首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rainwater samples (N = 51) were collected at Rampur, an areafree from anthropogenic activity during the monsoon of 1997 and1998. The concentration of ions follows a general pattern as Ca> NH4 > Mg > SO4 > Cl > F >Na > NO3 > K > HCOO >CH3 COO. The pH of precipitation ranges between 5.9 and 7.4. The levels of Ca and Mg at this site are higher than otherremote sites, probably dominated by particles of soil origin.Good correlation between Ca, NO3, SO4, HCOO and CH3COO indicate that a fraction of NO3, SO4, HCOOand CH3COO may be derived from soil or associated with Ca and Mg after neutralization. The order of neutralization factorCa (2.19) > NH4 (1.26) = Mg (1.26) indicates that majorneutralization occurred by Ca. Factor analysis suggested thatCa, Mg, Na, K, NO3, SO4, HCOO and CH3COO arecontributed by soil. NH3 is known to exist as(NH4)2SO4, NH4NO3 and NH4Cl. Theymay be formed in the atmospheric water droplets by scavenging ofaerosols and reaction of gaseous species.  相似文献   

2.
Following 13‐year treatments of soil pH and nitrogen (N) source in a peach orchard of North Carolina, the concentration of calcium (Ca), magnesium (Mg), N, phosphorus (P), and potassium (K) in leaves, shoots, trunks and roots, as well as soil pH, soil exchangeable Ca, Mg, and K content, were determined. Through liming, higher soil pH treatment enhanced soil Ca and tissue Ca level. Among six N sources examined, the highest values of soil pH and soil Ca, Mg, and K were detected following poultry manure application. Compared to ammonium sulfate [(NH4)2SO4], calcium nitrate [Ca(NO3)2] increased soil pH and soil Ca and K content, but reduced soil Mg. For most of macronutrients examined in peach tissues, the highest levels were found in manure treatment. Mineral N sources containing Ca(NO3)2 resulted in high tissue Ca and low tissue N. In the above‐ground tissues, Mg concentration was relatively low following application of mineral N materials containing Ca, K, or sodium (Na). Acid‐ forming N, especially (NH4)2SO4, reduced tissue Ca and P. The magnitude of impact of liming and N source on macronutrients was tissue‐type dependent, with leaves and other new growth the most sensitive ones while trunks seldom responded to the treatments.  相似文献   

3.
A powerful 7.3 magnitude earthquake struck Taiwan on September 21, 1999. The stream water chemistry (pH, total alkalinity, conductivity, sodium, potassium, calcium, magnesium, ammonium, fluoride, chloride, sulfate, and nitrate) has been monitored since 1995 at the Guandaushi forestry riparian zone in central Taiwan. Collected data was used as a basis for comparing pre- and post-earthquake impacts. The pH, conductivity, and concentrations of Na, Ca, Mg, SO4, and HCO3 in stream water were lowest during the summer season, when stream water discharge was highest. On the other hand, the lowest concentrations of Cl, NH4, and NO3 in stream water occurred during the winter season, when stream water discharge was lowest. Also, K and F showed very little seasonal fluctuation in concentration. Downward trends in K and Ca were found 14 months prior to the earthquake; although, an upward trend occurred in NH4 at the same time.  相似文献   

4.
The seasonal patterns of flow and the concentrations of color, Mg, Ca, H+, Na, Cl, organic anions, SO4, and Gran alkalinity are examined for five streams or rivers in Kejimkujik National Park (Lower Mersey River, Atkins Brook, Grafton Brook, Pebbleloggitch Brook, and Beaverskin Brook). These range in organic color and acidity from very darkwater Atkins Brook (average 191 Hazen units, pH 4.2) to clearwater Beaverskin Brook (5 Hazen units, pH 5.5). In general, most dissolved substances are present in a relatively large concentration during the high-flow period of winter-spring (most notably color, Mg, H+, Ca, Na, organic anions, and SO4). In contrast, Gran alkalinity generally occurs in its highest concentration during the lowflow period. These observations suggest that during the high-flow period, substances are “flushed” from the terrestrial watersheds of these rivers and streams.  相似文献   

