首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ghrelin action, which stimulates growth hormone (GH) secretion, may alter during the weaning period in calves. Our objective was to compare the effects of intravenous ghrelin injection on plasma GH, insulin and glucose concentrations in calves around the weaning period. Four Holstein bull calves were fed whole milk and allowed free access to solid feeds, and weaned at 7 weeks of age. Measurements were performed at weeks 1, 2, 4, 6, 7, 9, 11 and 13, when calves were intravenously injected with ghrelin (1.0 μg/kg body weight (BW)) through a catheter, and jugular blood samples were obtained temporally relative to the injection time. Estimated digestible energy intake per metabolic BW transiently decreased at week 7 because of low solid intake immediately after weaning, and thereafter gradually increased. Plasma insulin and glucose concentrations were not affected by ghrelin injection at all ages. In contrast, plasma GH concentrations increased with ghrelin injection at all ages. The incremental area of GH at week 7 was greatest and significantly higher compared with weeks 2, 4, 6 and 9. This result suggests that nutrient insufficiency immediately after weaning enhances GH responsiveness to ghrelin.  相似文献   

2.
Release of growth hormone (GH) is known to be regulated mainly by GH-releasing hormone (GHRH) and somatostatin (SRIF) secreted from the hypothalamus. A novel peripheral release-regulating hormone, ghrelin, was recently identified. In this study, differences of the GH secretory response to ghrelin and GHRH in growing and lactating dairy cattle were investigated and an alteration of plasma ghrelin levels was observed. The same amounts of ghrelin and GHRH (0.3 nmol/kg) were intravenously injected to suckling and weanling calves, early and mid-lactating cows and non-lactating cows. Plasma ghrelin levels were also determined in dairy cattle in various physiological conditions. The peak values of ghrelin-induced GH secretion were increased in early lactating cows compared to those in non-lactating cows. The relative responsiveness of GH secretion to ghrelin was also increased compared with that to GHRH in early lactating cows. GH secretory responses to GHRH were blunted in mature cows with and without lactation. Conversely, GHRH-induced GH secretory response was greater than that to ghrelin in calves, and also greater in calves than in mature cows. Plasma ghrelin concentrations were elevated in early lactating cows compared to those in non-lactating cows. Plasma GH concentrations were higher in suckling calves and early lactating cows compared with those in non-lactating cows. These results suggest that GHRH is an effective inducer of GH release in growing calves, and that the relative importance of ghrelin in contributing to the rise in plasma GH increases in early lactating cows.  相似文献   

3.
Previously, GH response to GHRH challenge at weaning has been shown to be indicative of ADG during a standard postweaning growth performance test in Angus cattle. In this study, we tested the hypothesis that GH response to GHRH before weaning would predict postweaning ADG. Bulls with the highest and lowest GH responses to GHRH over a 3-yr period, relative to their contemporaries, were used as sires, to allow for examination of the persistence of GH response to GHRH through selection. The selected calves in this study were sired by one of four Angus bulls chosen based on their GH response to GHRH (high response, n = 2; low response, n = 2). Forty-nine Angus calves (bulls, n = 24; heifers, n = 25) were challenged with GHRH at approximately 60, 105, and 150 d of age and at weaning (219 d; SD = 25). Blood samples were taken immediately prior to and 10 min following an i.v. clearance dose of 4.5 microg of GHRH/100 kg BW and, 2 h later, immediately prior to and 10 min following a challenge dose of either 1.5 or 4.5 microg of GHRH/100 kg BW. Two hours later, the procedure was repeated, with each calf receiving the other challenge dose. Body weight was measured every 28 d and ADG was calculated over a 140-d growth performance test (heifers and bulls maintained separately). Data were log-transformed for statistical analyses. In the selected bulls and heifers, response of GH to 1.5 microg of GHRH/100 kg BW at 60 and 105 d of age was positively related (P < 0.05) to postweaning ADG. Response to 4.5 microg of GHRH/100 kg BW at 105 d of age and at weaning was positively related (P < 0.01) to postweaning ADG. Inclusion of sire in the analysis improved the relationship between GH response and ADG for calves of sires with high GH responses from R2 = 0.18 (P = 0.01) to R2 = 0.33 (P = 0.02). When the GH response to GHRH of the unselected calves at weaning was added to the data from the selected animals and analyzed, the GH response of the bulls was related to postweaning ADG (R2 = 0.09; P = 0.04). In conclusion, GH response to GHRH as early as 60 d of age is indicative of postweaning ADG in beef cattle. In addition, the relationship between GH response to GHRH and postweaning ADG is improved with selection for greater GH response to GHRH.  相似文献   

