首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas phase oxidation of elemental mercury by ozone   总被引:2,自引:0,他引:2  
The gas phase reaction between elemental mercury (Hg0) and ozone (03) has been studied in sunlight, in darkness, at different temperatures, and different surface-to-volume (s/v) ratios. At 03 concentrations above 20 ppm, a loss of Hg0 and a simultaneous formation of oxidized mercury (Hg(II)) was observed. The results suggest a partly heterogeneous reaction, with a gas phase rate constant of 3±2×10?20 cm3 molec.?1 s?1 at 20 °C. This corresponds to an atmospheric Hg half-life of about one year at a mean global 03 concentration of 30 ppb.  相似文献   

2.
An intensive survey of mercury speciation was performed at a site on the Upper St. Lawrence River near Cornwall, Ontario, Canada with a history mercury contamination in sediments. Surface sediments were collected every 1.50 h. Total mercury (Hgtotal), methylmercury (MeHg), organic carbon, inorganic and organic sulphur were determined in the solid fraction. Dissolved Hgtotal, MeHg and dissolved organic carbon (DOC) were measured in pore waters. Concentrations of Hgtotal in the upper layers (first 5 cm) were high, ranging from 1.42 to 25.8 nmol g?1 in solids and from 125 to 449 pM in pore waters. MeHg levels were also high, ranging from 4.34 to 34.1 pmol g?1 in solids and from 40 to 96 pM in pore waters. This amounts to up to 1.4% of Hgtotal present as MeHg in solids and 64% in pore waters. A daily pattern for Hgtotal was observed in the solid fraction. The MeHg distribution in solids and pore waters was not correlated with Hgtotal or DOC, suggesting that the concentrations of MeHg are probably more influenced by the relative rates of methylation/demethylation reactions in the sediment–water interface. Acid volatile sulphide levels and DOC were inversely correlated with organic sulphur (Sorg) levels suggesting that both parameters are involved in the rapid production of Sorg. A positive correlation was also observed between Hgtotal and Sorg in solids (R?=?0.87, p?<?0.01) illustrating the importance of organic sulphur in the retention and distribution of Hg in the solid fraction of the sediments. The results suggest that variations of Hgtotal concentrations in Upper St. Lawrence River surface sediments were strongly influenced by the formation/deposition/retention of organic sulphur compounds in the sediment–water interface.  相似文献   

3.
Most technologies used for decontamination presents good results for high concentrations, but limitations for lower ones. The desirable Hg concentration in the water is extremely low because of its toxicity. The aims of this study were to evaluate inorganic mercury (Hg2+) and methylmercury (CH3Hg+) toxicity in Nostoc paludosum, to assess the potential of this cyanobacteria strain to remove these Hg species from aqueous medium and also to investigate Hg methylation by the cyanobacteria. CH3Hg+ determination was performed by gas chromatography-pyrolysis-atomic fluorescence spectrometry in cultures exposed to a concentration of 20 μg L?1 for 30 days. Both Hg species were removed from the supernatant, ranging from 73 to 96% of Hg2+ and from 73 to 95% of CH3Hg+. Ultrastructural Hg2+ effects in the cyanobacteria cells investigated by transmission electron microscopy revealed higher production of glycogen, cyanophycin, and intrathylacoidal spaces than the control group. When Hg was added to the culture in the form of CH3Hg+, a decrease corresponding to approximately 60% of the initial concentration due to Hg volatilization was observed. The production of CH3Hg+ by the cyanobacteria was detected in concentrations near the limit of detection (0.0025%) of the bioaccumulated THg. This is an advantage for biotechnological decontamination applications, as CH3Hg+ is a very toxic specie and can be bioaccumulated and biomagnified. The results demonstrated that cyanobacteria cells are an efficient alternative to retain and/or remove Hg at low concentrations and they constitute a potential tool for a “final cleaning” of contaminated waste water.  相似文献   

4.
This is a preliminary study of the reactions of mercury (Hg) in the human mouth with dental amalgams. It was conducted by analysing saliva samples from subjects with amalgam fillings and control subjects with no amalgams. Samples were collected both prior to and after cleaning the mouth. These samples were analyzed for elemental mercury (Hg0), inorganic mercury (Hg2+) and methylmercury (MeHg). We concluded that the concentrations after cleaning represented the systemic concentrations. Hg2+ and MeHg were found in all systemic samples from both subjects and controls, while Hg0 was found only in the samples from subjects with amalgams. In the control group, the concentrations found before and after cleaning the mouth were equivalent. In the amalgam group, concentrations of Hg2+ found before cleaning the mouth were 10 to 40 times higher than those found after cleaning, suggesting that the oxidation reaction of Hg° into Hg2+ takes place. For MeHg, a similar but less pronounced pattern as Hg2+ was found, supporting methylation in the mouth.  相似文献   