5.
Rain water and dustfall deposition samples were collected at Pune, an urban site (1992–98) and at Sinhagad, a rural site (1992–94). The samples were collected with wet-only and bulk collectors at Pune and with bulk collector at Sinhagad. The samples were analyzed for major ions, pH and conductivity. The study showed that the rain water at both places is alkaline (pH > 5.6). The average pH at Pune was 6.1. Neutralising components, indicated by Ca and non sea salt (nss) Mg have higher concentrations than the acidifying components SO4 and NO3. The wet deposition fluxes of all the ionic components were higher than the dustfall fluxes. Relative contribution from dustfall was largest for K, Ca, Mg and NO3. Dustfall was greater at Pune, compared to Sinhagad for all components and up to double for Ca.  相似文献   

6.
R.C. Mondal 《Geoderma》1973,9(1):35-41
Ground waters with electrical conductivity of 4.9–7.4 mmhos/cm, a pH of 7.7–8.8 and a Mg/Ca ratio of 0.8–41.5 were equilibrated with a Na-illite in the presence and absence of CaCO3. In the presence of CaCO3, exchangeable Ca, exchangeable Ca+Mg and the exchangeable Ca/Mg of the equilibrated clay increased but exchangeable Mg and Na decreased. The pH values of the ground waters were positively correlated with (1) exchangeable Ca, (2) exchangeable Ca+Mg, and (3) exchangeable Ca/Mg ratio, both in the presence and absence of CaCO3.  相似文献   

7.
Soil and soil solution nutrient concentrations were evaluated over a 30-mo period to determine the impact of simulated acidic precipitation (70:30 equivalent basis H2SO4: HNO3) at pH values of 5.7, 4.5, 4.0, and 3.5 on forest. microcosms. Soil nutrient analysis indicated significantly lower concentrations of exchangeable Ca and Mg in the top 3.5 cm of the mineral soil after 30 mo of pH 3.5 treatment. Leachate collected from the pH 4.5, 4.0, and 3.5 treatments at the 25 cm depth (below the Å.: horizon) exhibited significant increases in Cl, NH4, PO4, K, and SO4 concentrations compared to the pH 5.7 treatment. At the 50 cm depth (mid-profile) all leachate element concentrations except NH4 increased significantly in response to treatment. At the 100 cm depth (profile bottom), no significant effects of treatment on leachate chemistry were observed. The elevated base cation concentration values found in the 50 cm soil solution samples support at least partially the described reduction in Ca and Mg in the surface soil horizon. The 100 cm concentration data indicate that cations mobilized out of the Å.: and upper B horizon in response to treatment were immobilized before reaching the bottom of the soil profile. Evaluation of nutrient flux out of the microcosm at the 100 cm depth did not indicate any statistically significant response to the treatment. Nitrate rather than SO4 was found to be the dominant anion leaving the microcosm by an average factor of ~7 to 1.  相似文献   

8.
No‐tillage (NT) cropping systems are becoming increasingly important in the Brazilian savanna. To evaluate their sustainability we compared soil chemical properties in 1‐ to 3‐year‐old NT systems following 9 to 11 years of conventional tillage (CT) with systems where CT was continuously in place for 12 years. In the rainy season 1997/98, NT was cropped with soybean and CT with corn while in the rainy season 1998/99 both systems were cropped with soybean. Soil solid phase samples were taken from the 0—0.15, 0.15—0.3, 0.3—0.8, 0.8—1.2, and 1.2—2 m layers on three spatially separated plots under each of NT and CT. Soil solution samples were collected weekly at 0.15, 0.3, 0.8, 1.2, and 2 m soil depth during two rainy seasons (14 October to 28 April 1997/98 and 1998/99). We determined soil moisture contents, pH, the concentrations of exchangeable cations, the electrical conductivity (EC) of the soil solution, and the concentrations of Al, C, Ca, Cl, K, Mg, Mn, Na, NH4+, NO3, P, S, and Zn in solid soil and soil solution samples. Differences in soil solid phase properties and moisture content between NT and CT were small, few were significant. Under NT, the average solution pH was significantly lower (5.5), Al (26 μg l—1), Mn (17 μg l—1) and total organic C concentrations (TOC, 6.5 mg l—1) were higher than under CT (pH: 6.0, Al: 14μg l −1, Mn: 14μg l −1, TOC: 5.5 mg l −1). Irrespective of the different crops in the first rainy season, under NT, the EC (205 μS cm—1), Ca (17 mg l—1), and Mg (2.9 mg l—1) concentrations at 0—0.3 m depth were lower than under CT (EC: 224 μS cm—1, Ca: 25 mg l—1, Mg: 5.6 mg l—1). At 1.2—2 m depth, the reverse order was observed (EC: 124 μS cm—1 under NT and 84 μS cm—1 under CT, Ca: 11 mg l—1 under NT and 7.5 mg l—1 under CT, Mg: 3.1 mg l—1 under NT and 1.8 mg l—1 under CT). Our results indicate that enhanced soil acidification because of higher rates of organic matter mineralization and a more pronounced nutrient leaching because of increased pore continuity may limit the sustainability of NT.  相似文献   