4.
The effects of three growth hormone secretagogues (GHSs), ghrelin, growth hormone-releasing peptide-6 (GHRP-6), and growth hormone-releasing hormone (GHRH), on the release of adenohypophyseal hormones, growth hormone (GH), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), luteinising hormone (LH), prolactin (PRL) and on cortisol were investigated in young and old healthy Beagle dogs. Ghrelin proved to be the most potent GHS in young dogs, whereas in old dogs GHRH administration was associated with the highest plasma GH concentrations. The mean plasma GH response after administration of ghrelin was significantly lower in the old dogs compared with the young dogs. The mean plasma GH concentration after GHRH and GHRP-6 administration was lower in the old dogs compared with the young dogs, but this difference did not reach statistical significance. In both age groups, the GHSs were specific for GH release as they did not cause significant elevations in the plasma concentrations of ACTH, cortisol, TSH, LH, and PRL. It is concluded that in young dogs, ghrelin is a more powerful stimulator of GH release than either GHRH or GHRP-6. Ageing is associated with a decrease in GH-releasing capacity of ghrelin, whereas this decline is considerably lower for GHRH or GHRP-6.  相似文献   

5.
Gastric-derived peptide hormone ghrelin is known for its potent growth hormone (GH) stimulatory effects. The acyl-modification on N-terminal Ser(3) residue is reported to be important to stimulate the ghrelin receptor, GH secretagogue-receptor type1a (GHS-R1a). However, major portion of circulating ghrelin lacks in acylation, and some biological properties of des-acyl ghrelin have been reported in monogastric animals. In the present study, the responsiveness of plasma hormones and metabolites to ghrelin in steers was characterized, and role for des-acyl ghrelin in these changes was investigated. The repeated intravenous administrations of bovine ghrelin (1.0 microg/kg BW) every 2h for 8h to Holstein steers significantly increased the plasma acylated ghrelin, total ghrelin, GH, insulin and NEFA levels. The GH responses in peak values and area under the curves (AUCs) were attenuated by repeated injections of ghrelin, however, the responses of plasma total ghrelin were similar. Plasma insulin AUC decreased after fourth injection of ghrelin while plasma NEFA AUCs gradually increased by repeated injections of ghrelin. Pretreatment of des-acyl ghrelin (10.0 microg/kg BW) 5 min prior to the single injection of ghrelin (1.0 microg/kg BW) did not affect the ghrelin-induced hormonal changes. Moreover, the responses of plasma GH to bovine and porcine ghrelin, which differ in C-terminal amino acid residues, were similar in calves. These data show that (1) GH release was attenuated by repeated administration of ghrelin, (2) ghrelin regulates glucose and fatty acid metabolism probably via different pathway, and (3) des-acyl ghrelin is unlikely the antagonist for ghrelin to induce endocrine effects in Holstein steers.  相似文献   

