首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The removal or maintenance of harvest residues in eucalypt plantations may influence site quality and productivity. Removal of slash from the site may facilitate further management operations and provide a valuable energy resource, but effects on site productivity and sustainability for a rotation time span were not yet assessed under Mediterranean conditions. Therefore, a study was carried out to assess the effects of slash (harvest residues plus forest floor litter) management and soil preparation options on stand productivity and understory vegetation dynamics, hypothesizing that those options influence tree growth, forest floor dynamics and understory biomass and diversity. An experiment was installed in West Central Portugal, consisting on: removal of slash without soil preparation (R); broadcast of harvest residues on the soil surface without soil disturbance (S); as in S, but concentrating the woody debris between tree rows (W); incorporation of slash into the soil by harrowing (I); removal of slash followed by harrowing (RH); and as in I followed by ripping (IS). The experiment was monitored for a rotation time span (140 months). Maintenance of slash followed by deep soil disturbance led to the highest wood production, but differences between treatments were not significant (p > 0.05). Forest floor load and understory biomass were also similar between treatments. Ground vegetation played an important role on nutrient cycling in early rotation stages, such effect being irrespective on slash management options. Incorporation of slash into the soil followed by ripping is probably the best option to match production and environmental sustainability of eucalypt plantations in Mediterranean conditions.  相似文献   

2.
Understory plant biomass, species richness and canopy openness were measured in six-year old hybrid poplar riparian buffer strips, in the understory of two unrelated clones (MxB-915311 and DxN-3570), planted along headwater streams at three pasture sites of southern Quebec. Canopy openness was an important factor affecting understory biomass in hybrid poplar buffers, with lower understory biomass observed on sites and under the clone with lower canopy openness. Although tree size was an important factor affecting canopy openness, relationships between total stem volume and canopy openness, for each clone, also support the hypothesis of a clonal effect on canopy openness. Understory biomass and canopy openness as low as 3.6 g m−2 and 7.6% in 1 m2 microplots were measured under clone MxB-915311 at the most productive site. This reduction of understory plant growth could compromise important buffer functions for water quality protection (runoff control, sediment trapping and surface soil stabilisation), particularly were concentrated runoff flow paths enter the buffer. On the other hand, tree buffers that maintain relatively low canopy openness could be interesting to promote native and wetland plant diversity. Significant positive relationships between canopy openness and introduced species richness (R 2 = 0.46, p < 0.001) and cover (R 2 = 0.51, p < 0.001) were obtained, while no significant relationship was observed between canopy openness and native (wetland) species richness and cover. These results suggest that planting riparian buffer strips of fast-growing trees can rapidly lead to the exclusion of shade-intolerant introduced species, typical colonisers of disturbed habitats such as riparian areas of pastures, while having no significant effect on native (wetland) diversity. Forest canopy created by the poplars was probably an important physical barrier controlling introduced plant richness and abundance in agricultural riparian corridors. A strong linear relationship (R 2 = 0.73) between mean total species richness and mean introduced species richness was also observed, supporting the hypothesis that the richest communities are the most invaded by introduced species, possibly because of higher canopy openness, as seen at the least productive site (low poplar growth). Finally, results of this study highlight the need for a better understanding of relationships between tree growth, canopy openness, understory biomass and plant diversity in narrow strips of planted trees. This would be useful in designing multifunctional riparian buffer systems in agricultural landscapes.  相似文献   