5.
When balancing the element mercury (Hg) two coal-fired power plant units — one with slag tap boilers (ST, 2 × 220 MW) and one with a dry bottom boiler (DB, 475 MW) were compared. Both systems are provided with electrostatic precipitators (ESP), nitrogen oxides removal (DeNOx) and flue gas desulfurization (FGD) systems. The Hg in the flue gas is predominantly in gas phase. Only 15 % of the Hg introduced by the coal leaves the unit with the bottom or fly ash. Depending on the operating mode, 30 to 40 % of the Hg is separated in the FGD systems. The overall separation rate for the total system ranges between 45 to 55 %, the residue is emitted in the form of gaseous Hg species. At full load, the Hg concentration in the cleaned gas is less than 6 μg/m3. In the flue gas path of another dry bottom boiler (DB1, 480 MW) the concentrations of the gaseous species of bivalent mercury (Hg2+), elemental mercury (Hg0), and total mercury content (Σ Hg) were determined. The sum of the concentrations of Hg2+ and Hg0 is in agreement with the measurement of Σ Hg. Directly downstream of the boiler Hg2+ dominates with 77 %, while Hg0 amounts to 23 %. In the high-dust DeNOx system Hg0 is oxidized almost completely to Hg2+ (96 %). Air heater and electrostatic precipitator do not influence the Hg species concentrations. The FGD system eliminates approximately 80 % of the Hg2+. At the same time the quantity of Hg0 increases by the factor 10. In the cleaned gas Hg0 dominates with 76 % as compared to Hg2+ with 24 %. At full load the concentration of Σ Hg in the cleaned gas is also below 6 μg/m3.  相似文献   

6.
Spectroscopic (XRD, XPS, ICP-MS and AAS) and microscopic (ESEM) techniques have been used in order to study the chemical effects with emphasis on mercury speciation, during thermal treatment of a mercury contaminated soil. In the untreated soil, mercury was found concentrated in spherical particles, which were successively broken down upon thermal treatment. Hg0 and inorganic mercury compounds (presumably HgO(s) and HgSO4(s)) could be detected. No (CH3)2Hg and only traces of CH3Hg+ could be found. The dependence on temperature and heating time indicated that the evaporation of mercury from the soil was partly controlled by diffusion mechanisms. Mercury volatilized in two separate stages during heating; initial elemental vaporization, and subsequent volatilization of the oxide or sulfate phase at higher temperatures (>230°C). By thermal treatment at 470°C and 20 min, a removal of >99% of the mercury could be achieved.  相似文献   

7.
Since increased Hg-concentrations in fish in lakes and rivers in northern Europe, northern parts of the U.S.A. and Canada were found, environmental Hg research has focused intensively on the factors determining leaching of mercury from soil into water systems. This article presents the results of a leaching experiment with undisturbed soil columns treated with HgCI2 and CH3HgCl using radio-analytical techniques. The columns were irrigated with rain of different acidity, rain volumes and irrigation intensities. The leaching of mercury was traced by detecting the vertical distribution of 203Hg in the soil profiles. Advantages and disadvantages of radioanalytical scanning techniques are discussed. The results of Hg leaching in the soil columns indicate a considerably stronger leaching of monomethyl mercury compared to inorganic mercury. Leaching of the two Hg-species is ruled by competition of H+ induced soil-Hg desorption with DOM-Hg complex formation; both being affected by rain acidity. Rain intensity had no visible effect on leaching of Hg2+ and CH3Hg+. An extended rain duration increased the leaching of CH3Hg+.  相似文献   