6.
The effect of energy balance on the growth hormone (GH) secretory responsiveness to growth hormone-releasing hormone (GHRH) has not been determined in ruminant animals. Therefore, we examined the effects of intravenous injections of 0, 3.3, and 6.6 μg ghrelin/kg body weight (BW), with and without GHRH at 0.25 μg/kg BW, on GH secretory responsiveness in both the fed and fasted sheep. The injections were carried out at 48 h (Fasting state) and 3 h (Satiety state) after feeding. Blood samples were taken every 10 minutes, from 30 minutes before to 120 minutes after the injection. Low (3.3 μg/kg BW) and high (6.6 μg/kg BW) doses of ghrelin stimulated GH secretion significantly (P < .05) greater in the Satiety state than in the Fasting state. Growth hormone-releasing hormone plus both doses of ghrelin stimulated GH secretion significantly (P < .05) greater in the Satiety state than in the Fasting state. Ghrelin and GHRH exerted a synergistic effect in the Satiety state, but not in the Fasting state. Plasma ghrelin levels were maintained significantly (P < .05) greater in the Fasting state than in the Satiety state except the temporal increases after ghrelin administration. Plasma free fatty acid (FFA) concentrations were significantly (P < .01) greater in the Fasting state than in the Satiety state. In conclusion, the present study has demonstrated for the first time that ghrelin differentially modulates GH secretory response to GHRH according to feeding states in ruminant animals.  相似文献   

7.
We measured changes in plasma ghrelin and GH concentrations in mature Holstein cows and 3-mo-old female Holstein calves fed at scheduled times. Our objective was to determine the characteristics of ghrelin secretion in dairy cattle and its influence on GH. Animals were fed at 0800 and 1600 for 2 wk before and during experiments. Plasma was sampled for 24 h at 2-h intervals in Exp. 1. In mature cows, plasma ghrelin concentrations decreased (P < 0.01) just after 0800 but not at the 1600 feeding. Ghrelin concentrations were lower (P < 0.01) in calves than in mature cows and they did not decrease after feeding in calves. The temporal relationship between ghrelin and GH remained unclear. In Exp. 2, plasma was sampled 2 h before and after both morning and evening feedings at 20-min intervals. Plasma ghrelin concentrations decreased (P < 0.05) 40 min after 0800 feeding and 60 min after 1600 feeding in mature cows. These results indicate that in mature cows, plasma ghrelin concentration decreased after feeding, but this decrease was not evident in 3-mo-old calves. Further studies are required to define the relationship between plasma ghrelin and GH concentrations.  相似文献   

8.
Glucagon-like peptide-1 (7-36) amide (GLP-1), secreted by the small intestine, has insulinotropic and glucose-lowering action. Basal plasma GLP-1 concentrations were measured in calves around the weaning period, the effect of short-chain fatty acids (SCFA) on plasma GLP-1 concentrations was examined, and the effects of GLP-1 administration on plasma insulin, glucagon, and glucose concentrations were measured. Thirteen Holstein bull calves were fed whole milk and solid feed and weaned at 7 wk of age. Preprandial plasma samples were obtained from 5 calves once a week from week 0 to 13 to measure basal concentrations of plasma GLP-1 and insulin (experiment 1). Four calves were intravenously administered with a mixed solution of SCFA (2.4 mmol/kg body weight [BW]) in week 2 and 11 to measure plasma GLP-1 concentrations (experiment 2). Another 4 calves were intravenously injected with GLP-1 (1.0 μg/kg BW) to elucidate the response of plasma insulin, glucagon, and glucose concentrations in week 1, 2, 4, 6, 7, 9, 11, and 13 (experiment 3). In experiment 1, age and weaning did not affect preprandial basal concentrations of plasma GLP-1 throughout the experimental period. Preprandial insulin concentrations increased after weaning (P < 0.05), and GLP-1 and insulin were more strongly correlated postweaning than preweaning. In experiment 2, intravenous treatment with SCFA increased plasma GLP-1 concentrations in both week 2 and 11 (P < 0.05.) In experiment 3, intravenous GLP-1 treatment decreased plasma glucose concentrations throughout the experiment (P < 0.05), but increased plasma insulin concentrations only after weaning (P < 0.05). Treatment with GLP-1 did not affect plasma glucagon concentrations, regardless of age. These results indicate that preprandial basal concentrations of plasma GLP-1 in calves are not changed by weaning, but SCFA stimulate GLP-1 secretion. The insulinotropic action of GLP-1 is detected only after weaning, but the glucose-lowering action of GLP-1 is not affected by weaning.  相似文献   

