首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
A study was conducted to better understand the population structure of Zucchini yellow mosaic virus (ZYMV), a severe virus affecting cucurbit crops worldwide, in Tunisia and to estimate whether the use of resistant cultivars may provide durable control. Analysis of the polymerase and coat protein (NIb‐CP) partial sequences of 83 isolates collected in the three main cucurbit‐growing areas in Tunisia showed that ZYMV grouped into two distinct clusters within ZYMV molecular group A. An important variability was observed in the MREK motif of the P3 protein, a motif associated with tolerance breaking in ZYMV‐tolerant zucchini squash cultivars. Interestingly, significant differences were found in the distribution of the MREK variants in the two clusters defined by the partial NIb‐CP sequences, MREK and MKEK sequences being more common in cluster 1 and cluster 2, respectively. When combining NIb‐CP and P3 sequence information, ZYMV molecular variability was shown to be significantly higher in the Cap Bon region than in the Bizerte area. An important biological variability was observed in a subset of 23 isolates regarding symptomatology in susceptible or resistant cucurbits. Some isolates overcame ZYMV tolerance or resistance in zucchini squash and melon, but not in cucumber. Three serotypes were differentiated using a set of 13 monoclonal antibodies (MAbs). Seven parameters characterizing the 23 isolates, including molecular, serological and biological properties, were used for a multiple component analysis (MCA). This analysis revealed that symptom intensity of a given isolate was similar in different susceptible cucurbit hosts, suggesting similar degrees of aggressiveness in different hosts.  相似文献   

3.
Cucurbit potyviruses were collected in the field in Israel and subcultured in indicator plants in a greenhouse. Partial characterization of the Israeli cucurbit potyviruses was done on the basis of host reaction using cucurbits, peas andChenopodium spp. as hosts. Further classification of potyviruses was done by enzyme-linked immunosorbent assay (ELISA) and serological specific electron microscopy (SSEM). By these methods it was possible to identify three of the four isolates as strains of the zucchini yellow mosaic virus, while the fourth was identified as watermelon mosaic virus-2. Two of the ZYMV isolates were nonaphid-transmissible following prolonged mechanical transmission in a greenhouse. Both of these isolates were found to produce helper components capable of assisting the transmission of virions from a transmissible isolate but not those of their own.  相似文献   

4.
甘肃省南瓜及西葫芦小西葫芦黄花叶病毒病鉴定   总被引:1,自引:0,他引:1  
文朝慧  刘雅莉 《植物保护》2010,36(4):120-122
利用双抗夹心酶联免疫吸附测定(DAS-ELISA)的方法对甘肃出入境南瓜、西葫芦种子及采自河西地区显症病株叶片进行检测,在种子及病叶组织中均检测到ZYMV病毒,其中南瓜种子带毒批次占12.5%,西葫芦种子带毒批次占11.8%。根据已报道的小西葫芦黄花叶病毒(Zucchini yellow mosaic virus)基因组核苷酸序列,设计引物扩增其外壳蛋白(CP)基因,以ELISA阳性种子或病叶组织总RNA为模板,进行RT-PCR扩增,对预期大小的扩增产物进行测序,结果表明扩增获得的核苷酸序列与世界各地的ZYMV分离物CP基因具有高度一致性,综合ELISA检测和RT-PCR的结果,确定南瓜、西葫芦种子可携带ZYMV,且ZYMV是侵染甘肃瓜类作物的重要病毒种类。  相似文献   