8.
The forest floor was shown to be an effective sink of atmospherically deposited methylmercury (MeHg) but less for total mercury (Hgtotal). We studied factors controlling the difference in dynamics of MeHg and Hgtotal in the forest floor by doubling the throughfall input and manipulating aboveground litter inputs (litter removal and doubling litter addition) in the snow‐free period in a Norway spruce forest in NE Bavaria, Germany, for 14 weeks. The MeHg concentrations in the forest‐floor percolates were not affected by any of the manipulation and ranged between 0.03 (Oa horizon) and 0.11 (Oi horizon) ng Hg L–1. The Hgtotal concentrations were largest in the Oa horizon (24 ng Hg L–1) and increased under double litterfall (statistically significant in the Oi horizon). Similarly, concentrations of dissolved organic C (DOC) increased after doubling of litterfall. The concentrations of Hgtotal and DOC correlated significantly in forest‐floor percolates from all plots. However, we did not find any effect of DOC on MeHg concentrations. The difference in the coupling of Hgtotal and MeHg to DOC might be one reason for the differences in the mobility of Hg species in forest floors with a lower mobility of MeHg not controlled by DOC.  相似文献   

9.
Schwesig  D.  Ilgen  G.  Matzner  E. 《Water, air, and soil pollution》1999,113(1-4):141-154
Mercury (Hg) and methylmercury (CH3Hg+) are global pollutants, but little information is available on their distribution and mobility in soils and catchments of Central Europe. The objective of this study was to investigate the pools and mobility of Hg and CH3Hg+ in different forest soils. Upland and wetland forest soils, soil solutions and runoff were sampled. In upland soils the highest contents of total-Hg were found in the Oh layer of the forest floor (>400 ng g-1) and the storage of non geogenic total-Hg (calculated for 60 cm depth) was about 120 mg/m2. The storage of total-Hg was one order of magnitude lower in wetland soils as compared to the upland soils. By far the largest proportion of total-Hg in soils was bound in immobile fractions. The depth gradients of CH3Hg+ did not correspond to those of total-Hg and the highest contents of CH3Hg+ in upland soils were observed in the litter layer of the forest floor and in the Bsv horizon. The CH3Hg+ content of the wetland soils was generally much higher in comparison with upland soils. CH3Hg+ in solution was found in the forest floor percolates of upland soils and in wetland soils, but not in soil solutions from mineral soil horizons. Gaseous losses of Hg as well as methylation of Hg are likely in wetland soils. The latter might be highly relevant for CH3Hg+ levels in runoff.  相似文献   

10.
New experiments have been conducted to determine the speciation of dissolved mercury (Hg) over wide pH (1–12) and sulfide concentration ranges (0.5–30 mM) and in the presence of elemental sulfur (S0) or Hg0, conditions that encompass those of near-bottom and pore waters of sediments. Samples containing synthetic red mercuric sulfide (HgS, cinnabar), buffer solution, aliquots of bisulfide (HS?1) solution, and, in special cases, S0 or Hg0 were prepared anaerobically and allowed to equilibrate for several months. Filtered samples were analyzed for pH, total sulfide (ΣS2?), and total mercury [Hg]tot. Plots of [Hg]tot values vs. pH at varying ΣS2? verified the formation of three previously known mercury-sulfide complexes (HgS2Hn n?2) and revealed that a new Hg2SOH+ complex is important at low pH and low ΣS2?. Our constants for ionic strength (I) 0.7 and 250 C are as follows: K1=10?5.76(+0.71, ?1.02) for HgScinn+H2S ? HgS2H2 0; K2=10?4.82(+0.72, ?1.10) for HgScinn+HS? ? HgS2H?; K3=10?13.41(+0.76, ?0.93) for HgScinn+HS? ? HgS2 2?+H+; K4=10?8.36(+0.71, ?0.93) for 2HgScinn+H++H2O ? Hg2SOH++H2S. With decreasing pH, below 1, Hg solubility decreased sharply, indicating the formation of a new solid phase, inferred to be corderoite (Hg3S2Cl2). From our solubility data, we calculated the free energy of formation (ΔGf o) of Hg3S2Cl2 to be ?396 (+3, ?11) kJ/mol. In experiments where excess S0(s) was present, a new mercury-polysulfide dimer was identified; its formation constant is K5=10?1.99(+0.69, ?1.27) for 2HgScinn+2HS? + nS0 ? Hg3S4 IISn oH2 2?. Data from experiments where Hg0(aq) was added confirmed the reversibility of HgS dissolution. An application of our mercury-sulfide speciation model to a natural anoxic basin, Saanich Inlet, British Columbia, is discussed.  相似文献   