9.
To clarify the direct effects of Ghrelin on growth hormone (GH) release from anterior pituitary (AP) cells in pigs, GH-releasing effects of human Ghrelin (hGhrelin) and rat Ghrelin (rGhrelin) on porcine AP cells were compared with GHRH in vitro. The AP cells were obtained from 6-month-old pigs and the cells (2 x 10(5) cells per well) were incubated for 2 h with the peptides after incubating in DMEM for 3 days. hGhrelin and rGhrelin significantly stimulated GH release from the cultured cells at doses of 10(-8) and 10(-7)M (P < 0.05). The rates of increase in GH at 10(-8) and 10(-7)M of hGhrelin were 82.7 and 131.9%, while those with rGhrelin were 43.9 and 79.5%, respectively. GHRH significantly stimulated GH release from the cells at a dose as low as 10(-11)M (P < 0.05), and the response to GHRH was greater than that induced by Ghrelins. In time-course experiments, GHRH continued to increase GH concentrations in media until 120 min after incubation; however, those in media treated with hGhrelin reached a plateau 60 min after incubation, and the maximal value was approximately one third that obtained with GHRH. When hGhrelin (10(-8)M) and GHRH (10(-8)M) were added together, additive effects of both peptides on the release of GH were observed (P < 0.05). Somatostatin (SS, 10(-7)M) significantly blunted GH release induced by hGhrelin (10(-8)M) and GHRH (10(-8)M) (P < 0.05). In the presence of SS, additive effects of hGhrelin and GHRH on the release of GH were observed (P < 0.05). These results show that Ghrelin directly stimulates GH release from anterior pituitary cells in pigs; however, the GH-releasing effect is weaker than that of GHRH in vitro. The present results also show that Ghrelin interacts with GHRH and SS to in the release of GH from porcine adenohypophysial cells.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

11.
In two experiments, Black Angus bulls were challenged at weaning with GHRH analog and evaluated for their GH response to determine whether GH response can predict subsequent growth characteristics. The GH response was determined by measuring GH in blood serum collected 0 and 10 min after GHRH injection (Exp. 1: 1.5 microg/100 kg BW human GHRH, n = 34; Exp. 2: 1.5 and 4.5 microg/100 kg BW bovine GHRH [treatments LGHRH and HGHRH, respectively] administered 3 h after a 4.5 microg/100 kg BW "clearance dose" of GHRH, n = 38]. In Exp. 1, GH response did not predict growth or carcass measurements. In Exp. 2, GH response to LGHRH was positively related to ADG (R2 = .18; P = .007) during a 112-d controlled feeding trial. In addition, there was a tendency for bulls with a greater GH response to HGHRH to exhibit greater ADG than animals with a low response. However, GH response to GHRH was not related to changes in hip height (HH) or carcass ultrasound measurements at d 112 of the growth performance trial. Response of GH to repeated GHRH challenges was consistent within animal over time (r = .47; P = .003). The use of a clearance dose 3 h prior to GHRH challenge improved the relationship between GH response and ADG. Results of this study suggest that GH response to GHRH challenge is a useful tool for identifying beef bulls with superior growth potential.  相似文献   

12.
Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 ± 1 kg body weight [BW]; and ruminants: 85 ± 1 kg BW) were injected intravenously with 30 μg of OXM/kg BW, 50 μg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 ± 1 d old, 398 ± 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 μg/kg for the promotion of glucose secretion and 2 μg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.  相似文献   

