首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Navjot Sodhi is best known for his advancement of tropical ecology and conservation science; however, his research origins were in fact based in the boreal forest ecosystem of Canada. Ironically, the less-studied ecosystems of the tropics have recently received much more conservation attention than northern biomes, despite the boreal forest (i) representing about one third of all remaining forest on the planet (and about 50% of the world’s remaining tracts of large, intact forest), (ii) sequestering about 30% of the Earth’s stored terrestrial carbon, and (iii) becoming increasingly fragmented with ecologically contiguous patches constituting only 44% of its entire area. These heightened threats of fragmentation and increasing fire frequency associated with expanding human industry in the boreal zone, along with climate change, mean that more international focus on the plight of the boreal ecosystem is warranted. Prior to his death, Navjot Sodhi had accepted a position at the University of Toronto where he planned to apply his keen, transdisciplinary approaches to boreal conservation science in an attempt to prevent the future destruction of planet Earth’s second ‘lung’. Although he never realised this dream, here we provide an overview and examples of how appropriate boreal forest management can be achieved.  相似文献   

2.
As the area of the world’s forests shrinks, the management of production forests is becoming increasingly paramount for biodiversity conservation. In the United States and Australia, public debate and controversy about the management of production forests during the later decades of the 20th century resulted in governments adopting sweeping top-down changes to forest policy, with regional forest plans a cornerstone of this process. This paper reviews the biodiversity conservation outcomes of two such processes, the Southeast Queensland Forests Agreement (Australia) and the Northwest Forest Plan (United States). Several key lessons are identified. First, these plans are significant steps forward in the struggle to conserve forest biodiversity while providing for production of timber. Second, expanding the conservation reserve system by itself does not necessarily ensure biodiversity conservation, especially if reserves are traded off for increased timber harvesting in forests outside of reserves or if certain important elements of biodiversity are not accounted for either by conservation forests or production forests. Third, reserves often need active management to restore diversity in previously-logged forests and reduce fuels that have accumulated as a result of fire exclusion. Fourth, the current plans fall short of the comprehensive whole-of-landscape, multiple-ownership approach needed to support long-term sustainable forestry and biodiversity conservation. Fifth, adaptive management was not adequately institutionalized and sometimes misapplied, although, in the case of the Pacific Northwest, a major regional monitoring strategy was developed and partially implemented. Finally, ecological science suffered in the collision with the socio-political decision-making process due to the limited scope that was left for testing and evaluating the new approaches to forest management. We conclude, based on the evaluation of the two regional plans, that regional biodiversity conservation goals may be better achieved by implementing sustainable forest management practices across all ownerships and involving all stakeholders and the broader community.  相似文献   

3.
The Canadian boreal forest covers over 300 Mha of land area. Its dynamics are largely influenced by fires and insect-induced stand mortality and to a much lesser extent by forest management. This paper analyses six scenarios of future (1990–2040) carbon (C) budgets of the Canadian boreal forest, each based on different assumptions about natural disturbances, rates of reforestation of disturbed land, and conversion of non-stocked to productive forest stands. The objective of these scenarios is to explore the range of responses to different management options. The results indicate an overall inertia of a system whose dynamics are strongly influenced by a recent 20-year period (1970–1989) of large-scale forest disturbances by fire and insects. The 50-year C budget of the six scenarios ranges from an estimated net source of 1.4 Pg C to a net sink of 9.2 Pg C. These estimates indicate the range of response to the management of the Canadian boreal forest. Although a full-scale implementation of the management activities examined here is not likely given ecological and economic realities in the Canadian boreal forest, the analyses explore the relative merits of reducing forest disturbance rates, regeneration delays, and the area of non-stocked forest land.  相似文献   