9.
Tomato plants were grown for 2 years at 4 different rates of Mg fertilization on a Princeton loamy sand at pH 4.8 with 29 kg exchangeable Mg/ha. Calcareous limestone was used to provide a pH treatment in the second year. Magnesium deficiency symptoms were observed on plants grown on plots having 38 kg/ha NH4OAC‐extractable Mg. Application of 56 kg Mg/ha corrected Mg deficiency and produced a significant increase in yield. Application of calcitic limestone also produced significant yield increases, but did not affect the development of Mg deficiency symptoms. Tomato yield was increased 27.9% by Mg application and 17.7% by lime application. Highest tomato yield was obtained with application of 112 kg Mg/ha. Symptoms of Mg deficiency were observed when the Mg concentration in recently mature leaf tissue was in the 0.30 to 0.32% range. Magnesium concentration in leaf tissue increased linearly with increasing Mg rate. Leaf Mg concentration at various growth stages of the tomato plant was variable depending on Mg treatment. Magnesium fertilization rate bad little effect on Ca or K leaf concentrations. Application of Calcltic limestone increased leaf tissue Ca and reduced leaf tissue Mg and Mn concentrations.  相似文献   

10.
11.
The deposition of magnesium (Mg)‐rich dust from magnesite mining activities has resulted in serious land degradation. However, the main factors limiting plant growth in Mg‐contaminated soils are unclear. Moreover, little information is available on the remediation of Mg‐contaminated soils. In this study, remediation of soils contaminated with Mg‐rich dust was investigated in a pot experiment using maize as the indicator plant. There were five treatments: (i) control; (ii) leaching; (iii) application of CaCl2; (iv) leaching + CaCl2 application; and (v) application of Ca(H2PO4)2 · H2O. Soil properties and growth of maize (Zea mays L.) seedlings were measured. Leaching alone significantly decreased soluble Mg concentration. Leaching + CaCl2 application greatly increased exchangeable Ca concentration and decreased soil pH by 0·3 units. Application of CaCl2 alone increased soluble Mg concentration sharply, which directly inhibited the germination of maize seeds. Application of Ca(H2PO4)2 · H2O significantly increased the concentrations of exchangeable Ca and available phosphorus and decreased soil pH by 1·7 units. The biomass of maize seedlings increased in the order of control = leaching < leaching + CaCl2 < < Ca(H2PO4)2 · H2O. These results suggested that the plant growth in Mg‐contaminated soils was limited primarily by Ca deficiency and secondarily by high soil pH when exchangeable Ca was sufficient. High soil pH suppressed plant growth probably mainly by inhibiting phosphate uptake from the soil. Applying acid Ca salt with low solubility is an attractive option for the remediation of Mg‐contaminated soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In 1986 Lake Langedalstjenn in southern Norway was a weakly acidified lake with a pH of 5.2–5.6, and an average concentration of SO4 of 330 μeq L?1. The total Al concentration varied between 10 and 20 μeq L?1 (expressed as Al3+). The lake supported populations of brown trout and perch and had supplied about 100 people with drinking water until the late 1980's. During 1986–1989, a dramatic change in the water chemistry occurred because of blasting of and weathering of sulphidic gneisses in the watershed. The oxidation of sulphide to sulphate (sulphuric acid) caused an increase in the SO4 concentration of the draining stream of up to ≈ 4800 μeq L?1. Weathering and/or cation exchange of Ca and Mg neutralized approximately 52% of the protons from the sulphuric acid production, while about 46% were consumed by mobilization of aluminium and iron. Nevertheless, about 2% of the hydrogen ions from the sulfuric acid were still present, which resulted in a stream pH of 4.0. In the lake, the pH was 4.4, and the concentrations of all major cations and anions were significantly lower than in the heavily affected stream. Mixing of the stream water with lake water, formation of aluminium-sulphate complexes and coprecipitation of Ca may explain the resulting concentrations of major ions in the lake.  相似文献   