3.
Understory plants are important components of forest ecosystems and play a crucial role in regulating community structures, function realization, and community succession. However, little is known about how abiotic and biotic drivers affect the diversity of understory species in cold temperate coniferous forests in the semiarid climate region of North China. We hypothesized that(1) topographic factors are important environmental factors affecting the distribution and variation of understory strata,and(2) different understory strata respond differently to environmental factors; shrubs may be significantly affected by the overstory stratum, and herbs may be more affected by surface soil conditions. To test these hypotheses, we used the boosted regression tree method to analyze abiotic and biotic environmental factors that influence understory species diversity, using data from 280 subplots across 56 sites in cold temperate coniferous forests of North China.Elevation and slope aspect were the dominant and indirect abiotic drivers affecting understory species diversity, and individual tree size inequality(DBH variation) was the dominant biotic driver of understory species diversity; soil water content was the main edaphic factors affecting herb layers. Elevation, slope aspect, and DBH variation accounted for 36.4, 14.5, and 12.1%, respectively, of shrub stratum diversity. Shrub diversity decreased with elevation within the range of altitude of this study, but increased with DBH variation; shrub diversity was highest on north-oriented slopes. The strongest factor affecting herb stratum species diversity was slope aspect, accounting for 25.9% of the diversity, followed by elevation(15.7%), slope(12.2%), and soil water content(10.3%). The highest herb diversity was found on southeast-oriented slopes and the lowest on northeast-oriented slopes; herb diversity decreased with elevation and soil water content, but increased with slope. The results of the study provide a reference for scientific management and biodiversity protection in cold temperate coniferous forests of North China.  相似文献   

4.
Understory plants could can act as indicators of temperate forest sustainability, health and conservation status due to their importance in ecosystem function. Harvesting impacts on understory plant diversity depends on their intensity. Variable retention has been proposed to mitigate the harmful effects of timber harvesting, but its effectiveness remains unknown in southern Patagonian Nothofagus pumilio forests. The objectives of this study were to: (i) define a baseline of understory plant diversity in old-growth forests along a site quality gradient and under canopy gaps; (ii) evaluate stands with three different variable retention treatments compared to old-growth forests; and (iii) assess temporal changes during 4 years after harvesting (YAH). A 61 ha N. pumilio forest was selected. Understory plant (Dicotyledonae, Monocotyledonae and Pteridophyta) richness, cover (including woody debris and bare forest floor) and aboveground dry biomass were characterized in summer for 5 years. Before harvesting, baseline samples were conducted along a site quality gradient and outside/inside canopy gaps. Analyzed treatments include a control of old-growth forest (OGF) and three different harvesting treatments with variable retention: (i) dispersed retention (DR) of 30 m2 ha−1 (20-30% retention); (ii) aggregated retention (AR) with one aggregate per hectare and clear-cuts (28% retention); and (iii) combined dispersed and aggregated retention (DAR) with one aggregate per hectare and dispersed retention of 10-15 m2 ha−1 (40-50% retention). Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations.Before harvesting, 31 plant species were found, where richness, cover and biomass were directly related to site quality. The presence of canopy gaps did not have a significant impact on the measured variables. After harvesting, 20 new species appeared from adjacent associated environments (two from N. antarctica forests and 18 from grasslands and peatlands). At the stand level, understory values were higher in AR > DR > DAR > OGF. Most (81-95%) plant richness at baseline conditions was conserved in all treatments, where inside the aggregates understory remained similar to OGF. Combination of aggregated and dispersed retention (DAR) better limited exotic species introduction and protected sensitive species, improving conservation in harvested stands. Changes in understory variables were observed after the first YAH in all treatments; greater changes were observed in the harvested areas than in aggregates. Changes stabilized at the fourth YAH. As a conclusion, the location of retention aggregates should be selected to preserve species understory diversity of more speciose and diverse habitats or particularly uncommon stands. Implementation of different kinds (patterns and levels) of retention for improvement of biodiversity conservation in harvested forests should be included in timber and forest management planning.  相似文献   

5.
Mechanical mastication is increasingly prescribed for wildfire mitigation, yet little is known about the ecological impacts of this fuels treatment. Mastication shreds trees into woodchips as an alternative to tree thinning and burning the resulting slash, which can create soil disturbances that favor exotic plants. Previous research on mastication has not simultaneously considered both the responses of soil organisms and understory plant communities. We compared mastication to slash pile burning (both 6-months and 2.5-years post-treatment) and untreated controls in pinyon–juniper (Pinus edulisJuniperus osteosperma) woodland and measured soil properties, arbuscular mycorrhizal fungi (AMF) and understory plant composition. Our results showed that slash pile burns had severely degraded soil properties and low AMF abundance and richness compared to untreated or mastication plots. Pile burns were dominated by exotic plant species and had approximately 6× less understory plant abundance and richness than untreated plots. Only two variables differed between mastication and untreated plots 6-months post-treatment: mastication had lower soil temperature and higher soil moisture. Mastication plots 2.5-years post-treatment had more plant cover and richness than untreated plots or pile burns, although non-native Bromus tectorum cover was also greater and AMF spore richness was lower than untreated plots. The structural equation model (SEM) we developed showed that plant cover strongly influenced AMF abundance (0.50) and both plant cover (0.36) and AMF (0.31) positively influenced soil stability. In the short-term, mastication is a preferable method as it creates fewer disturbances than pile burning; however long-term impacts of mastication need further study as this practice could affect native plant communities. Our results suggest that the manner in which woody debris is treated following tree thinning has an important influence on soil stability and native plant biodiversity.  相似文献   