4.
The boreal forest is in transition. Large areas in remote regions are still in a pristine state, but extensive exploitation or intensive management for wood production dominates in Russia, Canada and the Nordic countries. The broadened view that forests are sources of other products than wood as well as of biodiversity is gradually becoming internationally accepted. To sustain the boreal forest for the future it must be realised that the forest has to be sustained as a system rather than as a number of utilities that can be considered separately. In northern Europe the situation is particularly striking with a strong contrast between the adjacent boreal forests in Scotland, Sweden and Finland on the one hand, and the north-west of Russia on the other. The two regions differ by history, type of land use and economic system but they are basically biologically similar. Combining sustainable wood production and maintenance of biodiversity and other values means setting limits to the intensity and extent of forest management. If the impact has been large, it is also necessary to build more natural features into managed systems. Developing a sustained boreal forest system by management of forests and forests reserves can be more efficient if research, education and management are well integrated. Scientists, teachers and managers must meet frequently and interact. In this way the time-lag between the advent of new knowledge and its implementation in the field can be reduced. We argue that co-operation among contrasting regions like the east and the west provides a unique opportunity for such integration. We review the problems and requirements in the west and the east, respectively, by contrasting Scotland, Sweden and the Komi Republic in Russia. The experiences are different and therefore complementary to each other. This assures long-term benefits of joint action.  相似文献   

5.
Forest ecosystems are being subjected to an increasing variety of stresses for which we do not yet have rotation-length experience. Where we lack such experience, we cannot make experience-based predictions of the long-term effects of these stresses. While we are accumulating such experience, computer models can be used to make interim knowledge-based predictions. Most scientific knowledge has been produced by reductionist, disciplinary, process-based research. Such knowledge is a vital component of any explanation of natural or human-induced landscape phenomena, but cannot, in its reductionist, disciplinary form, provide an adequate basis on its own for long-term predictions about these phenomena. Such predictions require the development of computer models of ecosystem form and function based on the integration of knowledge from eco-physiology, autecology, community ecology, soil science, and climatology into ecosystem-level models that accurately describe the function and temporal dynamics of forest ecosystems. The ability of the ecosystem-level forest management simulation model FORCYTE-11 (FORest nutrientCycling andYieldTrendEvaluator) to simulate forest stresses is described briefly. The question of how to model other stresses, such as air pollution, acid rain, climate change, soil compaction and erosion, and moisture competition is discussed, and the outline of a new model (FORECAST:FORestry andEnvironmentalChangeASsessmenT) is presented.  相似文献   

6.
Forest ecosystems are being subjected to an increasing variety of stresses for which we do not yet have rotation-length experience. Where we lack such experience, we cannot make experience-based predictions of the long-term effects of these stresses. While we are accumulating such experience, computer models can be used to make interim knowledge-based predictions. Most scientific knowledge has been produced by reductionist; disciplinary, process-based research. Such knowledge is a vital component of any explanation of natural or human-induced landscape phenomena, but cannot, in its reductionist, disciplinary form, provide an adequate basis on its own for long-term predictions about these phenomena. Such predictions require the development of computer models of ecosystem form and function based on the integration of knowledge from eco-physiology, autecology, community ecology, soil science, and climatology into ecosystem-level models that accurately describe the function and temporal dynamics of forest ecosystems.The ability of the ecosystem-level forest management simulation model FORCYTE-11 (FORest nutrient Cycling and Yield Trend Evaluator) to simulate forest stresses is described briefly. The question of how to model other stresses, such as air pollution, acid rain, climate change, soil compaction and erosion, and moisture competition is discussed, and the outline of a new model (FORECAST: FORestry and Environmental Change ASsessmenT) is presented.  相似文献   

7.
Forest management in temperate and boreal regions is often based on a strong foundation of applied ecological research. Increasingly, this has allowed the needs of saproxylic (dead wood associated) insects to be addressed. However, there has been very little equivalent research in tropical forests, where saproxylic insect faunas are likely to be much richer and where forestry is usually subject to weaker environmental controls. This study compares the saproxylic beetle fauna of old-growth, selectively logged and regrowth rainforest in the Daintree lowlands of northeastern Queensland, Australia. Old-growth levels of abundance, species richness, assemblage composition and guild structure were not maintained in logged and regrowth forest, suggesting that intact assemblages may not survive in the long-term in managed tropical rainforest. However, retaining a continuous supply of commercially overmature trees in the managed stand may prevent a repeat of the widespread extinctions of saproxylic insects witnessed in temperate and boreal forest regions.  相似文献   