13.
Soybean is an important crop for the Brazilian economy, and soil acidity is one of the main yield-limiting factors in Brazilian Oxisols. A field experiment was conducted during three consecutive years with the objective to determine soybean response to liming grown on Oxisols. Liming rates used were 0, 3, 6, 12, and 18 Mg ha?1. Liming significantly increased grain yield in a quadratic trend. Ninety percent maximum economic grain yield (2900 kg ha?1) was achieved with the application of about 6 Mg lime ha?1. Shoot dry weight, number of pods per plant, and 100-grain weight were also increased significantly in a quadratic fashion with increasing liming rate from 0 to 18 Mg ha?1. These growth and yield components had a significant positive association with grain yield. Maximum contribution in increasing grain yield was of number of pods per plant followed by grain harvest index and shoot dry weight. Uptake of nitrogen (N) was greatest and phosphorus (P) was least among macronutrients in soybean plant. Nutrient-use efficiency (kg grain per kg nutrient accumulation in grain) was maximum for magnesium (Mg) and lowest for N among macronutrients. Application of 3 Mg lime ha?1 neutralized all aluminum ions in soil solution. Optimal acidity indices for 90% of maximum yield were pH 6.0, calcium (Ca) 1.6 cmolc kg?1, Mg 0.9 cmolc kg?1, base saturation 51%, cation exchange capacity (CEC) 4.8 cmolc kg?1, Ca/Mg ratio 1.9, Ca?/?potassium (K) ratio 5.6, and Mg/K ratio 3.0.  相似文献   

14.
One-year-old loblolly pine seedlings were exposed to 03(≤0.025 or 0.10 μ L L?1, 4 hr d?1, 3 d wk?1) in combination with simulated rain (pH 5.6 or 3.0, 1 hr d?1, 2 d wk?1, 0.75 cm hr?1) for 10 wk. After the 10-wk treatment, the seedlings were submitted to two drought cycles, and water potential, net photosynthesis (Pn), and transpiration (Tr) were measured. Whole-plant fresh weight increment and relative growth rate were significantly increased in seedlings exposed to simulated rain at pH 3.0 compared to pH 5.6. An interaction between 03 and simulated rain occurred in height growth. Shoot height elongation was significantly less in seedlings exposed to 0.10 μL L?1 03 + pH 5.6 than in any other pollutant combination after the 10-wk treatment period. There were no significant effects of 03 on Pn and Tr prior to the drought cycles; however, after the first drought cycle, Pn was significantly higher in seedlings pre-exposed to 0.10 μL L?1 03 compared to the low 03 concentration. The 10-wk treatment with simulated rain at pH 3.0 significantly increased Pn and Tr. The relationship between gas exchange rates and needle water potential during the moisture stress period was affected by preexposure to pollutants. In general, Pn and Tr were more sensitive to decreasing needle water potential in seedlings exposed to pH 3.0 during the first drought cycle and to 0.10 μL L?1 03 during second drought cycle.  相似文献   