6.
In response to concerns about the effects of traditional timber harvesting practices on biodiversity, we examined the effects of alternative silvicultural systems, including partial cutting and modified herbicide use on understory plant communities in an aspen-dominated mixedwood stand. These alternative silvicultural systems match disturbance rates that, based on the intermediate disturbance hypothesis, would support more diverse understory vegetation communities than uncut or clear-cut forests treated with a broadcast spray. Our results indicated that both understory vegetation cover and number of plant species increased at 5 and 10 years after timber harvesting in aspen-dominated boreal mixedwood stands. The highest amount of understory vegetation cover were found in the pre-harvesting herbicide spray treatment areas, likely because understory plants were not directly exposed to the herbicide, whereas the most species occurred in the partial cutting treatment, which represented the most diverse stand structure with both harvested and leave corridors. Understory composition by percent cover of individual species at 10 years post-harvesting was affected by all treatment attributes (i.e., level of harvesting removal, type and time of herbicide application, and mechanical site preparation); however, understory vegetation responded the most to harvesting level. Among treatments, the difference in understory composition was largely attributed to changes in understory species of different shade tolerance.  相似文献   

7.
Recovery of biomass and biodiversity of forest understory vegetation after fire disturbance has been widely studied; however, how this relationship changes and what are the determinants at different post-fire stages in larch boreal forests are still unclear. We investigated a chronosequence of 81 understory plots in larch boreal forests that were disturbed by fires in 1987 (S5), 1992 (S4), 1996 (S3), 2002 (S2), or 2007 (S1). Analysis of variance was conducted to test the differences of biodiversity and biomass among various post-fire stages. Different regression models were used to fit the relationship between biomass and biodiversity, while factors influencing this relationship were identified by boosted regression tree analysis. Results showed that total understory biomass increased from 2.51?t?ha?1 in S1 to 8.47?t?ha?1 in S3 and declined to 5?t?ha?1 in S5. Similar dynamics were also found between species richness and species diversity. Positive linear correlations linked biomass and biodiversity throughout most of the post-fire periods. Slope and stand density were the two most important factors influencing the secondary succession of understory vegetation after fire. Geographical factors and overstory competition determine the orientation of vegetation recovery, and the impacts of climate on vegetation are muted after fire disturbances.  相似文献   

8.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

9.
In the Euro-Mediterranean region, mechanical fuel reduction is increasingly used in response to the mounting occurrence of catastrophic wildfires, yet their long-term ecological effects are poorly understood. Although Mediterranean vegetation is resilient to a range of disturbances, it is possible that widespread fuel management at short intervals may threaten forest structural complexity and the persistence of some plant species and functional types, with overall negative consequences for biodiversity. We used a chronosequence approach to infer woody vegetation changes in the first 70 years after understory clearing in upland cork oak (Quercus suber) forests, and to assess how these are affected by treatment frequency. Across the chronosequence there was a shift between plant communities with contrasting composition, structure and functional organization. Understory cover increased quickly after disturbance and a community dominated by pioneer seeder and dry-fruited shrubs (Cistus ladanifer, C. populifolius, Genista triacanthos, and Lavandula stoechas) developed during about 15 years, but this was slowly replaced by a community dominated by resprouters and fleshy-fruited species (Arbutus unedo, Erica arborea) >40 years after disturbance. During the first 15 years there were rapid increases in woody species richness, vertical structural diversity, cover by Q. suber juveniles and saplings, and shrub cover at <1.5 m strata, which levelled off or slightly declined thereafter. In contrast, tree species richness, tree density and density of arboreal A. unedo and E. arborea, vertical structural evenness, and cover at >1.5 m strata increased slowly for >50 years. Treatment frequency showed strongly negative relationships with species richness, structural diversity and evenness, and horizontal and vertical understory cover, particularly that of slowly recovering species. These findings suggest that fuel reduction programs involving widespread and recurrent understory clearing may lead to the elimination at the landscape scale of stands with complex multi-layered understory occupied by large resprouters and fleshy-fruited species, which take a long time to recover after disturbance. Fuel management programs thus need to balance the dual goals of fire hazard reduction and biodiversity conservation, recognizing the value of stands untreated for >50 years to retain ecological heterogeneity in Mediterranean forest landscapes.  相似文献   