8.
Logging and modern forest management reduced the frequency of key features of old-growth forest, especially old, dying and dead trees in the Scandinavian boreal forest during the 20th century. To quantify the decline and spatial differences, we have analysed density changes of old trees between 1926 and 1996 on a regional scale (approximately 50,000 km2) in boreal Sweden. The occurrence of old-conifer trees (+159 years) has dramatically decreased in the studied area and today only one third as many old Scots pines (Pinus sylvestris L.) and Norway spruces (Picea abies (L.) Karst.) can be found as in the 1920s. However, the density of old deciduous trees (+99 years) has not decreased since the early 20th century. Historical baseline data such as these are needed for modern forest management, conservation programmes and ecological restoration projects. Existing old trees are very important for biodiversity, and may also preserve elements of cultural heritage from pre-industrial times.  相似文献   

9.
A major challenge in conservation biology is to understand species’ responses to habitat loss. In Fennoscandia, the ongoing decline in aspen in forests is of particular concern, since aspen is the boreal forest tree species that supports the most host-specific species of cryptogams and invertebrates. In order to predict the potential effects of aspen decline we compared the occurrence of three epiphytic cyanolichens in old-growth stands of the same habitat quality, in four aspen-rich and four aspen-poor landscapes. Collemacurtisporum and Collemafurfuraceum were, on average, five and six times more frequent, respectively, in the aspen-rich than in the aspen-poor landscapes. Leptogiumsaturninum was not affected by the abundance of aspen stands at the landscape level. Our data suggests that lichen species with poor dispersal abilities may be more sensitive to habitat loss than more easily dispersed species and that species with broader habitat amplitude may be less sensitive to habitat loss than more specialized species, even if they have inferior dispersal ability. We conclude that (i) predictions of species occurrences at the stand level have to take account of the amount of suitable habitat at the landscape level, and (ii) predicting the responses of individual species based on life-history traits can be crucial, but cannot be based on single traits. Thus our study shows that biological value cannot be assessed on the basis of habitat quality alone and that a landscape perspective is needed for the sustainable management of specialist species.  相似文献   

10.
Forest soil properties must be observed with the appropriate resolution by depth and landscape area to understand biogeomorphological controls on soil carbon (C). These observations, particularly in boreal forests, have been limited because of the poor resolution and unavailability of physical soil sampling results, especially for soil bulk density measurements. Ground penetrating radar (GPR) has been demonstrated to non-destructively and continuously estimate forest soil properties required in Cstock estimates, such as soil horizon thickness and soil bulk density, across small spatial scales and shallow depths. Yet, successful small-scale forest GPR approaches represent a potential opportunity to obtain soil property estimates at relevant resolution and depth across forest landscapes, enabling improvement to much needed soil mapping and stock estimates. This review discusses the existing soil property studies that utilize ground penetrating radar (GPR) and explores how the adaptation of GPR methodology can contribute to investigating soils in forest landscapes. We have identified common GPR surveying practices, data processing steps and interpretation methods employed in multiple studies. These approaches have proven effective in obtaining higher-resolution estimates of important soil properties, such as bulk density and horizon thickness, within small-scale forest plots. By applying relevant findings in this review to our own boreal forest investigation across an 80 m hillslope transect, we provide recommendations on how to tailor GPR methodology for landscape-scale estimates of soil horizon thickness and bulk density to examine forest soil property distribution. These findings should enable the future collection of soil datasets informing the distribution of soil C stocks and their relationship to landscape features, and thus their controls and responses to climate and environmental change.  相似文献   