15.
The decrease in anthropogenic deposition, namely SO42— and SO2, in European forest ecosystems during the last 20 years has raised questions concerning the recovery of forest ecosystems. The aim of this study was to evaluate if the long term data of element concentrations at the Fichtelgebirge (NE‐Bavaria, Germany) monitoring site indicates a relationship between the nutrient content of needles and the state of soil solution acidity. The soil at the site is very acidic and has relatively small pools of exchangeable Ca and Mg. The trees show medium to severe nutrient deficiency symptoms such as needle loss and needle yellowing. The Ca and Mg concentrations in throughfall decreased significantly during the last 12 years parallel to the significant decline in the throughfall of H+ and SO42— concentrations. Soil solution concentrations of SO42—, Ca and Mg generally decreased while the pH value remained stable. Aluminum concentrations decreased slightly, but only at a depth of 90 cm. Simultaneously a decrease in the molar Ca/Al and Mg/Al ratios in the soil solution was observed. Ca and Mg contents in the spruce needles decreased, emphasizing the relevance of soil solution changes for tree nutrition. The reasons for the delay in ecosystem recovery are due to a combination of the following two factors: (1) the continued high concentrations of NO3 and SO42— in the soil solution leading to high Al concentrations and low pH values and, (2) the decreased rates of Ca and Mg deposition cause a correlated decrease in the concentration of Ca and Mg in the soil solution, since little Ca and Mg is present in the soil's exchangeable cation pools. It is our conclusion that detrimental soil conditions with respect to Mg and Ca nutrition as well as to Al stress are not easily reversed by the decreasing deposition of H+ and SO42—. Thus, forest management is still confronted with the necessity of frequent liming to counteract the nutrient depletion in soils and subsequent nutrient deficiencies in trees.  相似文献   

16.
Sunflower plants (Helianthus annuus) were grown in a continuous flow nutrient system, in which nitrogen was supplied, under controlled pH conditions, in either the NO3-or NH4-form. Nutrient uptake and distribution, as well as dry matter production of the plants, was followed over the growth period. The results obtained may be summarized as follows: 1. At all stages in development, growth was somewhat greater in the plants of the NO3-treatment, but the difference between the two treatments was not large. The similarity in the behaviour of plants in the two nitrogen treatments is discussed in relation to the maintenance of a high pH in the nutrient medium. 2. The mean rates of uptake of Ca, Mg, K, and Na, expressed per unit root length, were all higher in the NO3-fed plants. For P, the mean rate of uptake was higher in the NH4-fed plants. 3. The levels of K, Ca, Mg, and Na, per unit dry weight, were higher in the NO3-fed plants, but for P the converse was true. 4. The higher uptake of Ca and Mg by NO3-fed plants was reflected in the higher concentrations of these elements in the leaves. In the case of K, accumulation occurred in the roots. 5. From the results of selected harvests, it was found that total nitrogen uptake was higher in the NO3-fed plants.  相似文献   

17.
This study was conducted to determine relationships between Al toxicity and mineral uptake of triticale (X Triticosecale, Wittmack), wheat (Triticum aestivum L.), and rye (Secale cereale L.). Two culti‐vars of each species were grown in 1/5‐strength Steinberg solution with 0, 3, 6, or 12 ppm Al added. The solutions were adjusted to pH 4.8 at transplanting and were not adjusted thereafter. The plants were grown in a growth chamber for 19 days before harvesting to determine nutrient solution pH, dry weights, and Al, Ca, Mg, K, and P levels in plants. Increasing Al concentration reduced the final pH of solutions. The addition of 12 ppm Al severely reduced the growth and increased Al concentration of plant tops. The Al levels in roots generally increased with increments of added Al up to 6 ppm. Increasing Al decreased the uptake of Ca, Mg, and P by plant tops more than that of K. Regression analyses indicated that Al toxicity was associated with increasing K/Ca + Mg equivalent ratios and decreasing P concentration in plant tops. Differences between species were: higher Al concentration in rye than wheat with 6 and 12 ppm Al, higher translocation of Ca from roots to tops in wheat than in rye and Mg in triticale and wheat than rye; K/Ca + Mg equivalent ratios associated with 50% reduction in top growth followed the order: triticales > tolerant wheat > sensitive wheat > rye. Differences in mineral uptake associated with Al toxicity in wheat were more indicative of differential Al sensitivity in wheat than in triticale and rye which have higher internal Al tolerance.  相似文献   

