缓解细胞质膜过氧化,降低硫代巴比妥酸反应产物(TBARS)堆积,且对抗氧化酶和ATPase酶具有相同作用。添加0.45、 0.90、 1.80 mg/kg 的SNP 可提高镉胁迫下长春花地上部和根系的抗氧化酶[过氧化氢酶(CAT)、 超氧化物歧化酶(SOD)、 过氧化物酶(POD)]活性与抗氧化物(还原型谷胱甘肽GSH)含量,诱导质膜H+-ATPase、 Ca2+-ATPase和 5-AMPase 活性提升到正常水平(对照CK)。添加1.80 mg/kg 的SNP对镉毒害的缓解作用最有效,而添加3.60、 7.20 mg/kg 的SNP的处理则无明显效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号