首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A greenhouse experiment was conducted with a factorial arrangement in a completely randomized design with three replications. Treatments consisted of two levels of plant growth promoting rhizobacteria (PGPR) (Pseudomonas fluorescens) (with and without inoculation), two levels of vermicompost (0 and 1% w/w), and four phosphate (P) sources (control, rock phosphate powder (RP), tricalcium phosphate (TCP), and triple super phosphate (SP) at 25 mg P kg?1 level). Co-application of PGPR and RP in non-vermicompost treatments significantly increased shoot fresh weight, shoot dry matter yield, shoot P uptake, soil Ca2-P concentration, but it significantly decreased soil Ca8-P and Ca10-P concentrations. The maximum shoot P uptake was obtained in combined application of RP with vermicompost which had no significant difference with the co-application of SP with vermicompost in bacterial and non-bacterial treatments. There was a negative correlation coefficient between shoot P concentration and chemical forms of phosphorus. It may be concluded that application of biofertilizers changed the chemical forms of inorganic phosphorus and increased P uptake by plant.  相似文献   

2.
To compare the growth performance of Brassica in a phosphorus (P) stress environment and response to added P, six Brassica cultivars were grown in pots for 49 days after sowing, using a soil low in P [sodium bicarbonate (NaHCO3)–extractable P = 3.97 mg kg?1, Mehlich III–extractable P = 6.13 mg kg?1] with (+P = 60 mg P kg?1 soil) or without P addition (0P). Phosphorus‐stress markedly reduced biomass accumulation and P uptake by roots and shoots. However, root–shoot ratio remained unaffected, implying that relative partitioning of biomass into roots and shoots had little role to play in shoot dry matter (SDM) production by cultivars. Biomass correlated significantly (P < 0.01) with total P uptake. Under P stress, the cultivars that produced greater root biomass were able to accumulate more total P content (r = 0.95**), which in turn was related positively to SDM and total biomass (r > 0.89**) and negatively to P‐stress factor (r = ?0.91**). There was no correlation between P efficiency (PE) (relative shoot growth) and plant P, but PE showed a very significant correlation with shoot P content and SDM. Wide differences in growth and better performance of cultivars such as ‘Brown Raya’ and ‘Con‐1’ under P stress encouraged screening of more germplasm, especially in the field, to identify P‐tolerant cultivars.

In another study, potential relative agronomic effectiveness (RAE) of sparingly soluble P sources was investigated by growing two contrasting cultivars. The P sources incorporated into soil at 0, 10, 25, 50, and 100 mg P Kg?1 were (i) powdered Jordan rock P (RP), (ii) triple superphosphate (TSP), (iii) powdered low‐grade TSP [TSP(PLG)], (iv) a mixture of RP + TSP compacted into pellets at 50:50 P ratio [RP + TSP(PelC)], and (v) a mixture of powdered RP + TSP at 50:50 P ratio [RP + TSP(PM)]. The RP was low in RAE and only 5 and 29% as effective as TSP in producing dry matter (DM) of P‐sensitive ‘B.S.A.’ and P‐tolerant ‘Brown Raya’ cultivars, respectively. There were no significant differences between TSP and RP + TSP(PelC) in DM yield of ‘Brown Raya,’ whereas, in the case of ‘B.S.A.’ RP + TSP(PM) was significantly less effective than RP + TSP(PelC) compared with TSP. Combined utilization of superior genome and P sources [such as TSP(PLG) and RP + TSP(PelC)] produced from low‐grade RP (that cannot be used either for direct application or acidulated P fertilizers) can be used as an alternative strategy for sustainable crop production, especially in resource‐poor environments. Further field trials at the level of cropping systems are needed.  相似文献   