13.
Ghrelin is a highly conserved peptide hormone secreted by the stomach, which is involved in the regulation of food intake and energy expenditure. Ghrelin stimulates growth hormone (GH) release, and increases appetite in a variety of mammalian and non-mammalian vertebrates, including several fish species. Studies were conducted to investigate the effect of feeding and fasting on plasma and stomach ghrelin, and the growth hormone/insulin-like growth factor I (IGF-I) axis in the Mozambique tilapia, a euryhaline teleost. No postprandial changes in plasma and stomach ghrelin levels or stomach ghrelin mRNA levels were observed. Plasma levels of GH, IGF-I and glucose all increased postprandially which agrees with the anabolic roles of these factors. Fasting for 4 and 8 d did not affect ghrelin levels in plasma or stomach. Plasma GH was elevated significantly after 4 and 8 d of fasting, while plasma IGF-I levels were reduced. Plasma ghrelin levels were elevated significantly after 2 and 4 wk of fasting, but no change was detected in stomach ghrelin mRNA levels. Four weeks of fasting did not affect plasma GH levels, although plasma IGF-I and glucose were reduced significantly, indicating that GH resistance exists during a prolonged nutrient deficit (catabolic state). These results indicate that ghrelin may not be acting as a meal-initiated signal in tilapia, although it may be acting as a long-term indicator of negative energy balance.  相似文献   

14.
The effects of melatonin (MEL) injection into the third ventricle (3V) on growth hormone (GH) secretion were investigated in conscious Holstein steers. A stainless steel cannula was stereotaxically implanted in the 3V based on the ventriculogram. In Exp. 1, three doses of MEL (100, 300 or 600 microg) were injected into the 3V through the cannula and the GH concentration after the injection was determined. In Exp. 2, intracerebroventricular (icv) and intravenous (iv) injections of MEL (100 microg) and GH-releasing hormone (GHRH; 0.25 microg/kg body weight), respectively, were performed simultaneously to examine the effect of MEL on GHRH-induced GH release. The icv injection of MEL significantly stimulated GH release at 100 microg. The increase in GH concentrations by 100 microg of MEL was persistent. Intravenous injection of GHRH dramatically increased GH release. The injection of MEL did not alter GHRH-induced GH release. These results suggest that MEL stimulates GH secretion possibly through the hypothalamus in cattle.  相似文献   

15.
The response of GH to GHRH at weaning is known to predict postweaning growth and body composition in beef bulls. The objective of this study was to determine whether GH response to a challenge of GHRH and plasma IGF-I can predict growth rate and body composition in the beef heifer. Growth hormone response to a challenge with two doses of GHRH was measured in 67 Angus heifers averaging 225 d of age (SD = 21) and 217 kg BW (SD = 32). Blood samples were collected at 0 and 10 min relative to an initial "clearance dose" (4.5 micrograms GHRH/100 kg BW) and again, 3 h later, relative to a challenge dose (1.5 or 4.5 micrograms GHRH/100 kg BW). Each animal received each of the two challenge doses, which were randomly assigned across 2 d of blood collection. Serum GH concentration was measured by RIA. Plasma was collected every 28 d during a 140-d growth test and assayed for IGF-I by RIA. Body weight was measured every 28 d and hip height was measured at weaning and at the end of a 140-d growth test. Average daily gain was calculated on d 140 of the growth test and body composition measurements were estimated by ultrasound 2 wk after completion of the growth test. Responses to the two GHRH challenges were dose-dependent (P < 0.05). Average daily gain tended to be related to GH response to the 1.5 micrograms GHRH/100 kg BW dose (R2 = 0.05; P = 0.06), but no relationship was observed at the 4.5 micrograms GHRH/100 kg BW dose (R2 = 0.00; P = 0.93). An inverse relationship (R2 = 0.06; P = 0.02) was observed between response to the 1.5 micrograms GHRH/100 kg BW dose and intramuscular fat percentage. Mean plasma IGF-I concentration was positively associated with ADG (R2 = 0.06; P < 0.01). Growth hormone response to GHRH is modestly related to body composition but not to ADG in weanling beef heifers and likely has limited use in evaluation of growth performance in replacement beef heifers.  相似文献   