11.
The development of forests in Pukaskwa National Park, Ontario, Canada, was simulated over 150 years to investigate boreal carbon dynamics and to test the feasibility of simulating large tracts of heterogeneous boreal forest. Pukaskwa National Park, located on the north shore of Lake Superior, encompasses 1835 km2 of the Superior Section of the boreal forest. We developed a patch model, called BOPAS (BOreal PAtch Simulator), to simulate the development of carbon pools as a function of environmental parameters. Using GIS techniques, we divided the park into patches defined by a unique combination of forest type, age, climatic variables, soil type and topography, then used a forest gap model to develop biomass-over-time relationships for each patch type. BOPAS uses these relationships to simulate the development of carbon pools for trees, moss and litter/humus. We report results for constant climate, but BOPAS can be easily adapted to changing climate scenarios. Good results were obtained for predictions of carbon storage in trees. The initial value was 3.61 kg C m?2, which agrees closely with literature values. With no disturbance, tree carbon increased to a maximum of 3.97 kg C m?2 at 30 years then slowly declined. Carbon storage was stabilized by introducing fire as a disturbance with a return interval of 100 years. Predicted forest floor carbon density, however, was much lower than expected, being less than half that of trees. It was anticipated to be substantially higher than tree carbon density based on a preliminary survey in the park and values reported in the literature. Published data, however, are very limited in coverage and give such a wide range of values that it was impossible to draw any firm conclusions about the validity of the model. BOPAS also showed that the forest floor carbon pool was relatively constant over the timescales of the simulation, but no published data were available to test this prediction. In summary, this work has demonstrated the feasibility of the BOPAS approach, but has high-lighted the necessity for more extensive data on forest floor carbon storage and dynamics.  相似文献   

12.
粮食生产潜力中、长期预测的目的是为国家中、长期粮食生产规划提供科学依据。粮食生产潜力中、长期预测的"双向预测理论":从若干个预测模型中选择出2个模型,一个模型预测的未来产量是持续增加的,体现产量持续增加的科技进步力量;另一个模型预测的未来产量是先增加后减少或持续减少的,体现影响产量持续增加的负面综合因素力量。应用结果表明:模型可预测未来1~10年的粮食生产潜力,平均预测误差在5%以内。大量案例证明粮食生产潜力中、长期预测的"双向预测理论"是科学的、方法是通用的、结果是实用的。  相似文献   

13.
This paper provides a quantitative review of the consequences of disturbance on epiphytic lichens in boreal and near boreal forests, focusing on disturbance effects on lichen persistence, growth, and colonization, and on the development (recovery rates) of lichen diversity over time. Lichen persistence, growth, and colonization were examined by reviewing studies on e.g. edge-effects, lichen transplants, and logging experiments. Recovery rates were examined by reviewing studies on relationships between lichen diversity and stand age. The results from the reviewed studies were analysed by various meta-analysis methods. The review showed e.g. overall negative effects of disturbance on lichen persistence, but that persistence depend on the magnitude of the disturbance (e.g. forest edge orientation and clearcut size). However, many lichens seem to persist disturbance, and growth rates were as good in disturbed as in intact forest. The review also showed that lichen populations may need long time to recover, but that species richness does not necessarily increase over time. However, disturbance origin (logging or natural disturbance) is important to explain lichen diversity but is often confounded with stand age. The results are promising for the potential to restore and maintain lichen diversity by forest management methods based on natural disturbance regimes. Further research is needed to e.g. separate the effects of time since disturbance and disturbance type, to examine edge-effects under varying edge conditions, and to examine the influence of landscape context on stand level lichen diversity.  相似文献   

14.
The forestry industry in Canada has become sensitive to its image through pressure from environmentalists and the European markets and along with Natural Resource Departments across the country, is working hard to change its image by developing environmentally sound management. The dilemma is how to continue resource extraction from the forest yet ensure that wildlife populations do not become endangered. An important ecosystem process in the boreal forest is forest fire and the forestry industry has traditionally argued that clear cutting simulates forest fire by creating large areas devoid of vegetation that can then grow back either through natural regeneration or by planting. What is neglected in present forestry is the landscape pattern created through cutting which is often large continuous expanses of recently clear-cut land. In ecology we often talk about process and pattern. I will argue that we should emulate the pattern across the landscape. Wildlife (including all life) have evolved in landscapes with inherent patterns. If we can maintain the inherent pattern in a landscape I argue that we can maintain the wildlife. Here I outline a method for describing landscape patterns and maintaining these patterns through forest management.  相似文献   