3.
Nitrogen (N) and phosphorus (P) deficiency is one of the important causes of degradation of cultivated pasture under tropical conditions. The aim of this study was to evaluate phosphate rates and sources, and N rates on the concentration and uptake of N and P, and shoot dry mass (SDM) yield of Megathyrsus maximum grass cv Mombasa in an Ultisol. The trial was carried out in a greenhouse in pots with 4.0 dm?3 of soil. The experiment was arranged in a completely randomized design with four replicates. The 3 × 3 × 3 factorial treatments consisted of phosphorus sources [reactive rock phosphate from Morocco (RPM), reactive rock phosphate from Algeria (RPA) and triple superphosphate (TSP)], three phosphorus rates (0, 150, and 300 mg kg?1), and three N rates (0, 250, and 500 mg kg?1). The SDM and tillering of Mombasa grass were significantly influenced with the TSP, RPM, and RPA application associated with N fertilization. The RPM, RPA, and TSP met the nutritional demands of Mombasa grass. The three P sources showed the same effect on the total N uptake by Mombasa grass. The P use efficiency (PUE) when fertilizer-P sources were added alone by Mombasa grass was <12% of the added P, and PUE decreased as follows: TSP > RPA > RPM. When P and N-fertilizer were added together, the fertilizer-N use efficiency (NUE) was 62%. The reactive phosphate (RPM and RPA) is an efficient P sources for Mombasa grass, but requiring higher rate of application compared to TSP source.  相似文献   

4.
In order to study the effect of water deficit stress (WDS), plant growth promoting rhizobacteria (PGPR)-enriched and non-enriched vermicompost tea(VT) and vermiwash(V) on the growth and nutrients uptakes of maize, a greenhouse experiment was conducted. The two-factor experiment was set up in a completely randomized design with three replications. The factors included: 1) liquid organic fertilizers (LOFs) with five levels (control, VT, V, vermicompost tea enriched with bacterium (VTB) and vermiwash enriched with bacterium (VB)) and 2) WDS with three levels (Field Capacity (FC), 80% FC and 60% FC(. At each irrigation interval, the volume of the used LOFs was equivalent to 60% of the volume of water required for 60% FC. At 60% FC, shoot dry matter (SDW), shoot N, P, Zn, Cu, and Fe uptake significantly decreased compared with those of FC and 80% FC, whereas shoot K uptake significantly increased. At all WDS levels, application of LOFs led to increase in SDW and shoot nutrients uptake. The highest amount of studied traits was obtained in VTB and VT treatments. Generally, VT treatments were more effective than V. Furthermore, PGPR-enriched LOFs were more effective than non-enriched ones. Application of LOFs may be considered as a practical approach for amplifying drought tolerance and reducing the risk of water scarcity in maize cultivation.  相似文献   

5.
To investigate the effects of arbuscular mycorrhiza (AM) and phosphorus (P) source on the uptake of major nutrients by Acacia mangium seedlings, three P sources were used: (1) Gafsa phosphate rock (GPR), (2) China phosphate rock (CPR), and (3) triple superphosphate (TSP). The plant samples were analyzed at 60, 75, 90, 105, 120, and 135 days after planting (DAP) for their N, P, K, Ca, and Mg contents. The uptake of these nutrients was significantly influenced by AM inoculation. Nutrient use efficiency in the AM-inoculated seedlings was also significantly higher than that in uninoculated seedlings. The effect of P sources on the uptake of these nutrients decreased in the order of TSP>GPR>CPR>control. There was a significant (P<0.05) interaction effect of AM and P source on P and K uptake by A. mangium. The uptake of P and K by mycorrhizal seedlings supplemented with TSP was significantly higher than that provided with other sources of P treatments. As a natural and cheaper P source, GPR might be used in combination with AM for growing A. mangium seedlings on degraded tin tailings.  相似文献   

6.
Introducing specific microorganisms into the soil ecological system is an important strategy for improving nutrient use efficiency. Two pot experiments were conducted in the greenhouse from December 3, 2012 to January 25, 2013 (Experiment 1) and March 11 to April 23, 2013 (Experiment 2) to evaluate the effect of nitrogen (N) source and inoculation with plant growth-promoting rhizobacteria (PGPR) on plant growth and N and phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) grown on calcareous soils from South Florida, USA. Treatments included urea, controlled release urea (a controlled release fertilizer, CRF) each at low and high N rates and with or without inoculation of PGPR. A mixture of PGPR strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4 was applied to the soil during growing periods of tomato. Treatments with PGPR inoculation increased plant height compared to treatments without PGPR in both experiments. Inoculation with PGPR increased shoot dry weight and shoot N uptake for the same N rate and N source. In both experiments, only at high N rate, CRF and urea treatments with PGPR had significantly (P < 0.05) greater shoot biomass than those without PGPR. Only at high N rate, CRF treatment with PGPR significantly increased shoot N uptake by 39.0% and 10.3% compared to that without PGPR in Experiments 1 and 2, respectively. Meanwhile, presence of PGPR in the soil increased shoot P uptake for all treatments in Experiment 1 and for most treatments in Experiment 2. In Experiment 1, only at low N rate, CRF treatment with PGPR significantly increased shoot P uptake compared with that without PGPR. In Experiment 2, a significant increase in shoot P uptake by inoculation of PGPR was only observed in CRF treatment at high N rate. Results from this study indicate that inoculation with PGPR may increase plant growth and N and P uptake by tomato grown on calcareous soils. However, the effect of PGPR varied and was influenced by many factors such as N source, N rate, and soil fertility. Further investigations are warranted to confirm the effect of PGPR under different soil conditions.  相似文献   