11.
Dissolved and particulate Hg speciation was determined on four occasions in the Spring to Fall interval of 1989, at three depths of the water column of Onondaga Lake, New York; an urban system in which the sediments and fish flesh are contaminated with Hg. Species determined included total Hg (Hgt), reactive (‘ionic’) Hg (Hgi), monomethylmercury (CH3HgX), elemental Hg (Hg°) and dimethylmercury (CH3)2Hg). Onondaga Lake was found to contain very high levels of Hgt (2 to 25 ng L?1 Hg), Hgj (0.5 to 10 ng L?1 Hg), and CH3HgX (0.3 to 7 ng L?1 Hg), which generally increased with depth in the lake. These concentrations represent a significant level of contamination, based upon comparisons with other polluted and pristine sites. Elemental Hg levels were typically about 0.05 ng L?1 and (CH3)2Hg was near the limits of detection (?0.001 ng) L?1 in most samples. The greatest CH3HgX concentrations in the hypolimnion, as well as the largest gradients of both CH3HgX and (Hgt), were observed upon the first onset of stratification, in early summer. These concentrations did not become more pronounced, however, as stratification and H2S levels in the hypolimnion increased throughout the summer. The very low concentrations of (CH3)2Hg in these MeHg and sulfide-rich waters calls into question the belief that CH3HgX and H2S will react to yield volatile dimethyl-mercury, which can then escape to the atmosphere by diffusion. Mercury speciation was highly dynamic, indicating active cycling within the lake, and an apparent sensitivity to changes in attendant Iimnological conditions that track the stratification cycle.  相似文献   

12.
Liquid elemental mercury occurrence in the subsurface as dense non-aqueous phase liquid (DNAPL) is reported worldwide in proximity of several industrial facilities, such as chlor-alkali plants. Insight into Hg0 DNAPL infiltration behavior is lacking and, to date, there are no experimental observations of its infiltration and distribution in water-saturated porous media, except for capillary pressure-saturation column experiments. To better understand the processes governing elemental mercury DNAPL flow behavior, a series of flow container experiments were performed using mercury DNAPL (in sands and glass beads) and tetrachloroethylene (PCE) (in sands). While liquid Hg0 was not able to infiltrate in the sand-filled container due to an overall lower permeability of the sample and a defect of the setup, in the glass beads experiment mercury DNAPL infiltration occurred. Dual gamma ray measurements showed that, in glass beads, liquid Hg0 preferentially migrated towards higher porosity zones. As for PCE, infiltration and distribution of Hg0 DNAPL are strongly affected by the heterogeneities within the porous formation. However, compared to other DNAPLs, liquid Hg0 shows a strong attenuation potential of gamma rays. Finally, numerical simulations of the glass beads experiment showed an overall good agreement with the experimental results, highlighting that, among the factors influencing the prediction of liquid Hg0 migration in water-saturated porous media, the most critical are (i) the knowledge of the inflow rate, (ii) the reliable estimation of the porous formation permeability, and (iii) the accurate representation of the correlation between retention properties and intrinsic permeability.  相似文献   

13.
Dimethyl sulphoxide (DMSO) at 14 mM inhibits CH4 oxidation in forest soil, but the inhibition mechanism is unknown. When soil slurries are incubated in gas tight flasks, there is a lag of about 45 h before DMSO inhibits CH4 oxidation. We tried to determine if some metabolic compound derived from DMSO, as a result of microbial activity, is responsible for the inhibition. Dimethyl sulphide (DMS) accumulated in the sealed flasks up to 5-83 μl l−1 in the headspace during a 2-week period. DMS at 1 μl l−1 in the headspace (0.64 μM in soil-water slurry) had a negligible effect on CH4 oxidation but 50 μl l−1 DMS (32 μM) inhibited CH4 oxidation completely. However, the inhibition by DMSO was already evident after 45 h, when DMS concentrations were generally non-inhibiting (0.1-0.7 μl l−1). DMSO was also shown to inhibit CH4 oxidation when the DMS produced was continuously removed. Results suggest that the production of DMS from DMSO makes a minor contribution to the inhibition of CH4 oxidation by DMSO with incubation times relevant in CH4 oxidation studies.  相似文献   

14.
Methyl mercury (Hg) was determined in rainbow trout (Oncorhynchus mykiss) and organisms in the lower tropic levels: smelts (Retropinna retropinna), bullies (Gobiomorphus cotidianus), koura (Paranephrops planifrons); and zooplankton (Daphnia carinata and Calamoecia lucasi) in Lakes Okareka, Okaro, Tarawera, Rotorua and Rotomahana, New Zealand. Water concentrations of total Hg (HgT) and methyl Hg were also measured. Mean methyl Hg concentrations in the trout, the prey species (smelts, bullies and koura) and zooplankton increased linearly with mean HgT and methyl Hg chloride (CH3HgCl) concentrations in water. Most of the bio-magnification of methyl Hg occurred in the lower trophic levels of the trout food web (104.72) between the zooplankton and water. The bioaccumulation factors between the forage fish and zooplankton were 100.73 for bullies and 101.06 for smelt. Methyl Hg was 100.41 to 100.95 times greater in the trout then their prey.  相似文献   