10.
The effect of harvest residue management options on biomass and nutrient accumulation in understory vegetation, as well as the contribution of understory to nutrient cycling, were assessed during the early rotation stage of a Eucalyptus globulus Labill. plantation in Central Portugal. The effects of residue management options on early tree growth were also evaluated. Treatments established at the time of plantation and replicated four times in a simple completely randomised design included removal of harvest residues (R), incorporation of residues into the soil by harrowing (I) and maintenance of residues on the soil surface (S). Understory biomass was sampled in the spring between 2002 and 2006, and every 2 months between March 2006 and March 2007. The latter samples were stratified into biomass, standing dead mass and litter for net above ground primary production (NAPP) assessment. Samples were oven dried, weighed and analysed for nutrient contents. Results showed that understory standing biomass strongly increased from the first to the third year and that quantities of nutrients accumulated in ground vegetation followed similar patterns between the three treatments. Nutrient accumulation in ground vegetation was greater than in tree biomass until at least the second spring after plantation. Bimonthly sampling revealed treatment R to have the largest amounts of standing biomass, standing dead mass, litter and nutrient immobilisation, while treatment S exhibited the lowest values. NAPP (4th–5th year) was 639, 511 and 362 g m−2 year−1, respectively in R, I and S, corresponding the standing biomass increase to 277, 183 and 143 g m−2 year−1. These values are comparable to those observed for litter fall in similar stands (age and tree density) in the same area. The contribution of ground vegetation to nutrient accumulation in the system was unaffected by harvest residue management methods, but further research is necessary in order to establish whether slash management options influence long term tree growth and vegetation dynamics.  相似文献   

11.
Tree species composition is a primary attribute of forest ecosystems, and is often manipulated by silvicultural practices. Forest management to diversify tree species is now being promoted to favor biodiversity. To assess the soundness of this policy we reviewed and analyzed the literature on the relationship between tree species composition and floristic diversity, including the mechanisms involved therein. Coniferous forests generally provide less diversified vascular understories than broadleaved forests. At the tree species scale, there are not enough reports to draw firm conclusions on the effect of any particular species. Mixing of deciduous and coniferous tree species generally affects understory diversity, but in almost all cases maximum diversity is observed in one of the pure stands, not in mixed stands. Understory vegetation is influenced by overstory composition and structure through modifications of resource availability (light, water and soil nutrients) and other effects, such as physical characteristics of the litter layer. Overstory light transmittance and diverse properties of forest litter are factors that have been most fully studied to date, but other factors such as throughfall water quantity and chemistry may also play a role. While the relative importance of mechanisms that account for the effect of overstory on understory biodiversity has often been discussed, these mechanisms have rarely been the subject of formal experiments. Overall, varying management practices and site attributes make it difficult to generalize results. They combine with the effects of tree species in influencing understory vegetation diversity, but they have been rarely considered. Future research is needed to gain a better understanding of the relationship between overstory and understory diversity and establish general laws.  相似文献   

