首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
蛀粉直接氧化降解制备纤维素纳米晶体的表征   总被引:2,自引:2,他引:0  
以毛竹蛀粉为原料,采用过硫酸铵在超声波辅助作用下直接氧化降解制备了羧基化的纳米纤维素晶体(CCN).采用扫描电子显微镜、透射电子显微镜、傅利叶红外光谱仪(FTIR)和X射线衍射仪(XRD)对蛀粉及所制备的CCN的微观形貌、谱学性能及晶型结构进行了表征分析.结果表明,蛀粉颗粒呈撕裂状,形状不规则,尺寸为10-50μm;所制备的CCN为球形,粒径约为10-30 nm.FTIR分析结果表明CCN具有纤维素的基本化学结构,在1731 cm-1附近出现了羧基的C=O特征峰.XRD图谱表明制备的CCN属于纤维素Ⅰ型,结晶度为55.75%.  相似文献   

2.
纳米纤维素制备优化及其形貌表征   总被引:10,自引:0,他引:10  
通过硫酸水解微晶纤维素制备纳米纤维素,分析硫酸浓度、反应温度和水解时间对纳米纤维素得率的影响,采用正交实验优化了实验参数。用场发射环境扫描电镜(ESEM-FEG)和透射电镜(HR-TEM)表征了微晶纤维素与纳米纤维素的形貌,并对其尺寸分布进行了分析。结果表明,当硫酸浓度为56%,反应温度40℃,水解时间90min时,纳米纤维素得率最高,达55.40%;电镜观察纳米纤维素呈棒状,其尺寸较微晶纤维素明显减小,直径2-24nm,长度为50-450nm。  相似文献   

3.
采用硫酸水解桉木浆制备纳米纤维素,进行响应面法优化制备工艺条件设计实验,并用透射电子显微镜表征了桉木浆纳米纤维素的形貌.结果表明,硫酸浓度55%,反应温度50℃,水解时间2h,纳米纤维素得率为70.05%;透射电子显微镜观察制备的纳米纤维素呈棒状,长度小于1000nm.桉木浆纳米纤维素制备优化适宜的水解时间应在3h以上.  相似文献   

4.
采用炭基磷钨酸在超声波辅助作用下水解微晶纤维素(MCC ),制备得到纳米纤维素晶体(NCC)。采用透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和热分析仪(TGA )等对所制备N C C的形貌、晶体结构、光谱性质和热稳定性进行分析。结果表明:制备的NCC呈棒状,直径和长度主要分布在12~79 nm和146~862 nm,样品仍属于纤维素Ⅰ型,结晶度为76.1%;FTIR分析可知,纳米纤维素晶体仍然具有纤维素的基本化学结构;TGA分析表明,纳米纤维素晶体热分解温度为300℃,初期热稳定性低于微晶纤维素。与常规酸水解方法相比,该方法在制备过程中可省去脱酸过程,具有对设备腐蚀性小、环保等优点。  相似文献   

5.
为促进笋头的高值化利用,利用富含纤维素的竹笋笋头进行纳米纤维素晶体(cellulose nanocrystal,CNC)的制备。以福建省绿竹笋笋头为原料,通过粉碎、前处理和硫酸水解法进行笋头纳米纤维素晶体的制备,并研究其持水力、持油力和膨胀力等理化性质。结果表明:笋头是制备纳米纤维素晶体的适宜原料,经过硫酸水解后笋头纳米纤维素晶体的理化性质得到显著改良。通过硫酸水解法制备的笋头纳米纤维素晶体的得率为49.54%,粒径为91.87nm;相对于笋头粗纤维,笋头纳米纤维素晶体的持水力、持油力和膨胀力分别提高了99.54%、29.80%和81.15%。  相似文献   

6.
【目的】以废弃的丝瓜络为原料,利用其优良的生物理化特性制备高附加值的纳米纤维素晶体(NCC),探索丝瓜络资源高值化综合利用的新途径。【方法】用KOH/NaClO2体系脱除丝瓜络原料中的木质素和半纤维素,制备丝瓜络纯化纤维素,利用纤维形态分析仪分析丝瓜络纯化纤维素的纤维形态,采用超声-硫酸水解法制备高得率的丝瓜络纳米纤维素晶体,并对纳米纤维素晶体的微观形貌、物理和表面化学性质进行了表征。【结果】丝瓜络纯化纤维素的平均直径为26.4μm,重均长度平均为0.893nm,卷曲度为6.8%。丝瓜络纳米纤维素晶体直径约10nm,长度为200~400nm,Zeta电位为-15.1mV,结晶度为63.3%。【结论】丝瓜络纯化纤维素是一种潜在的优良制浆纤维原料,棒状丝瓜络纳米纤维素晶体可作为绿色的纳米增强相使用,经冷冻干燥处理后形成的纳米纤维素泡沫体表现出了良好的保温性能。  相似文献   