15.
The effect of soil flooding on methylmercury (MeHg) production was studied by placing humus and peat with water in 40 liter vessels. Total mercury (Tot-Hg), MeHg, nutrients, total organic carbon (TOC) and color were measured in water. Potential mercury methylation and demethylation rates in water and in flooded soils (humus and peat) were measured using radiochemical methods under aerated and non-aerated conditions during a period of 117 days. In general, the potential methylation in humus and peat were one order of magnitude higher than in the water phase. During the experiment, methylation increased in humus and in peat but decreased in water. Demethylation decreased in all compartments. Anoxis increased methylation in soils but not in the water phase. On the other hand, demethylation was clearly higher in anoxic conditions. Tot-Hg increased more rapidly than MeHg in the water of the vessels, and a more rapid MeHg increase was observed in peat vessels than in humus vessels. Highest concentrations of MeHg (5.42 ng/L peat, 7.98 ng/L humus) were measured in non-aerated vessels. Water color correlated negatively with methylation in water but positively with MeHg concentrations, indicating that humic substances are the main MeHg carriers but are not active melhylating agents. Methylmercury fluxes to water (3.6–44 ng/m2*d) were of the same order of magnitude as those measured in field experiments in Canada and in a beaver lake in Finland but were notably higher than those fluxes from unflooded catchmets. The results indicate that increased net methylation in flooded humus and peat soils, especially in anoxic conditions, is the main reason for increased MeHg concentrations in reservoirs.  相似文献   

16.

Purpose

The aim of the present study was to investigate the differences of methylmercury (MeHg) formation and distribution between mariculture (aquaculture) sediments (MS) and reference sediments (RS) collected from a site in Hong Kong.

Materials and methods

The MS and RS samples were split into four batches, three of which were spiked with HgCl2 aqueous solution to a concentration of 0.8, ,2 and 8 mg k g?1 in sediment samples SP1, SP2, and SP3, respectively, while the rest served as a control batch (referred to as C).

Results and discussion

The results showed that the highly Hg-polluted sediment produced greater amounts of MeHg. During the culture period, MeHg concentrations in sediments decreased over time. The decreasing percentage increased in the order of SP3?<?SP2?<?SP1, which might be due to the inhibition of MeHg degradation by high Hg concentrations. The mean value of MeHg concentrations and %MeHg of the total Hg (THg) in MS was significantly lower than those in RS, possibly due to the complexation of Hg with organic ligands, leading to lower Hg bioavailability for methylation bacteria. The distribution coefficient of THg (KdT) was relatively high in MS compared to RS, indicating that the former had a greater number of binding sites for Hg adsorption.

Conclusions

Methylmercury formation was inhibited in MS, probably due to increased complexation of Hg2+ with organic matter and adsorption of Hg to MS. Furthermore, the mean value of KdT in MS was relatively high when compared to RS, which illustrates that MS sediments have more binding sites than RS for adsorption of Hg.  相似文献   

17.
Mercury speciation in contaminated soils by thermal release analysis   总被引:1,自引:0,他引:1  
Thermal release analysis of mercury species in contaminated soils was performed by temperature controlled continuous heating of the samples in a furnace coupled to an Atomic Absorption Spectrophotometer (AAS). It was shown that this method allows the identification of different redox states of Hg-species through their characteristic releasing temperature ranges. The method was applied to Hg-contaminated samples from an inactive chlor-alkali production plant in former East Germany (GER), and from a gold mining area in Poconé, Mato Grosso, Brazil (BRA), as well as synthetic soil samples obtained by spiking pre-heated soil matrices (GER and BRA) with the following mercury species: Hg0, Hg2Cl2, HgCl2, HgO and HgS. The samples GER, in general, frequently showed the presence of Hg2+ probably bound to humic substances, in the case of samples with higher total carbon content. Only in highly contaminated samples (>3000 ppm of mercury) was Hg0 the predominant species. The samples BRA more frequently showed the presence of mercury species in the lower oxidation states, i.e. Hg1+ in combination with Hg0. The method allows observing changes in Hg-speciation in the samples with time, mainly changes among the oxidation states Hg0, Hg1+ and Hg2+. The treated GER matrix showed a stronger tendency to oxidise Hf-species than the BRA treated matrix, in which only added Hg0 is partially oxidised to Hg2+ and Hg1+. In contrast, the BRA matrix showed a pronounced tendency to reduce spiked Hg2+ to Hg1+. This may be the reason for the presence of Hg1+ in the majority of original BRA samples. The method appears to be very useful to study speciation of mercury and its dynamics. It can be used as a tool for monitoring mercury oxidation states and/or reactions of mercury in soils.  相似文献   