12.
Alternative strategies for stand density management in even-aged coniferous forests may increase plant species and functional diversity. We examined the effects of fixed and variable density thinning on tree seedling regeneration as well as on abundance (indexed by cover) and richness of understory vascular plants 11 years after harvesting 45- to 66-year old forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) or western hemlock (Tsuga heterophylla (Raf.) Sarg.) at three sites in western Oregon. Each site contained an unthinned control (CON), and thinning treatments selected to enhance overstory structural diversity and spatial variability within stands (HD, high density treatment at 300 trees ha−1; MD, moderate density treatment at 200 trees ha−1; VD300, VD200 and VD100, variable density treatments at 300, 200 and 100 trees ha−1). Leave islands are included in HD and the other thinning treatments contain both leave islands and gap openings. Tree seedling regeneration was highly variable and generally increased with thinning. Cover of all understory species was greater in VD100 than in the control whereas richness was greater in HD and MD. Cover and richness of early seral species were greater in most thinning treatments than in the control. Understory plant communities were overwhelmingly dominated by native species. In general, vegetation dynamics was accelerated by thinning, especially in variable density treatments. Cover of N-fixing understory species was greater in VD200 than in the other treatments, and in MD and VD300 than in the control, whereas richness of understory N-fixing species increased in all thinning treatments. Cover of understory species with intermediate soil water requirements was greater in MD, VD200 and VD100 than in the control, whereas richness of these species increased in VD200 compared to the control, HD and VD300. Thinning promoted higher diversity of understory conditions without reducing density and species richness of crop tree regeneration, and seemed to increase functional effect and response diversity.  相似文献   

13.
Cork oak “Montados” are a particular Mediterranean ecosystem, which can be found in Southern Portugal. Portuguese “Montados” are man-made ecosystems, mainly used for cork production and cattle farming, that support a high biological diversity. Current sustainable management techniques imply a shrub clearing with heavy machinery, which can be highly disruptive for soil biota. In order to evaluate the effects of understory vegetation management on soil epigeic macrofauna, five zones were defined along a chronosequence of shrub clearing: a non-disturbed zone (zone 5) and zones where understory vegetation was cut at 4–5 years (zone 4), at 3–4 years (zone 3), at 2 years (zone 2) and at 1 year (zone 1). A sixth zone (zone 6) was selected in a pasture, where cattle are occasionally present. Soil fauna was sampled using “pitfall” traps and sampling took place in autumn 2003. A total of 2,677 individuals, separated into 152 species and morphospecies, were caught in the traps. With the exception of zone 6, that presented a lower number of species, all the other zones from the chronosequence presented, in most cases, a similar number of taxa, species diversity (Shannon) and species richness (Margalef). Multivariate analysis separated recently disturbed zones (plus zone 6) from those intervened at longer time; groups like Formicidae, Scydmaenidae, most families from Araneae and insect larvae appeared closely associated to zones 3–5 (with a higher shrub cover and thick litter layers), whereas, other Hymenoptera, Gastropda and most Coleoptera families, appeared associated to recently disturbed zones (zones 1 and 2) and to zone 6, characterized by a lower shrub cover and a lower accumulation of litter. This separation indicates that effects of the intervention can endure for 2 or 3 years. After that time, the normal natural regeneration of the understory vegetation seems to support the restoration of the macrofauna community, thus indicating that the sustainable management strategy adopted, i.e., making a shrub cut every 5–6 years, seems not induce a significant effect on local species richness of soil epigeic macrofauna.  相似文献   

14.
Currently, the aim of modern forest management is not only timber production but also the protection of biodiversity. The initial effects of clear-cut logging on forest understory vegetation, soil and the diversity of litter beetles have been studied. We examined unstudied effects of clear-cutting disturbance on understory vascular plant species abundance, forest soils, and understory vegetation nutrients as well as beetle diversity one year after clear-cutting. Substantial changes in the prominence values and above-ground mass of forest-related vascular plant and moss species were detected. Clear-cuttings resulted in fast appearance of new light-loving plant species. The significant decrease in understory plant biomass influenced the reduction of nutrient pools in clear-cut areas after one year. The clear-cut logging negatively influenced the richness of species and the number of individuals of stenobiontic forest-related beetles in the forest litter. However, forest clear-cuttings were beneficial for eurytopic and open land species.  相似文献   