5.
为明确近年来在浙江省葫芦科作物上发生的黄瓜绿斑驳花叶病毒(Cucumber green mottle mosaic virus,CGMMV)基因组特征及其发生分布情况,从浙江省及上海地区的甜瓜、西瓜和瓠瓜上采集疑似样品进行RT-PCR鉴定,通过分段扩增测序的方法拼接获得基因组全序列并进行系统进化分析,利用特异性引物扩增获得CGMMV外壳蛋白(coat protein,CP)基因序列,制备CGMMV CP抗血清进行Western-blot和Dot-ELISA检测。结果显示,来自甜瓜、西瓜和瓠瓜的3个CGMMV分离物基因组全序列均具有烟草花叶病毒属典型基因组结构特征,全部由6 423 nt构成;3个全序列间的核苷酸同源性高达99.11%~99.67%,编码的CP氨基酸同源性为100%。系统进化分析发现,CGMMV不同分离物形成2个进化相关群体,3个浙江的CGMMV分离物均位于第I组内,与已报道的中国CGMMV分离物和韩国CGMMV分离物亲缘性较高。Western-blot检测表明CGMMV CP抗血清可以与感病植株中的病毒发生特异性反应,可用于CGMMV鉴定;Dot-ELISA检测发现CGMMV在浙江省和上海市的葫芦科作物上普遍存在。  相似文献   

6.
To identify possible sites of viral attenuation, the complete nucleotide sequences of two isolates of Zucchini yellow mosaic virus (ZYMV) were determined; a severe isolate Z5-1 and an attenuated isolate from Z5-1 (designated ZYMV-2002). The viral genome of both isolates consisted of 9593 nucleotides in size and contained an open reading frame encoding a single polyprotein of 3080 amino acids. Comparison of the nucleotide sequences for Z5-1 and ZYMV-2002 revealed 14 nucleotide mutations, resulting in seven amino acid substitutions with four in the HC-Pro region, two in the CI region, and one in the NIb region. These results provide a genetic basis for future manipulation of the ZYMV reverse genetics system. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB188115 and AB188116  相似文献   

7.
Zucchini yellow mosaic virus (ZYMV) is the most prevalent virus in cucurbits in Syria. Two Syrian ZYMV isolates, SYZY-1 and SYZY-3, collected from a courgette field in 2006 were characterized using molecular and biological means for the first time. These isolates showed biological diversity with regard to their pathogenicity and symptoms. SYZY-1 was more aggressive in cucurbits, but could not induce any infection in Fabaceae. On the contrary, SYZY-3 could not infect cucumber and melon plants, induced milder symptoms in courgette and watermelon but induced local and occasional systemic infection in Fabaceae tested. Nonetheless, according to their molecular characteristics, SYZY-1 and SYZY-3 were closely related. The SYZY-1 CP nucleotide and amino acid sequences had similarity of 99.5% and 100% with those of SYZY-3, respectively. The high similarity of the CP nucleotide sequences of SYZY-1 and SYZY-3 with that of a ZYMV isolate from Germany suggests a common origin. Adaptation to different hosts might have caused the variable biological properties of these Syrian ZYMV isolates.  相似文献   

8.
9.
Sixteen isolates of Chinese yam necrotic mosaic virus (ChYNMV) were collected from nine sites in Japan and one site in Korea, and 1098 nucleotides of the 3-terminal of the genome were sequenced. Identity of the coat protein gene was 95.5%–99.7% among the isolates. Substitution in the deduced amino acids of the coat protein ranged from 0 to 7, mainly in the N-terminal region. The 3-untranslated region consisted of 231 nucleotides, which had 96.5%–100% nucleotide identity among the isolates. Sequence diversity was considerably less in ChYNMV than in Yam mosaic virus or Japanese yam mosaic virus.  相似文献   

10.
Characterization and occurrence of Zucchini Yellow Mosaic Virus in Sudan   总被引:1,自引:0,他引:1  
Zucchini yellow mosaic potyvirus (ZYMV) was isolated in 1993 from a squash plant ( Cucurbita pepo cv. Eskandrani) showing severe leaf and fruit distortions, collected in the Gezira region (Sudan). This isolate (ZYMV-Su) was found to be very closely serologically related if not identical to the type strain from Italy. The host range was mostly limited to Cucurbitaceae but systemic infection was found to occur on sesame ( Sesamum indicum ), an important cultivated crop in Sudan. ZYMV-Su induced mosaic symptoms on the resistant melon accession PI 414723, indicating that it belongs to pathotype 2, but did not cause wilting of melon cv. Doublon. ZYMV-Su was efficiently transmitted by Myzus persicae and Aphis gossypii in a non-persistent manner. Surveys conducted from 1993 to 1995 revealed that ZYMV occurred in the major cucurbit growing areas in Sudan, in a diversity of crops and agroecosystems.  相似文献   