18.
Chemical speciation of mercury (Hg) in a wide variety of combustion flue gas matrices has been determined using the mercury speciation adsorption (MESA) method. The MESA sampling system for gas phase Hg species employs a series of heated, solid phase adsorbent traps. Flue gas oxidized Hg species (Hg(II) and MMHg) are adsorbed by a potassium chloride (KCl) impregnated soda lime sorbent. Elemental Hg (Hg0) is collected by an iodated carbon sorbent after passing through the KCl/soda lime sorbent. Total Hg (Hgt) is determined by summation of species. In the laboratory, cold vapor atomic fluorescence spectroscopy (CVAFS) is used for detection of Hg collected on the solid sorbents, after appropriate sample digestion and preparation. The MESA method has been evaluated for species stability, matrix effects, breakthrough, artifacts and precision. Based on eight duplicate samples a mean precision of 6.8% 11% and 4.5% (relative percent difference) has been calculated for Hg0, Hg(II) and Hgt respectively. Intercomparison of the MESA method with other methods shows very good agreement for Hgt. Mass balance calculations at 5 sites range from 75 to 140%, with a mean of 97±25%. Overall mean speciation results from 19 separate determinations suggest that Hg(II) has a 1 sigma range of 40 to 94% in coal combustion flue gas at, the inlet to pollution control devices.  相似文献   

19.
Ewert  G.  Paulsen  T.  Linscheid  M. 《Water, air, and soil pollution》2003,144(1-4):141-148
Hearth furnace coke (HOK), a special type of lignite (brown-coal)coke produced in a manufacturing process called `hearth furnace process', and portlandite (Ca(OH)2) particles were placed ina circulating fluidized bed reactor. Defined model waste gases containing HCl/SO2/Hg0/Hg2+ and organic compounds were injected into the reactor to investigate the adsorption of different mercury species. Elemental mercuryreacted immediately with HCl to form HgCl2, but for Hg2+ further investigations had to be made, because todaygas cleaning plants still have problems in observing national limits for the mercury output. The temperature, the mercury content of the gas, and its content of acid compounds as majorinfluences in cleaning exhaust gases were varied without relevantpositive effects on the adsorption rate which decreased from nearly 100% in the first five minutes to unsatisfactory20% some minutes later. The mercury load on the HOK particles onlyshowed a value of 60 μg Hg g-1 HOK. Then organic compounds (guide pollutants such as 1-chlorobutane, monochlorobenzene, toluene, and naphthalene, which are alwayspresent in incineration plant exhaust gases) were added to thegas stream and the results improved significantly. The mercuryload on the HOK particles varied depending on the chemical nature of the organic compound and amounted to 300 μg Hg g-1 HOK maximum. The measured values of mercury in the clean gas stream fell below 10 μg m-3. The characterization of the dynamic behavior of mercury in hot, acid waste gases and the analytical identification of mercurysticking to HOK under the influence of organic compounds leadto new methods for improving the effectiveness and performanceof gas cleaning plants.  相似文献   

20.
Divalent Hg is reduced by sulfite in aqueous solutions. The proposed mechanism involves the formation of an instable intermediate, HgSO3, which decomposes to produce Hg+ which in turn is rapidly reduced to Hg0. The overall rate of the reaction is inversely dependent on the concentration of sulfite. This reaction may influence the concentration of Hg in cloud- and rain-water by reducing water soluble Hg2+ to volatile Hg0. At low concentrations of SO2(g) (5 μg m−3, 25 °C), the rate of the conversion of Hg(SO3)2 2− to Hg0 becomes significant (> 1 % h−1) at pH < 5.5. At higher S02 concentrations (500 pg m−3), the same rate is expected at pH < 4.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号