7.
ABSTRACT

A solution culture experiment was conducted to determine the response of 15 wheat genotypes for growth, phosphorus (P) uptake, and P utilization efficiency, and their adaptability to P stress conditions using adequate [250 μM P in nutrient solution as ammonium phosphate (NH4H2PO4)] and stress (powdered rock phosphate suspended in nutrient solution) P supply levels. Shoot dry matter (SDM) and total plant DM (shoot + root) and P uptake were generally higher for most genotypes in adequate P than stress P level treatment, but the opposite was true for root dry matter (RDM), root: shoot ratio (RSR), and root P uptake. Relative reduction in SDM due to P deficiency stress ranged from none to 54%. Genotypes Kohinoor 83, PB 85, Parvaz 94 and 4770 did not respond to P deficiency stress for SDM production, while genotypes FSD 83, Chakwal 86, Pasban 90, 4072, 4943, 5039, 6529-11, and 6544-6 were highly responsive to P application for SDM. Shoot P uptake in genotypes at adequate P level was about 3-times higher than those genotypes grown at stress P level. Differences in P concentration of shoot ranged between 2.00 to 3.06 mg P g?1 in stress P level treatment, and had a significant positive correlation with P harvest index (PHI) (r = 0.558?, P < 0.05) and root efficiency ratio (RER) (r = 0.611?, P < 0.05) and negative correlation with P efficiency ratio (PER) (r = ?0.909??, P < 0.01). A significantly positive correlation of P utilization index (PUI) and SDM (r = 0.784??, P < 0.01) and non-significant negative correlation (r = ?0.483) of PUI with P concentration in shoot implies that wheat genotypes with higher PUI may be selected for P deficient milieu. Genotypes with higher PUI (>0.8 g mg?1 P) in rook phosphate treatment were Inqlab-91, Pak-81, Lu 26s, Parvaz 94, 4072, 4770, 4943, and 5039. There was no interrelationship observed between shoot P uptake and P efficiency in stress P level treatment. However, highly significant and positive correlation (r = 0.720??, P < 0.01) between PHI and RER suggested that shoot P uptake depended upon root efficiency and it increased with the increase in P uptake per unit RDM. Consequently, this resulted in increased SDM which is evident from the significant positive correlation (r = 0.833??, P < 0.01) between SDM and shoot P uptake. In summary, the findings suggest that PUI and RER may be used for selecting P efficient wheat genotypes (e.g., 4072, 4770, 4943, Pak 81, and Inqlab 91) for dry matter production and P use.  相似文献   

8.
We evaluated the effects of microbial inoculants in a loess soil amended with various phosphorus (P) sources on pea growth and P uptake (PU). Treatments included factorial combinations of three treatments (noninoculation, NI; bacteria, BA; and fungi, FU) and three P sources (no P, NP; calcium superphosphate, SP; and rock phosphate, RP). Compared with NI, soils inoculated with BA and FU and receiving NP and SP increased pea shoot and total biomass, with greater increases with BA than with FU. Both BA and FU stimulated root growth, regardless of P addition. Compared to NI, PU with BA increased by 26, 59, and 83% in soils amended with RP, SP, and NP, respectively, whereas with FU it increased by 25% with SP and 48% with NP, with no effects with RP. The results indicate that BA can increase bioavailability of soil P, whereas FU may promote plant utilization of bioavailable P existing in soil.  相似文献   