11.
Begomoviruses represent one of the most damaging virus groups on many important crops worldwide. In Venezuela, the begomovirus Melon chlorotic mosaic virus (MeCMV) is the major constraint for melon and watermelon production. MeCMV has been associated with the satellite Melon chlorotic mosaic alphasatellite (MeCMA). Full‐length genome sequencing of 20 and 35 isolates of MeCMV and MeCMA, respectively, was carried out to estimate their genetic variability. Furthermore, mechanical transmission assays of MeCMV alone, or in conjunction with MeCMA, were performed. Genetic variation was low among MeCMV isolates, which exhibited 97–100% nucleotide identity for the DNA‐A component and 95–100% for the DNA‐B component. Alphasatellite isolates were highly variable ranging from 86·5 to 100% nucleotide identity. MeCMV isolates were phylogenetically related to begomoviruses belonging to the Squash leaf curl virus (SLCV) clade, while MeCMA isolates were clustered in two subgroups related to alphasatellites from the New World (Cuba and Brazil). MeCMV has a host range restricted to cucurbit species and two experimental hosts: Nicotiana benthamiana and Nicotiana clevelandii. MeCMV can be mechanically transmitted with up to 100% efficiency in melon. The physiological stage of the inoculated organ (cotyledon or leaf) represents a key factor for inoculation efficiency. This result provides a simple and reliable inoculation method to develop extensive screening for MeCMV resistance sources. In addition, the complex MeCMV + MeCMA was mechanically transmitted to melon, N. benthamiana and N. clevelandii plantlets and successfully back‐transmitted. To the authors’ knowledge, this finding is the first evidence of sap transmission for a begomovirus–satellite complex.  相似文献   

12.
13.
为明确黄瓜花叶病毒(cucumber mosaic virus,CMV)甜瓜分离物的分子变异情况及其侵染性,对2个甜瓜分离物CH99和XH18的基因组进行克隆、测序和分析,并通过构建全长cDNA克隆分析其侵染性。结果显示,黄瓜花叶病毒甜瓜CH99分离物3条RNA长度分别为3 356、3 049和2 211 nt,甜瓜XH18分离物3条RNA长度分别为3 381、3 048和2 217 nt。分离物CH99与XH18的核苷酸序列一致性为89.40%~95.80%,氨基酸序列一致性为90.00%~97.80%,CH99分离物与其他CMV分离物的核苷酸和氨基酸序列一致性平均值分别为79.23%~89.29%和73.52%~93.90%,XH18分离物与其他CMV分离物的核苷酸和氨基酸序列一致性平均值分别为79.81%~89.83%和74.02%~95.14%。遗传发育分析显示,这2个分离物均属于亚组IB成员。接种试验结果显示,分离物CH99和XH18的侵染性克隆构建成功,这2个分离物均能系统侵染本生烟、甜瓜和黄瓜,并在本生烟和甜瓜上引起较严重的症状,在黄瓜上引起的症状较弱,而二者均不能侵染西...  相似文献   

14.
ABSTRACT Mixed infections of cucurbits by Cucumber mosaic virus (CMV) and potyviruses exhibit a synergistic interaction. Zucchini squash and melon plants coinfected by the potyvirus Zucchini yellow mosaic virus (ZYMV) and either Fny-CMV (subgroup IA) or LS-CMV (subgroup II) displayed strong synergistic pathological responses, eventually progressing to vascular wilt and plant death. Accumulation of Fny- or LS-CMV RNAs in a mixed infection with ZYMV in zucchini squash was slightly higher than infection with CMV strains alone. There was an increase in CMV (+) strand RNA levels, but no increase in CMV (-) RNA3 levels during mixed infection with ZYMV. Moreover, only the level of capsid protein from LS-CMV increased in mixed infection. ZYMV accumulated to similar levels in singly and mixed infected zucchini squash and melon plants. Coinfection of squash with the potyvirus Watermelon mosaic virus (WMV) and CMV strains increased both the Fny-CMV RNA levels and the LS-CMV RNA levels. However, CMV (-) strand RNA3 levels were increased little or not at all for CMV on coinfection with WMV. Infection of CMV strains (LS and Fny) containing satellite RNAs (WL47-sat RNA and B5*-sat RNA) reduced the accumulation of the helper virus RNA, except when B5*-sat RNA was mixed with LS- CMV. However, mixed infection containing ZYMV and the CMV strains with satellites reversed the suppression effect of satellite RNAs on helper virus accumulation and increased satellite RNA accumulation. The synergistic interaction between CMV and potyviruses in cucurbits exhibited different features from that documented in tobacco, indicating there are differences in the mechanisms of potyvirus synergistic phenomena.  相似文献   