15.
Insect populations have a substantial impact on Canada's forest. They are a dominating disturbance factor and during outbreaks they can cause tree mortality over vast areas of forest. If the predicted climate changes take effect, the damage patterns caused by insects may be drastically altered, especially for the many insects whose occurrence in time and space is severely limited by climatic factors. This possibility substantially increases the uncertainties associated with the long-term planning of pest control requirements, with hazard rating models, with depletion forecasts, and with projections for the sustainability of future timber supplies. Moreover, because insect damage affects the rates of various processes in nutrient and biogeochemical cycling, potential changes in damage patterns can affect ecosystem resilience. This paper presents a number of plausible scenarios that describe how some key processes in the boreal forest's insect defoliator outbreak systems may respond to climate change. The spruce budworm,Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is used as an illustrative case study throughout. The potential importance of phonological synchrony in the dynamical interactions between species is emphasised. It is argued that natural selection may be a particularly important process in the response of insects to climate change and that climate change may already be influencing some insect lifecycles. The importance of threshold effects, rare but extreme events, and transient dynamics is emphasised, and the inadequacy of ‘equilibrium’ models for forest:pest systems noted. We conclude by discussing approaches to developing forecasts of how one of the boreal forest's insect defoliator-based disturbance regimes, as a whole, might respond to climate change.  相似文献   

16.
The circumpolar boreal biomes coverca. 2 109 ha of the northern hemisphere and containca. 800 Pg C in biomass, detritus, soil, and peat C pools. Current estimates indicate that the biomes are presently a net C sink of 0.54 Pg C yr?1. Biomass, detritus and soil of forest ecosystems (includingca. 419 Pg peat) containca. 709 Pg C and sequester an estimated 0.7 Pg C yr?1. Tundra and polar regions store 60–100 Pg C and may recently have become a net source of 0.17 Pg C yr?1. Forest product C pools, including landfill C derived from forest biomass, store less than 3 Pg C but increase by 0.06 Pg C yr?1. The mechanisms responsible for the present boreal forest net sink are believed to be continuing responses to past changes in the environment, notably recovery from the little ice-age, changes in forest disturbance regimes, and in some regions, nutrient inputs from air pollution. Even in the absence of climate change, the C sink strength will likely be reduced and the biome could switch to a C source. The transient response of terrestrial C storage to climate change over the next century will likely be accompanied by large C exchanges with the atmosphere, although the long-term (equilibrium) changes in terrestrial C storage in future vegetation complexes remains uncertain. This transient response results from the interaction of many (often non-linear) processes whose impacts on future C cycles remain poorly quantified. Only a small part of the boreal biome is directly affected by forest management and options for mitigating climate change impacts on C storage are therefore limited but the potential for accelerating the atmospheric C release are high.  相似文献   

17.
In forest ecosystems, earthworms and wildfire are two ecological agents that cause carbon (C) stored in the forest floor to be transferred to the atmosphere as greenhouse gases, either through heterotrophic respiration (earthworms) or through periodical combustion (wildfire). For centuries, wildfire has been an important ecological driver in the boreal forests of Canada where most fire emissions to the atmosphere originate from the forest floor. In contrast, earthworms are recent invaders, having been introduced to the Canadian boreal during the 20th century. Their spread is mainly associated with anthropogenic activities. We examined stand-level effects of earthworms and wildfire on forest floor C by adapting an earthworm-C simulation model for the boreal and using it in combination with a forest C accounting model. Because the overall impact of an invasive species depends on its areal extent, we used a spatial model of earthworm spread to calculate the total predicted change in C storage at the landscape-level following earthworm invasions in northeastern Alberta. Depending on the ecological groups of earthworms modelled in stand-level simulations, the forest floor C stock was reduced by 49.7–94.3% after 125 years, although the majority of this reduction occurred 35–40 years after initiation of the invasion. Because earthworm activities reduced the amount of forest floor C available for burning, emissions from wildfire were lower in the presence of earthworms. Spatial modelling of earthworm effects within the 5,905,400 ha Alberta–Pacific Forestry Management Area projected that forest floor C stocks in the invaded stands decreased 50,875 Mg C by 2006, and 2,706,354 Mg C by 2056, compared with the same area if earthworms were not present. Loss of forest floor C averaged over the 50 year simulation was 10 g m2 yr−1; similar in magnitude to estimates for C loss in the Canadian boreal due to wildfire or harvesting. These results indicate effects of non-native earthworms on the forest floor should be included in predictions of forest ecosystem C budgets to ensure accurate attribution of emissions to heterotrophic respiration versus combustion.  相似文献   