15.
We measured photosynthetically active radiation (PAR) beneath the forest canopy, understory species richness and diversity, and biomass in a Larix leptolepis plantation in central Korea 4 years after thinning. Four different thinning intensities (control, 10%, 20%, and 40% stocking reduction) were applied in 1997. Mean annual intercepted PAR at 30cm and 1m above ground level was significantly different among the thinning intensities and strongly correlated with the number of stems remaining after thinning. Understory species richness and diversity were lowest in the unthinned stands and increased with thinning intensity, and there were significant correlations between the total number of understory species or diversity index (Shannons diversity index, H) and the number of stems per hectare after thinning. Also understory above-ground biomass was significantly increased with thinning intensity in both sampling months (June and August 2001). Thinning increased light inputs to the ground and resulted in higher species richness and diversity and above-ground biomass. These results suggested that light availability and understory responses to thinning at a comparable intensity are likely to last well beyond the 4 years of this study.  相似文献   

16.
【目的】探讨油松人工林皆伐前后林下植物多样性的变化及与土壤水分的关系,为在油松林皆伐后植被恢复和发育阶段维持生物多样性、保持林分结构稳定、发挥更高生态效益等方面提供科学依据和经营措施建议。【方法】采用时序研究法,在河北平泉地区选择立地一致的不同林龄油松人工林(32年中龄林、40年近熟林、53年成熟林)和皆伐后不同时间(5、10、24 a)的天然更新林作为研究对象,分析不同生长发育阶段油松人工林下植物物种组成与多样性的变化规律及与土壤水分间的相关性。【结果】1)皆伐前后6种林分样地共出现灌木植物21种,草本植物65种,不同样地林下植物组成存在差异。胡枝子在各林分样地均有出现,且重要值均> 20%,在灌木层优势地位明显;草本层中菊科植物种类最多,有18种,其次是蔷薇科和禾本科,分别为6种和4种。2)不同林分样地林下植物多样性指数均表现为草本层>灌木层,皆伐前随着林龄增加林下植物多样性逐渐增加;皆伐后灌木层植物多样性表现为先下降后增加再下降,且变化幅度明显,伐后10 a灌木层Margalef丰富度指数、Simpson多样性指数、Shannon-Wiener多样性指数和Pielou均匀度指数最大,分别为1.40、0.61、1.24和0.74,与53年样地差异不显著。皆伐后不同时间的天然更新林草本层植物多样性均与伐前53年样地的差异不显著,皆伐对灌木层植物的影响较大。3)不同林地土壤水分变化规律较一致,表现为伐前随林龄增加而逐渐增加,伐后5~10 a仍保持较高水平,伐后24 a出现下降,经相关分析植物多样性指数与土壤水分之间有显著的正相关关系,与草本层的相关性达极显著水平。【结论】伐前林下植物多样性变化主要与林分密度降低、光照条件改善有关,伐后主要与油松天然更新及种间竞争有关。依靠油松天然更新恢复的林地保持了较高的生物多样性,但在皆伐10 a后出现下降的趋势,建议在此时对油松更新苗进行人工抚育、降低密度以维持植物多样性。土壤水分是影响植物多样性的关键生态因子,良好的土壤水分条件和林下植被的恢复和发展可以相互促进。  相似文献   

17.
Pinelands in a 49 ha naturally-regenerated, mature flatwoods forest in north Florida were clearcut harvested in the fall of 1978, site prepared by burning, shearing and piling, discing, and bedding, and planted to slash pine (Pinus elliottii) in 1979. Three vegetation surveys were conducted: one prior to harvest in the summers of 1977 and 1978, and two subsequent to planting in the summers of 1980 and 1981.Cover and frequency of all plant species encountered were assessed on permanent transects. Foliage biomass by species was assessed by destructive sampling of distinct subplots within permanent plots. The aim was to assess plant species cover, frequency, and biomass responses to the forest operations imposed.Pine was eliminated as a dominant genus by harvesting. Planted pines were a fast increasing, but not dominant, component of the vegetation at 2 years of age. Previously dominant shrubs were severely reduced — often by approximately two orders of magnitude. Indeed, woody species were severely reduced: woody cover from 151 to 12% of surface area at plantation age 2 years; woody biomass from 6223 to 521 kg/ha.Conversely, herbaceous species were substantially increased: herbaceous cover from 38 to 51% of surface area at 2 years; herbaceous biomass from 382 to 1439 kg/ha. Thus, a predominantly woody ecosystem was converted to a predominantly herbaceous one for 2 years following planting.There was little change in plant species richness as a result of forest operations. Plant diversity changes were mixed the 1st year but diversity substantially increased the 2nd year. Comparisons with a companion study (Conde et al., 1983) suggest that, while increases in diversity following maximum site preparation may lag increases following minimum site preparation, cover, frequency, and biomass diversity all converge to common values after 2 years despite disparity in treatments.  相似文献   