15.
The geographic incidence, genetic diversity and phylogenetic relationships of Melon necrotic spot virus (MNSV) and Olpidium isolates were studied in three cucurbit species from several Latin American and European countries on different collecting dates. Of the 112 cucurbit samples analysed, 69 from Guatemala, Honduras, Mexico, Panama and Spain were DAS‐ELISA‐positive for MNSV. Olpidium bornovanus and O. virulentus infections, and MNSV infections mixed with these Olpidium species, were observed for all these countries. Twenty‐nine MNSV isolates from all the origins where the virus was detected were selected and amplified by RT‐PCR. The resulting RT‐PCR of the p29, p89, p7A, p7B and p42 proteins was used to estimate the genetic diversity and the phylogenetic relationships of the MNSV population. The sequences obtained in this study were compared with the MNSV sequences of the NCBI database, and three groups were recovered by nucleotide composition according to geographical origins: the EU‐LA genotype group (with two subgroups: EU and LA, European and Latin American isolates, respectively), the JP melon genotype group (Japanese melon reference isolates) and the JP watermelon genotype group (Japanese watermelon reference isolates). The genetic diversity in the entire p7A and p7B proteins of MNSV suggests that these coding regions are under strong selective pressure. Additionally, the rDNA‐ITS region was analysed in 40 O. bornovanus and O. virulentus isolates associated with each geographical location and host examined. Phylogenetic analysis showed two groups for each Olpidium species, and these groupings were related to the host from which they were originally isolated.  相似文献   

16.
小西葫芦黄花叶病毒山东南瓜分离物的分子特性   总被引:2,自引:0,他引:2  
 Zucchini yellow mosaic virus (ZYMV) was detected by RT-PCR from pumpkin (Cucurbita moschata) plant showing yellowing and mosaic symptom from Liaocheng, Shandong Province. The 3'-termial 1 684 bp genomic sequence covered 633 bp of NIb encoding sequence, 840 bp of cp gene and 211 bp of 3'-untranslated region of the isolate ZYMV-Liaocheng was determined. The cp gene of ZYMV-Liaocheng shared identities of 81.4%-98.8% and 89.4%-99.5% at nucleotide and amino acid levels, respectively, with other ZYMV sequences available in the GenBank. Phylogenetic analysis indicated that ZYMV could be clustered to 6 genotypes. ZYMV-Liaocheng belonged to genotypeⅠ, which contained isolates from Asia, Europe and America. Genotypes Ⅲ and Ⅴ were unique and contained only isolates from East Asia. The isolates from East Asia had the highest variability.  相似文献   

17.
Zucchini yellow mosaic virus (ZYMV) has emerged as an important pathogen of cucurbits within the last few years in Hungary. The Hungarian isolates show a high biological variability, have specific nucleotide and amino acid sequences in the N-terminal region of coat protein and form a distinct branch in the phylogenetic tree. The virus is spread very efficiently in the field by several aphid species in a non-persistent manner. It can be transmitted by seed in holl-less seeded oil pumpkin (Cucurbita pepo (L) var Styriaca), although at a very low rate. Three isolates from seed transmission assay experiments were chosen and their nucleotide sequences of coat proteins have been compared with the available CP sequences of ZYMV. According to the sequence analysis, the Hungarian isolates belong to the Central European branch in the phylogenetic tree and, together with the ZYMV isolates from Austria and Slovenia, share specific amino acids at positions 16, 17, 27 and 37 which are characteristic only to these isolates. The phylogenetic tree suggests the common origin of distantly distributed isolates which can be attributed to widespread seed transmission.  相似文献   