9.
A study was conducted to isolate P-solubilizing bacteria from the rhizosphere of three wild rice species and to test their ability to mobilize P from rock phosphate (RP). Inoculated seeds or seedlings of eight different strains were grown in soils supplemented with a P fertilizer mixture (PFM) consisting triple super phosphate (TSP) and RP, each providing equal amounts of P2O5. Crop growth, NaHCO3-extractable P, crop P uptake and yield were compared with two uninoculated controls, with either TSP or PFM added. In the pot experiment, P availability varied from 20 to 48 mg P kg?1 soil. Yields ranged between 4.8 and 6.6 g per pot and were not significantly different between treatments. In the field experiment, shoot P accumulation in inoculated and TSP-control treatments at the heading stage ranged between 79–129 mg and 219 mg per pot, respectively. Dual inoculants comprising Staphylococcus scirui, Bacillus pumilus, Bacillus subtilus and Bacillus cereus increased yield by about 29% over PFM-controls (324 g m?2) but those yields were 21% lower than TSP-controls (510 g m?2). Therefore, application of inoculants combined with PFM is not a viable alternative for TSP under the tested conditions because yield was limited by the P availability.  相似文献   

10.
将耐性植物芥蓝(Brassicacapitata)与敏感植物小白菜(Brassica chinenzis)暴露于含Pb的营养液中,通过添加磷灰石矿尾料(PR)、重过磷酸钙(TSP)及二者混合物(P+T)处理,研究含磷物质对两种植物吸收Ph的影响以及Pb在植物根表面形态变化过程。结果显示:添加含磷物质降低了耐性植物芥蓝根部Pb的含量,但对地上部Ph吸收的影响不显著;对敏感植物小白菜来说,PR和P+T处理的植物根部及地上部Pb的含量与对照基本一致,而TSP处理促进了Pb的吸收,表现出小白菜根部及地上部Pb的含量显著高于对照组。含磷物质添加诱导了Pb在植物根表面形成Pb5(PO4)3Cl、Pb5(PO4)3OH的沉淀,但这并没有直接导致两种植物对Pb吸收量的减少。  相似文献   

11.
Plant growth–promoting rhizobacteria (PGPR) may enhance the plant availability of phosphorus (P) in soil. A greenhouse pot experiment was conducted cultivating maize (Zea mays L.) on a P-deficient soil. Three bacterial treatments (control without PGPR and application of either Enterobacter radicincitans sp. nov. strain DSM 16656 or Pseudomonas fluorescens strain DR54) were tested in conjunction with three P treatments [no P addition, inorganic P as triplesuperphosphate (TSP), and organic P as phytin] at two different growth stages of maize (V6 and V9). Amendment with TSP enhanced growth, P uptake, and highly bioavailable P pools in soil to a greater extent than phytin. In contrast, arbuscular mycorrhiza (AM) formation of maize roots after phytin application doubled those for the TSP treatment or the control without P. Application of PGPR was also able to increase AM formation and P uptake of maize, especially when no P source was added. Furthermore, P. fluorescens inoculation resulted in an increase of highly soluble soil P pools at the early growth stage. Greater impacts of phytin on P nutrition of maize may exist in a longer term as a result of slow P release and promotion of AM fungi. Benefits to maize P nutrition derived from PGPR application can be expected under P deficiency.  相似文献   

12.
Abstract

Partially acidulated rock phosphate or compacted soluble phosphate‐rock phosphate mixture has been suggested as an alternative phosphorus (P) source for plants in acidic soils. Interaction between the soluble and the insoluble fractions would be conducive to plant utilization of both P sources in the fertilizer material. Direct evidence supports the beneficial reactions between the two P sources, however, was still insufficient. A pot experiment was hence conducted to evaluate the possible interaction of 32P‐labeled single superphosphate (SSP) and a less reactive rock phosphate (RP) from Jinxiang mine, China. In the experiment, SSP and RP were applied to two acidic red soils (typic Hapludults) in a manner that would favor or diminish their interaction either by distributing both P sources homogeneously within the whole volume of the pot soil (uniform placement) or by separating them vertically with each being applied to half of the soil volume (fraction placement). The reference treatments of SSP and RP were arranged in similar manners. Two successive harvests of ryegrass were made during a 2‐month period. Results indicated that uniform placement of SSP and RP significantly enhanced plant growth and P uptake, and that P recovery of SSP‐P in the higher P‐fixing soil was almost twice that of the fraction placement. The data of plant PdfL% (percentage of P derived from labeled‐P), which indicated that >80% of plant P was derived from SSP, however, failed to support the idea that soluble P had increased plant utilization of RP. Alternatively, it is considered that the low grade RP had increased plant utilization of both SSP‐P and soil‐P. Uniform placement of RP and SSP also strikingly improved plant calcium (Ca) and magnesium (Mg) nutrition. The phenomenon suggested that SSP‐RP mixture might be a good P source on similar acidic soils in subtropical China.  相似文献   