16.
Serotonin stimulates secretion of growth hormone (GH) in cattle, but the mechanism is unknown. In rats, thyrotropin-releasing hormone (TRH) mediates serotonin-induced secretion of GH. We hypothesized that the same is true in cattle. Cattle were fed for 2h daily to synchronize secretion of GH, such that concentrations of GH were high before and low after feeding. Our first objective was to determine whether or not feeding suppresses serotonin receptor agonist (quipazine) induced secretion of GH. Holstein steers were injected with quipazine (0.2 mg/kg BW) either 1 h before or 1 h after feeding. Quipazine-induced secretion of GH which did not differ in magnitude before and after feeding. If TRH mediates serotonin-induced secretion of GH, then magnitude of TRH-induced secretion of GH should not be different before and after feeding (our second objective). Sixteen meal-fed Holstein steers were injected with 0.3 microg TRH/kg BW either 1 h before or 1 h after feeding. Indeed, magnitude of TRH-induced secretion of GH before and after feeding was not different. Our third objective was to inhibit endogenous TRH with 3,5,3'-triiodothyronine (T(3)) and examine basal, GH-releasing hormone (GHRH)-, TRH- and quipazine-induced secretion of GH. Sixteen Holstein steers were injected daily with either T(3) (3 or 6 microg/kg BW) or vehicle for 20 days and then challenged sequentially with vehicle or GHRH, TRH, or quipazine. T(3) did not affect basal, GHRH- or TRH-induced secretion of GH, but reduced basal secretion of thyroxine. T(3) reduced but did not completely block quipazine-induced secretion of GH. In conclusion, TRH mediates, in part, serotonin-induced secretion of GH in cattle.  相似文献   

17.
The selective dopamine D1 receptor agonist, SKF38393, stimulates release of somatostatin (SS) from perifused bovine hypothalamic slices. Therefore, we hypothesized that SKF38393 activates SS neurons, which, via release of SS, would suppress concentrations of growth hormone (GH) in serum in calves. Our objectives were to determine whether SKF38393: (1) increases the percent of immunoreactive c-Fos protein and Fos-related antigens (Fos/FRA) detected in somatostatin neurons in periventricular (PeVN) and arcuate (ARC) hypothalamic nuclei; (2) reduces concentrations of GH in serum; (3) suppresses growth hormone-releasing hormone (GHRH)-induced release of GH. Meal-fed steers were used to perform these objectives because a synchronous pulse of GH occurs 1–2 hr before feeding in steers allowed access to feed for 2 hr each day. In Experiment 1, two groups of four Holstein steers were injected s.c. with either vehicle (sterile water) or SKF38393 (5 mg/kg BW). Steers were injected i.v. with a lethal dose of sodium pentobarbital 100 min later and their brains were fixed with 4% paraformaldehyde. Dual-label immunohistochemistry was performed on 40 μm free-floating sections using antiserum to SS and to Fos/FRA on sections containing PeVN and ARC nuclei. More SS neurons were detected in the PeVN than in the ARC. The percent of SS neurons with immunoreactive Fos/FRA present was 2.9-fold higher in SKF38393-treated compared with vehicle-injected steers in the PeVN, but was unchanged in the ARC. In Experiment 2, eight Holstein steers were injected s.c. with either vehicle (sterile water) or SKF38393 (5 mg/kg BW) 140 min before meal-feeding. In contrast to controls, concentrations of GH in serum of SKF38393-treated steers did not increase during the 140 min before meal-feeding. In Experiment 3, eight Holstein steers were injected s.c. with either vehicle (sterile water) or SKF38393 (5 mg/kg BW), then 100 min later, each steer was injected i.v. with [Leu27, Hse45] bGHRH1–45 lactone (0.2 μg/kg BW). Bovine GHRH stimulated release of GH into serum in both groups, but concentrations of GH were lower in SKF38393-treated steers. These results show that stimulation of D1 receptors selectively increases activity of SS neurons in the PeVN, and this increased activity is associated with suppressed basal- and GHRH-induced release of GH in serum of meal-fed steers.  相似文献   