7.
利用过硫酸铵分别氧化降解微晶纤维素和纸浆制得纳米纤维素(Cellulose Nanocrystals,CNCs),采用透射电子显微镜(TEM)、马尔文粒径仪、傅利叶红外光谱仪(FITR)和X-射线衍射仪(XRD)对所制备的CNCs的微观形貌、谱学性能及晶型结构进行表征分析。结果表明:过硫酸铵氧化微晶纤维素制备的CNCs的形态呈短棒状,直径分布为5~20nm,其在1 731cm-1附近出现了羧基中C=O特征峰,XRD衍射图谱表明其纤维结构仍为纤维素Iβ;过硫酸铵氧化纸浆制备的CNCs,直径分布为10~35nm,长径比为11~30,与原料纸浆相比,在3 420、2 900、1 430、1 162、1 112cm-1和898cm-1对应的纤维素特征峰强度明显增强,在1 731cm-1附近出现了羧基中C=O特征峰,其XRD衍射图谱也表明纤维仍属于纤维素Iβ。CNCs悬浮液胶体呈淡蓝色,随着浓度的增加,粘度不断增大,分散稳定性较好。  相似文献   

8.
以竹人纤浆为原料,4-二甲氨基吡啶(DMAP)为催化剂,采用机械力化学法制备纳米纤维素并同时进行乙酰化,探索一锅法制备乙酰化纳米纤维素(A-NCC)的较佳工艺,并应用响应面分析法对影响乙酰化纳米纤维素得率的4个主要因素进行优化.得到优化的较佳工艺条件为:球磨时间2 h、反应温度120℃、超声时间3 h、反应时间5 h,此时A-NCC的得率为42.76%.滴定法测得的A-NCC取代度在0.125~0.214之间,通过XRD和FTIR分析表明,机械力化学法制备得到的产物含特征官能团羰基,且结晶度较高.  相似文献   

9.
用超声辅助硫酸水解芦苇浆制备纳米纤维素,将芦苇浆粉置于55%硫酸溶液中,分别在200 W、45 kHz超声条件下预处理O、10、20、30、40、50 min,通过前期正交试验优化工艺条件,在反应温度50 °C下酸水解4h制备纳米纤维素.研究结果表明超声辅助预处理可以提高纳米纤维素得率,超声30 min时纳米纤维素得率最高,为73.95%;超声处理50 min制备的纳米纤维素傅立叶变换红外光谱和X射线衍射分析结果表明,所制备的纳米纤维素是纤维素且为天然纤维素Ⅰ型,结晶度为74.54%;预处理超声10、50 min制备的纳米纤维素的透射电子显微镜分析结果表明,所制备的纳米纤维素均达到纳米级,为棒状.  相似文献   

10.
【目的】探求丝瓜络纳米纤维素晶体(Luffasponge nanocellulose crystals,LNCC)的最优制备工艺,为提高丝瓜络资源的综合利用提供方法支持。【方法】以丝瓜络废弃物为原料,采用单因素试验研究不同硫酸质量分数(58%,60%,62%,64%,66%)、不同反应温度(30,40,50,60,70℃)、不同超声时间(25,35,45,55,65min)对超声-硫酸水解法制备LNCC得率的影响;在单因素试验的基础上,采用响应面试验对LNCC制备工艺条件进行优化,使用Design-Expert 8.05b软件进行数据分析,求出数学模型,进而得到最佳的制备工艺条件。【结果】单因素试验结果显示,LNCC制备的最佳应温度为50℃,超声时间为45min,硫酸质量分数为62%。建立了3个因素与LNCC得率的二次多项式回归模型,该模型拟合度良好,相关系数为99.95%,校正决定系数为99.88%。LNCC制备最佳的工艺条件为:硫酸质量分数62%,反应温度51℃,超声时间46min;在该条件下制备的LNCC得率高达93.64%,与理论预测值(93.20%)吻合较好,表明建立的数学模型是合理有效的。【结论】建立了优化的LNCC制备工艺,该工艺可提高LNCC的得率。  相似文献   

11.
张丽君  李爱军  欧仕益 《广东农业科学》2012,39(14):113-115,118
以大豆皮为原料,采用纤维素酶酶解法制备大豆皮微晶纤维素(MCC).通过单因素试验考察料液比、酶添加量、pH值、酶解时间、酶解温度对制备大豆皮微晶纤维素得率及聚合度的影响,并在此基础上通过正交试验确立最佳酶解条件:酶添加量0.3 mL/g、pH 5.8、料液比1∶20(g/mL)、温度50℃、酶解时间3h.该最佳条件下制得的微晶纤维素的得率为29.93%,聚合度为494.  相似文献   

12.
以棉纤维为原料,乙酸酐为共反应剂,浓硫酸为催化剂,在冰醋酸体系中对纤维素进行乙酰化改性制得纤维素乙酸酯;对反应温度、反应时间和催化剂用量与产物取代度(DS)的关系进行分析;对产物的官能团、微细构造和热稳定性采用红外光谱(FTIR)、X射线衍射(XRD)和热重分析(TGA)等3种分析手段进行表征。结果表明,当反应温度为90℃,反应时间为4 h,催化剂用量为0.5%时,产物的DS最大;产物中存在大量酯基;与纤维素相比,由于乙酰基的存在,纤维素乙酸酯的结晶度有所下降且热稳定性增强。  相似文献   