18.
Process models are commonly used in soil science to obtain predictions at a spatial scale that is different from the scale at which the model was developed, or the scale at which information on model inputs is available. When this happens, the model and its inputs require aggregation or disaggregation to the application scale, and this is a complex problem. Furthermore, the validity of the aggregated model predictions depends on whether the model describes the key processes that determine the process outcome at the target scale. Different models may therefore be required at different spatial scales. In this paper we develop a diagnostic framework which allows us to judge whether a model is appropriate for use at one or more spatial scales both with respect to the prediction of variations at those scale and in the requirement for disaggregation of the inputs. We show that spatially nested analysis of the covariance of predictions with measured process outcomes is an efficient way to do this. This is applied to models of the processes that lead to ammonia volatilization from soil after the application of urea. We identify the component correlations at different scales of a nested scheme as the diagnostic with which to evaluate model behaviour. These correlations show how well the model emulates components of spatial variation of the target process at the scales of the sampling scheme. Aggregate correlations were identified as the most pertinent to evaluate models for prediction at particular scales since they measure how well aggregated predictions at some scale correlate with aggregated values of the measured outcome. There are two circumstances under which models are used to make predictions. In the first case only the model is used to predict, and the most useful diagnostic is the concordance aggregate correlation. In the second case model predictions are assimilated with observations which should correct bias in the prediction, and errors in the variance; the aggregate correlations would be the most suitable diagnostic.  相似文献   

19.
Critical to the conservation of biodiversity is knowledge of status and trends of species. To that end, monitoring programmes have reported on the state of biodiversity using reference conditions as comparison. Little consensus exists on how reference conditions are defined and how such information is used to index intactness. Most use protected areas or an arbitrary year as reference. This is problematic since protected areas are often spatially biased, while arbitrarily defined reference years are often not sufficiently distant in time. We propose an alternative that relies on empirical estimates of reference conditions. Statistical ranges of reference are estimated and compared with observed occurrence and abundance to index status of individual species. When averaged among species, overall intactness is estimated. We demonstrate the approach using 202-winter mammal tracking sites from the boreal forest of Alberta, Canada. Intactness was estimated at 89 out of 100 with the southern boreal having lowest intactness and greatest human footprint. We suggest empirical predictions of reference conditions be used as baselines for comparing changes in the state of species and biodiversity. Reporting can occur at any spatial (e.g., ecosystem) or hierarchical (e.g., species, guilds, taxonomic group, or overall biodiversity) scale and is easily interpreted (scaled from 0-degraded to 100-intact). When used in a long-term monitoring framework, statistical trends in biodiversity intactness can be estimated, individual status of species assessed, and relevant policy evaluated.  相似文献   

20.
We conducted laboratory incubation experiments to elucidate the influence of forest type and topographic position on emission and/or consumption potentials of nitrous oxide (N2O) and methane (CH4) from soils of three forest types in Eastern Canada. Soil samples collected from deciduous, black spruce and white pine forests were incubated under a control, an NH4NO3 amendment and an elevated headspace CH4 concentration at 70% water-filled pore space (WFPS), except the poorly drained wetland soils which were incubated at 100% WFPS. Deciduous and boreal forest soils exhibited greater potential of N2O and CH4 fluxes than did white pine forest soils. Mineral N addition resulted in significant increases in N2O emissions from wetland forest soils compared to the unamended soils, whereas well-drained soils exhibited no significant increase in N2O emissions in-response to mineral N additions. Soils in deciduous, boreal and white pine forests consumed CH4 when incubated under an elevated headspace CH4 concentration, except the poorly drained soils in the deciduous forest, which emitted CH4. CH4 consumption rates in deciduous and boreal forest soils were twice the amount consumed by the white pine forest soils. The results suggest that an episodic increase in reactive N input in these forests is not likely to increase N2O emissions, except from the poorly drained wetland soils; however, long-term in situ N fertilization studies are required to validate the observed results. Moreover, wetland soils in the deciduous forest are net sources of CH4 unlike the well-drained soils, which are net sinks of atmospheric CH4. Because wetland soils can produce a substantial amount of CH4 and N2O, the contribution of these wetlands to the total trace gas fluxes need to be accounted for when modeling fluxes from forest soils in Eastern Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号