18.
林下植被多样性、生物量及养分作用研究进展   总被引:3,自引:2,他引:1  
林下植被是森林生态系统的重要组成部分,对森林生态系统的稳定性、生产力及养分循环具有重要影响,因此研究林下植被具有重要意义。但是以往由于研究方法、研究时限以及研究尺度等方面存在许多缺陷,对林下植被的认识还不统一,研究结论不够深刻。如何正确测定林下植被多样性及其生物量,合理评价林下植被对森林生态系统的作用,科学制定林下植被的管理措施,这些问题都值得进一步深入研究。文中对林下植被多样性、生物量及其养分作用3个方面的研究进行了分析总结,以期为今后林下植被研究、林下植被管理和森林可持续经营提供参考。  相似文献   

19.
Biodiversity in managed plantations has become an important issue for long-term sustainability of ecosystems. The environmental effects of plantations comprised of fast-growing introduced trees have been vigorously debated. On one hand, monocultures have been said to exhaust resources, resulting in decreased biodiversity. Conversely, it has been stated that monocultures may favor regeneration of undergrowth plants from surrounding forests, increasing biodiversity. In order to clarify the effects of planting Eucalyptus trees on species composition, diversity, and functional type of understory vegetation in Yunnan province, a field trial was implemented to compare Eucalyptus plantations (EPs) with two other local current vegetation types (secondary evergreen forests (SEs), and abandoned farmlands (AFs)). Each vegetation type was sampled in each of three elevational ranges (low = 1,000–1,400 meters above sea level (masl), medium = 1,400–1,800 masl, and high = 1,800–2,200 masl). Sample sites within each elevational range had similar environmental characteristics (slope, aspect, etc.). Thus, we sampled three vegetation types at each of three sites at each of three elevations for a total of 27 plots. We calculated relative abundance and importance value of species and diversity indexes to evaluate differences among local current vegetation types and elevational ranges, employing multivariate ordination analyses and other methods such as Analyses of Variance (ANOVA) and Indicator Species Analysis. We found that fast growing introduced Eucalyptus plantations led to reduced plant diversity in the study area, and that rare or threatened species were recorded almost exclusively in the SE plots, being essentially absent from the EP and AF plots. The understory plant diversity did not correlate with the altitude gradient significantly. Eucalyptus plantations (EPs) have a simpler community structure than that of either secondary evergreen forests (SEs; similar to natural state) or abandoned farmlands (AFs). No variable significantly explained variation of the understory shrub layer, but soil moisture-holding capacity and overstory coverage were significant in explaining variation of the understory herb layer, suggesting that the study of soil physical properties is necessary for better understanding of their importance in Eucalyptus plantations and other local current vegetation types.  相似文献   

20.
We investigated effects of silvicultural treatments (planting and subsequent treatments) on understory structure and plant species diversity in managed Picea glehnii plantations (21–26 years old) in northern Japan. We evaluated the importance of each treatment (machinery site preparation, planting, weeding, and thinning) in 19 plantations, with considerable variation among treatments overall. The understory had 98 vascular plant species; the most dominant species was a dwarf bamboo Sasa senanensis, followed by tree species Abies sachalinensis and Betula ermanii. Multiple regression analyses showed that thinning negatively influenced plant species diversity. Planting density showed a strong positive correlation with density of seedlings (height <20 cm), but few independent variables were correlated with density of saplings (height ≥20 cm and diameter at breast height <1 cm). The negative effect of thinning and the positive effect of planting density seem to be related to the existence or reinitiation of dense cover of Sasa senanensis. We present possible mechanisms of response to treatments to generalize the results. We then suggest ways to improve current treatments to meet the goals of wood production and biodiversity conservation in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号