13.
Neglected P and K fertilization in organic farming reduces N2 fixation and grain yield in a red clover‐oat rotation N2 fixation is the most important N source in organic farming. An insufficient P, K, and S supply to legumes may reduce their N2 fixation capacity. Consequently, the total yield of plant production may also be reduced. This problem was studied in a pot experiment with red clover followed by oat. Soil was taken from a field where organic farming had been practiced for more than 30 years without applying any mineral fertilizers or buying additional fodder. The soil (luvisol from loess) was characterized by: pH (CaCl2) 5.4; lactate‐soluble (CAL) P 5 mg kg–1 and K 110 mg kg–1. 6 kg dry soil were mixed with 400 mg P applied as (i) triplesuperphosphate (TSP), (ii) rock phosphate (RP) or (iii) compost from organic household residues (BAK). An additional treatment (iv) with TSP received 1000 mg K as K2SO4 (TSP+K) and an additional treatment with RP (v) received only 200 mg P (RP/2). A control treatment received no fertilizer. P application significantly improved the P nutritional status of the plants (P content) and increased the N amount in the shoots of red clover (with 400 mg P per pot by 64 % to 139 % as compared to the control) and the dry matter (DM) yield by 60 % to 130 %. No significant differences between TSP and RP were found. The application of BAK resulted in a significantly higher N yield than the application of RP and TSP. The treatment TSP+K resulted in the highest DM yield (230 %), removal of P was 343 %, of K 228 %, and of N 239 % as compared to the control plants. This indicates a synergistic effect of P, K, and S on N2 fixation, which was also found with BAK. Oat grown after red clover increased its grain yield by 132 % (200 mg P as RP) to 165 % (400 mg P treatments). This was mainly due to a higher P uptake (up to 172 %) and a higher N uptake (up to 172 %) as compared to the control.  相似文献   

14.
G. KAUR  M. S. REDDY 《土壤圈》2015,25(3):428-437
A two-year field study was conducted to test the effects of two phosphate-solubilizing bacteria (PSB), Pantoea cypripedii (PSB-3) and Pseudomonas plecoglossicida (PSB-5), inoculated singly or together with rock phosphate (RP) fertilization on maize and wheat cropping cycle by comparing with chemical P fertilizer (diammonium phosphate, DAP), mainly in the crop yield, soil fertility and economic returns. Inoculation of PSB together with RP fertilization increased the crop growth in terms of shoot height, shoot and root dry biomass, grain yield and total P uptake in both maize and wheat crops compared to the other treatments. Soil fertility in the context of available P, enzyme activities and PSB population in both maize and wheat crops was significantly improved with PSB inoculation together with RP fertilization compared to DAP treatment. The combined use of PSB inoculation and RP fertilization was more economical due to minimal cost and maximum returns. These results suggested that PSB inoculation along with RP fertilization would be an appropriate substitute for chemical phosphate fertilizer application in sustainable agriculture systems.  相似文献   