18.
Growth hormone (GH) is secreted in a pulsatile manner, but the underlying mechanisms of GH pulse generation remain to be resolved. In the present study, we investigated the relationship between GH pulses in the peripheral circulation and GH-releasing hormone (GHRH) and somatostatin (SRIF) profiles in the cerebrospinal fluid (CSF) of male goats. The effects of an intracerebroventricular (icv) injection of neuropeptide Y (NPY), galanin and ghrelin were also analyzed. Blood and CSF samples were collected every 15 min for 8 hr from the jugular vein and third ventricle, respectively. GH pulsatility in the goat was found to consist of distinct large pulses of 5 hr periodicity and small pulses of 1 hr periodicity. GHRH and SRIF in the CSF fluctuated in a pulsatile manner with 1 hr periodicity, and most of the descending phase of SRIF pulses were associated with the initiation of GH pulses. Icv injections of NPY, galanin and ghrelin stimulated GHRH release without affecting SRIF release. In addition, NPY suppressed, and galanin and ghrelin induced large GH pulses, although ghrelin was much more effective than galanin. These results suggest that an hourly fall in SRIF is involved in generating intrinsic circhoral rhythm of GH pulsatility. The mechanisms underlying the generation of large GH pulses of 5 hr periodicity remain unknown, while direct action of NPY and/or ghrelin on the pituitary might be involved.  相似文献   

19.
The effect of appetite regulatory hormone cholecystokinin (CCK) on the secretions of oxyntomodulin (OXM) and ghrelin, and the effect of ghrelin on the secretions of CCK and OXM were studied in ruminants. Eight Holstein steers, 7 months old, 243 ± 7 kg body weight (BW), were arranged in an incomplete Latin square design (8 animals × 4 treatments × 4 days of sampling). Steers were intravenously injected with 10 µg of sulfated CCK‐8/kg BW, 20 µg of acyl ghrelin/kg BW, 100 µg of des‐acyl ghrelin/kg BW or vehicle. Blood samples were collected from ?60 min to 120 min relative to time of injection. Plasma concentrations of ghrelin, sulfated CCK and OXM were measured by double‐antibody radioimmunoassay. Plasma acyl ghrelin was increased to peak level (428.3 ± 6 pg/mL) at 60 min after injection of CCK compared with pre‐injected levels (203.3 ± 1 pg/mL). These results showed for the first time, that intravenous bolus injection of CCK increased ghrelin secretion in ruminants. In contrast, injection of ghrelin did not change CCK secretion. Administration of ghrelin or CCK has no effect on plasma OXM concentrations. In conclusion, our results show that administration of CCK increased ghrelin secretion but did not affect OXM release in ruminants. Ghrelin did not affect the secretions of CCK and OXM.  相似文献   

20.
Although the release of growth hormone (GH) is known to be regulated mainly by GH-releasing hormone (GHRH) and somatostatin (SRIF) secreted from the hypothalamus, ghrelin also may be involved in GH release during juvenile period. We have examined plasma concentrations of acylated ghrelin, desacyl ghrelin, and GH in juvenile beagle dogs. Plasma acylated and desacyl ghrelin levels changed through aging; however, there was no closely correlation between ghrelin, body weight and circulating GH levels during juvenile period. The increase in body weight was essentially linear until 8 months of age, whereas plasma GH concentrations exhibited bimodal peaks for the meanwhile. The results suggest that ghrelin may not play internal cueing in GH secretion in juvenile beagle dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号