18.
Dispersion is an important issue for clay leaching in soils. In paddy soils of the Red River Delta (RRD), flooding with fresh water and relatively high leaching rates can accelerate dispersion and the translocation of clay. For the clay fraction of the puddled horizon of a typical paddy soil of the RRD, the effect of various cations and anions as well as humic acid (HA) at different pH values on the surface charge (SC) were quantified and the dispersion properties were determined in test tubes and described by the C50 value. In the <2 µm fraction, dominated by illite, the proportion of 2:1 vs. 1:1 clay minerals is 5:1. The organic‐C content of the clay fraction is 2.2%. Surface charge was found to be highly pH‐dependent. At pH 8 values of –32 and at pH 1 of –8 mmolc kg–1 were obtained. Complete dispersion was observed at pH > 4, where SC is > –18 mmolc kg–1. The flocculation efficiency of Ca strongly depends on the pH. At pH 4, the C50 value is 0.33, 0.66 at pH 5, and 0.90 mmol L–1 at pH 6. At pH 6, close to realistic conditions of paddy soils, the effect of divalent cations on the SC and flocculation decreases in the order: Pb > Cu > Cd > FeII > Zn > Ca > MnII > Mg; FeII was found to have a slightly stronger effect on flocculation than Ca. An increase in concentrations of Ca, MnII, and Mg from 0 to 1 mmol L–1 resulted in a change in SC from –25 to approx. –15 mmolc kg–1. In comparison, the divalent heavy‐metal cations Pb, Cu, Cd, and Zn were found to neutralize the SC more effectively. At a Pb concentration of 1 mmol L–1, the SC is –2 mmolc kg–1. From pH 3 to 5, the dispersion of the clay fraction is facilitated rather by SO than by Cl, which can be explained by the higher affinity of SO to the positively charged sites. With an increase of the amount of HA added, the SC continuously shifts to more negative values, and higher concentrations of cations are needed for flocculation. At pH 3, where flocculation is usually observed, the presence of HA at a concentration of 40 mg L–1 resulted in a dispersion of the clay fraction. While high anion concentrations and the presence of HA counteract flocculation by making the SC more negative, FeII and Ca (C50 at pH 6 = 0.8 and 0.9 mmol L–1, respectively) are the main factors for the flocculation of the clay fraction. For FeII and Ca, the most common cations in soil solution, the C50 values were found to be relatively close together at pH 4, 5, and 6, respectively. Depending on the specific mineralogical composition of the clay fraction, SC is a suitable measure for the determination of dispersion properties and for the development of methods to keep clay particles in the soil in the flocculated state.  相似文献   

19.
Measurements of pH and A1 concentration were made on 10-2 M CaCl2, suspensions of a number of acid soils that had been limed to give 3 range of pH values, and exchangeable A1 and Ca+Mg were determined in 1.0 M NH4Cl extracts. The variation of pH with A1 concentration did not support the theory that pH is controlled by the solubility of Al(OH)3. For some of the soils, proton release on hydrolysis of A13+ions in solution accounted for the pH values, and explained quantitatively the variation of pH with the Ca:Al balance of the exchange complex, taking account of the selectivity coefficient for exchange, Kca→A1 Although Kca→A1 was smaller for soils containing more humus, their pH values were also less than those predicted by the hydrolysis of A13+ in solution, indicating that they contained other sources of protons, presumably the carboxyl groups in humus.  相似文献   

20.
Rainwater was collected at the campus of the University of Brunei Darussalam in Bandar Seri Begawan, Brunei Darussalam, using a funnel-in-bottle sampler. Polypropylene bottles were changed at intervals during rainstorm events. The pH and conductivity were determined immediately after collection on aliquots of the sample. Samples were refrigerated at 5°C for subsequent chemical analysis. Analyses for Na, Mg, Ca, Zn and Fe were carried out by means of inductively coupled plasma atomic emission spectroscopy (ICP-AES); Cu and Mn were analysed by graphite furnace atomic absorption spectroscopy (GFAAS); K was analysed using flame atomic emission spectroscopy (FAES); and Cl, NO3 and SO4 2– were analysed by ion chromatography (IC). Concentration versus time profiles are reported for three rainstorm events. All ions exhibited a decrease in concentration during the rainstorm. The first sample contained the highest concentration of ions, consistent with a first-flush effect. The contribution of the initial stages of the shower to the total quantity of ion deposited during the entire rainstorm is quite overwhelming; in many cases 20 to 30% of the mass was deposited in less than 5% of rainstorm duration. On the other hand, the pH and conductivity variation during rainstorms did not exhibit a consistent pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号