18.
Plant–fungal specificity between cucurbitaceous crops and Diaporthe sclerotioides, the causal agent of black root rot, was studied using cucumbers (Cucumis sativa), melons (Cucumis melo), pumpkins (Cucurbita maxima), watermelons (Citrullus lanatus) and bottlegourd (Lagenaria siceraria var. gourda). Twelve D. sclerotioides isolates from these cucurbit species were cross‐inoculated. The virulence of the isolates was evaluated as the area under the disease progress curve (AUDPC). All cucurbit species were susceptible to each isolate, but AUDPCs were significantly different among the hosts, with the order of greatest to least being melon, cucumber, watermelon, bottlegourd and finally, pumpkin. The infectiveness of isolates was assessed as the quantity of D. sclerotioides DNA detected in the hypocotyls of seedlings 2 weeks after inoculation using a real‐time PCR protocol. The fungal DNA quantities varied among the species in the same order as the AUDPCs. Whilst there were statistically significant correlations between the virulence and infectiveness of D. sclerotioides isolates in cucumbers, melons and bottlegourds, their coefficients of determination were not high (r2 < 0·6). Orthogonal contrasts indicated no specificity in either the fungal virulence or infectiveness between D. sclerotioides isolates and the cucurbit hosts from which these isolates originated. Thus, although the degree of host susceptibility to D. sclerotioides varies among cucurbit species, the absence of specificity to the host species in either virulence or infectiveness suggests the pathogen may spread via various cucurbit crops, irrespective of their original host species.  相似文献   

19.
Zucchini yellow mosaic virus   总被引:24,自引:0,他引:24  
Zucchini yellow mosaic potyvirus (ZYMV), first isolated in Italy in 1973, described in 1981, and then identified in all continents within a decade, is one of the most economically important viruses of cucurbit crops. It is efficiently aphid-transmitted in a nonpersistent manner and it is also seed-borne in zucchini squash, which could have contributed to its rapid spread worldwide. Biological variability has been observed among ZYMV isolates, concerning host range, symptomatology and aphid transmissibility. More recent studies also revealed a serological and molecular variability. The survival of ZYMV in areas where cucurbits are not grown throughout the year remains to be elucidated, because very few natural over-wintering hosts have been identified so far. Partial control of ZYMV can be achieved by limiting transmission of the virus to the crops by aphids, using adapted cultural practices. Cross-protection with a mild strain has been shown to be effective against most ZYMV isolates. Resistance genes found in cucurbit germplasms are currently being introduced into cultivars with good agronomical characteristics. Pathogen-derived resistance strategies using the expression of ZYMV genes in transgenic plants have also been developed and appear promising. Nevertheless, the high biological variability of ZYMV justifies a careful evaluation of the deployment of genetic control strategies in order to increase their durability.  相似文献   

20.
Complete nucleotide sequences of eight Japanese isolates of Tomato yellow leaf curl virus (TYLCV) were determined and compared with four TYLCV isolates already reported. These isolates separated into three groups – Shizuoka (Sz), Aichi (Ai), Nagasaki (Ng) – and had 99% identities within the groups. Full-length molecules of DNA-A of group Sz consist of 2791nt and those of group Ai contain 2787nt. Both were closely related to TYLCV-Is.M, although those of group Ng had 2793nt and were more closely related to TYLCV-Is. Comparison of common sequences of isolates belonging to groups Sz and Ai had substitutions of 4nt in the intergenic region and nonsynonymous substitutions at open reading frames between the groups. None of the isolates tested had DNA molecules. Agroinfection of four plant species with a DNA-A dimeric infectious clone of TYLCV-SzY, a member of group Sz, resulted in systemic infection. Tomato plants then developed typical yellow leaf curl symptoms.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB116629, AB116630, AB116631, AB116632, AB116633, AB116634, AB116635, and AB116636  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号