15.
Abstract

Inoculation effect of arbuscular mycorrhizal fungi (AMF) on phosphorus (P) transfer from composted dung of cattle with a diet supplemented with powdered rock phosphate (RP) and their successive uptake by mung bean plants was assessed in alkaline soil. The efficacy of composted RP fed dung alone or/and in combination with AMF inoculums containing six different species were compared with SSP in six replicates per treatment in pots. The results showed that the association of AMF with composted RP fed dung had a positive effect on mung bean shoot (3.04?g) and root (2.62?g) biomass, chlorophyll (a, b), carotenoid contents and N (58.38?mg plant?1) and P (4.61?mg plant?1) uptake. Similarly, the percent roots colonization (56%) and nodulation of mung bean plant roots and their post-harvest soil properties were also improved by the inoculation of AMF together with composted RP fed dung. It is concluded that the combined application of AMF with composted RP fed dung has almost the same effect as SSP for improving mung bean plants growth and their nutrients uptake. Moreover, AMF inoculants can be used as a suitable biofertilizer in combination with locally available organic sources of fertilizers for improving P status and growth of plants in alkaline soils.  相似文献   

16.
Abstract

Path analysis is a statistical technique that partitions correlations into direct and indirect effects and distinguishes between correlation and causation, whereas correlation in general measures the extent and direction (positive or negative) of a relationship occurring between two or more variables. The estimates of correlation and path coefficients can help us to understand the role and relative contribution of various plant traits in establishing growth behavior of crop cultivars under given environmental conditions. Dependence of shoot dry‐matter (SDM) production of six hydroponically grown Brassica cultivars on various growth parameters and characteristics of P metabolism was investigated using the modified Johnson's nutrient solution to maintain deficient (10 µM) and adequate (200 µM) P levels. Root dry‐matter (RDM), total dry‐matter, P content in shoot, and P‐utilization efficiency (PUE) had significant and positive effects on production of SDM in a P‐deficient environment. Root–shoot ratio (RSR), however, negatively affected SDM of cultivars exposed to P‐deficient conditions and did not show any impact on SDM production in either of the two treatments. In a pot study, six Brassica cultivars were grown in a sandy loam soil that was deficient in NaHCO3‐extractable P (3.9 mg P kg?1 soil) for 49 days. Significant positive correlations were observed between SDM and some other plant traits such as RDM, leaf area per plant, P uptake, and PUE, at both genotypic and phenotypic levels. The correlations of SDM with RSR, however, were not observed, implying that relative partitioning of biomass into roots or shoots had little role to play in SDM production by Brassica cultivars under P‐deficiency stress. Path analysis revealed that favorable impact of RDM and leaf area on SDM production was indirect through positive effect of these parameters on P uptake and PUE. Thus, under P‐deficiency stress, better P acquisition and efficient P utilization by the cultivars for biomass synthesis collectively formed the basis of higher SDM production by the cultivars, evidencing that P uptake and utilization efficiency are two important plant traits for selecting P‐deficiency‐stress‐tolerant Brassica cultivars.  相似文献   

17.
This study aimed to evaluate the interaction between filter cake (FC), and phosphorus fertilizers with differing solubility on the growth and P nutrition of sugarcane. Effects of soil amendment with FC on different soil P fractions and influence on microbial community structure in the rhizosphere were also assessed. Two glasshouse experiments were conducted with completely randomized block designs. The first experiment evaluated rates of FC using a factorial design (5 × 2): 0, 2.5, 5, 10 and 15 g FC kg?1 soil applied as either broadcast in bulk soil or in the planting furrow. The second experiment used a factorial design (2 × 3): without and with FC (5 g kg?1 soil, dry basis), both without P (NP) and with P supplied as either triple superphosphate (TSP) or as rock phosphate (RP), both at the rate of 78.4 mg kg?1 based on total P. Microbial community structure was determined using TRFLP and dynamics of soil P by Hedley fractionation. Filter cake applied at increasing rates in the absence of P was effective in increasing shoot growth and P uptake by plant, particularly when applied to bulk soil as compared to furrow application. Also, FC improved P uptake and increased the availability of labile inorganic P in the rhizosphere and modified the structure of fungal and bacterial communities, whereas only bacterial and archaea communities were influenced by P fertilizer use. Filter cake was more effective when combined with RP, with increased growth and P utilization and thus can be considered as a feasible and practical option for farmer use in substitution to TSP, a more expensive source.  相似文献   