13.
以稻草为原料采用微波-超声辅助水解氧化法制备稻草微晶纤维素,运用傅立叶红外光谱和X射线衍射等对微晶纤维素产物进行了初步表征和分析;扫描电镜观察了稻草纤维素和微晶纤维素。结果表明:微波-超声辅助法制备的微晶纤维素保持纤维素的化学结构特征,形态上由松散状变为较规则的排列,纤维素的无定形区被大部分除去。微波-超声辅助水解氧化法制备微晶纤维素工艺条件在反应时间与消耗能量方面明显低于传统方法。  相似文献   

14.
以微晶纤维素(microctTstallinece llulose,MCC)为原料,首次采用水热合成反应方法,分别利用硫酸、磷钨酸以及高碘酸为降解剂对微晶纤维素进行降解处理,气质联用仪(GC-MS)分析降解产物,解析降解产物结构,并分析降解机制。结果表明:新型水热方法降解微晶纤维素较完全;不同降解剂处理所得产物中均含有机酸、酮、醛、醇和酯类化合物;采用降解剂不同,降解所得产物结构不同,含量有差异;通过反应机制分析获得降解机制迥异。图3表4参25  相似文献   

15.
为高效利用五节芒Miscanthus floridulus,通过硫酸酸解五节芒纤维素制备了纤维素纳米晶体(CNC),并采用正交分析法考察了硫酸质量分数、酸解时间和反应温度对五节芒CNC产率、悬浮液稳定性和CNC尺寸的影响。透射电镜(TEM)研究结果表明:用酸解法可成功制备五节芒CNC,CNC为刚性棒状结构,长度为100~200nm,直径为5~15 nm,产率为25%~50%。动态光散射(DLS)和Zeta电位测试发现,五节芒CNC悬浮液的稳定性很好,DLS得到的CNC流体力学直径略小于由TEM观察到的CNC长度。正交分析表明,3个工艺参数对CNC产率的影响依次为:硫酸质量分数(P=0.03),酸解时间(P=0.06),反应温度(P=0.35);对CNC流体力学直径的影响依次为:硫酸质量分数(P=0.03),反应温度(P=0.22),酸解时间(P=0.38)。制备五节芒CNC的最优工艺条件为:硫酸质量分数(62%),酸解时间(45 min),反应温度(45℃)。  相似文献   

16.
[目的]在近临界水中制备蔗渣微晶纤维素,探索反应条件对产品聚合度的影响。[方法]以蔗渣纤维素为起始原料在近临界水中清洁制备蔗渣微晶纤维素,通过对反应条件的考察得到反应规律及最佳的工艺条件,用FT-IR、XRD分析产品的结构及结晶度。[结果]在近临界水中清洁制备蔗渣微晶纤维素的较优工艺条件为:液固比40:1 ml/g,反应温度230℃,反应初压力2 MPa,反应时间50min。溶解温度、溶解时间对蔗渣纤维素的降解影响较大,而初始压力、液固比的影响相对较小,蔗渣纤维素在降解过程中并未发生晶型的转变,且降解首先发生在纤维素的非晶区。[结论]通过近临界水法可成功清洁制备出蔗渣微晶纤维素。  相似文献   

17.
以聚乙烯亚胺(PEI)为功能基团,以微晶纤维素(MCC)为载体,通过环氧氯丙烷将聚乙烯亚胺接枝到纤维素上,制得高分子材料聚乙烯亚胺/纤维素(PEI/MCC).考查了各影响因素对PEI/MCC制备的影响,通过红外光谱分析、X射线衍射分析、元素分析和SEM对 PEI/MCC的结构进行表征,探讨了反应机理.实验结果表明 PEI/MCC的合成条件为:在N2保护下,m(环氧化纤维素(EC))∶m(PEI)=1∶6,反应介质为pH=11的氢氧化钠水溶液40mL,反应温度为70℃,反应时间为12h.过滤产物,用水洗涤至中性,40℃真空干燥24h,得微黄色固体,即为PEI/MCC.其氮的质量分数为5.27%,结晶度为78.36%,产物的结晶结构和表面结构已经发生了改变.  相似文献   

18.
以筛选于腐败柑橘表面的细菌纤维素(bacterial cellulose,BC)高产菌——中间葡糖酸醋杆菌CIs26为发酵菌株,以间歇振荡法为培养方式,研究橘渣预处理工艺、碳源、氮源和增效因子等营养条件对BC产量的影响。优化后的工艺条件为:橘渣与水混合比例1:6,添加0.3 g·L-1果胶酶和0.1 g·L-1纤维素酶,45 ℃酶解2 h。以滤液代替去离子水复配培养基,以蔗糖(70 g·L-1)为碳源、硫酸铵(3 g·L-1)为氮源、酵母粉(7 g·L-1)为生长因子、乳酸(1 g·L-1)与磷酸氢二钠(2 g·L-1)为增效因子,在此条件下,BC产量达10.26 g·L-1。说明橘渣经适当预处理与复配后,能够作为CIs26菌株间歇振荡法生产BC的优良培养基。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号