18.
随着全球范围内磷矿资源短缺问题的日益严重,间作或菌根技术强化作物对土壤磷(P)的利用及增产增收的效应受到越来越多的关注。通过三室隔网盆栽模拟试验研究了分室磷处理[不添加磷(P0)、添加有机磷(OP50)、添加无机磷(IOP50)]和根室不接种(NM)、根室接种丛枝菌根真菌Glomus mosseae(GM)对与大豆间作的玉米的生长及磷素利用的影响。研究结果表明:所有复合处理中,以间作?GM?IOP50组合处理下的玉米根系最短和地上部生物量最高;OP50处理下,间作玉米的菌根侵染率显著高于单作处理。间作条件下,无论分室磷添加与否,接种GM处理的玉米地上部生物量明显高于NM处理;接种GM处理的玉米根系生物量和株高均显著高于NM处理,且根系生物量以间作?GM?OP50组合处理下最高。接种GM条件下,P0、IOP50、OP50处理下的间作植株生物量较单作处理分别提高45.98%、111.33%、33.56%。单作条件下,无论分室磷添加与否,接种GM处理的玉米地上部磷含量均显著高于NM处理;无论何种种植模式及分室磷添加与否,接种GM处理的植物根系磷含量均显著高于NM处理。无论磷添加与否,间作?GM组合条件下的玉米地上部磷吸收量均显著较高,其中IOP50处理下的地上部磷吸收量显著高于OP50处理。间作?GM组合条件下,IOP50处理玉米根系的磷吸收效率均显著高于OP50处理。可见,接种GM、分室磷添加和间作各自在一定程度上促进了玉米的生长。综合菌根侵染、生物量及磷含量与吸收量、磷吸收效率等指标,所有复合处理中以间作?GM?IOP50组合对玉米地上部的促生作用最好,玉米磷素吸收最多,可望有效强化滇池流域红壤坡耕地磷素的利用。  相似文献   

19.
Soybean is becoming an important cash crop in northern Ghana. Yet the yields are low due to use of low yielding varieties and limited use of inputs. Greenhouse and field experiments were carried out to evaluate the effects of two phosphorus (P) sources and Rhizobium inoculation on growth, nodulation, P uptake, and yield of three soybean genotypes on Ferric Lixisols of the Guinea savanna zone of Ghana. The P sources were triple superphosphate (TSP) and Morocco phosphate rock (MPR), while the genotypes were TGx 1448-2E, TGx 1904-6F, and TGx 1955-4F. The greenhouse experiment was conducted at the University of Ghana, Legon in a completely randomized design. The field experiment which was carried out in the Upper East region of Ghana was laid out in a split-split plot design with four replicates. In both the greenhouse and field experiments, application of TSP at 30 kg P ha?1 resulted in significantly higher growth and P uptake in shoot compared with MPR and control. Soybean genotypes showed significant differences in growth, nutrient uptake, and grain yield in both the greenhouse and the field experiments. Rhizobium inoculation increased nodule number and dry weight but did not increase grain yield. The genotype TGx 1955-4F appears to show greater potential for increasing productivity of soybean in low P soils in northern Ghana.  相似文献   

20.
Phosphorus(P) is a limited resource that could be depleted. Consequently, recycling the P contained in sewage sludge, including sewage sludge incineration ash(SIA), from wastewater treatment plants is a possibility to be explored. A greenhouse experiment using annual ryegrass(Lolium multiflorum L.) was performed with an experimental design of three completely randomized blocks of two soils and 29 treatments: one control without P and two levels of 9 and 26 kg total P ha~(-1) from 14 different sources: twelve SIAs(not contaminated by trace metals) from the US and Canada, one commercial synthetic fertilizer(triple superphosphate(TSP)), and one commercial rock phosphate(RP). Higher ryegrass biomass levels were achieved at the higher fertilization rate(26 kg total P ha~(-1))and when using the SIAs with the highest P solubility percentage(PSP)(≥ 54% of total P). The biomass increases following SIA application were as high as 29% and 59% more than the control for the sandy loam and clayey soil, respectively, but 40% less than in TSP for both soils. A similar behavior was observed for P uptake, with a maximum increase of 26% for the clayey soil, and 165% for the sandy loam soil. The ryegrass biomass and P uptake increases due to SIA application were larger than those due to RP application in the clayey soil, but similar to those in the sandy loam soil. The SIAs with a PSP of ≥ 54% significantly increased soil available P stocks and saturation. According to our findings, we conclude that the SIAs from municipal and agrifood industries have a potential for P agricultural recycling, but their efficiencies vary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号