首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A seasonal variation of both particle and gaseous Hg concentrations in the atmosphere is present in south-western Sweden. An average gaseous Hg level of 3.7 ng m?3 is found in winter, compared to 2.8 ng m?3 in summer. A weak decreasing south-north gradient for gaseous Hg in air over the Nordic countries is also present, with yearly average values from 3.2 to 2.8 ng m?3. A gradient for particulate Hg is less clear. An air parcel trajectory sector classification of gaseous Hg levels in air, and to some extent the particulate associated Hg, clearly demonstrates the increased concentrations in the southern sectors, especially in south-western Sweden where the gaseous Hg increase is about I ng m?3. These observations are consistent with an influence from the European continent. The average concentrations of Hg in precipitation at the various stations show a pronounced decreasing south-north gradient. A major portion of the total Hg present in precipitation is associated with particles. For the southern stations, a strong correlation between Hg and sulfate, or pH, is present suggesting a connection between Hg in precipitation and anthropogenic activities.  相似文献   

2.
A seasonal variation of both particle and gaseous Hg concentrations in the atmosphere is present in south-western Sweden. An average gaseous Hg level of 3.7 ng m−3 is found in winter, compared to 2.8 ng m−3 in summer. A weak decreasing south-north gradient for gaseous Hg in air over the Nordic countries is also present, with yearly average values from 3.2 to 2.8 ng m−3. A gradient for particulate Hg is less clear. An air parcel trajectory sector classification of gaseous Hg levels in air, and to some extent the particulate associated Hg, clearly demonstrates the increased concentrations in the southern sectors, especially in south-western Sweden where the gaseous Hg increase is about I ng m−3. These observations are consistent with an influence from the European continent. The average concentrations of Hg in precipitation at the various stations show a pronounced decreasing south-north gradient. A major portion of the total Hg present in precipitation is associated with particles. For the southern stations, a strong correlation between Hg and sulfate, or pH, is present suggesting a connection between Hg in precipitation and anthropogenic activities.  相似文献   

3.
Mercury concentrations and depositions for northeastern Minnesota were measured in precipitation to investigate depositional trends, relationships with major cations and anions, and possible source emission regions. Results for 1987–1990 showed that environmentally significant amounts of Hg are present in precipitation and air and are subsequently deposited to remote lake watersheds. Volume-weighted concentrations of total Hg in precipitation averaged about 18 ng Hg L−1 with calculated annual depositions near 15 μg Hg m−2. Mercury concentrations in precipitation are positively correlated with the major ions, conductivity, and pH, and are negatively correlated with precipitation volume. The best predictor equation from stepwise regression has an r2 of 0.65 with Mg and chloride concentrations as predictor variables. From measurements of Hg in rain concentrations as a function of time within events, scavenging ratios for “washable” Hg were calculated to be 140 ± 80 (mass based at a 1 mm hr −1 precipitation rate). Up to about 10% of the total Hg in air is subject to washout by precipitation for a given event. Air parcel back-trajectories indicate that possible source regions within 72-hr travel time were located mostly to the south, southeast, and southwest, up to 2500 km distance away but local sources may also be important.  相似文献   

4.
The “Great Waters” program, established in the 1990 Clean Air Act Amendments, mandated that atmospheric deposition of hazardous air pollutants to Lake Champlain (including Hg) be assessed. An assessment of the magnitude and seasonal variation of atmospheric Hg deposition in the Lake Champlain basin was initiated in December 1992 with one year of event precipitation collection, as well as collection of vapor and particle phase Hg in ambient air. Samples were collected at the Vermont Monitoring Cooperative air monitoring site at the Proctor Maple Research Center in Underhill Center, VT. The average volume-weighted concentration for Hg in precipitation was 8.3 ng/L for the sampling year and the average amount of Hg deposited with each precipitation event was 0.069 μg/m2. The total amount of Hg deposited through precipitation during 1993 was 9.26 μg/m2/yr. A seasonal pattern for Hg in precipitation was evident, with increased concentrations and deposition during spring and summer months. Meteorological analysis indicated the highest levels of Hg in precipitation were associated with regional transport from the south regardless of season, and with transport from the west, southwest and northwest during spring and summer months. Concentrations of ambient vapor phase Hg were typical of rural locations and consistent across seasons. Ambient particulate Hg concentrations averaged 11 pg/m3 with highest concentrations during the winter months.  相似文献   

5.
Research on mercury (Hg) distribution and speciation was carried out in Lake Baikal, a large, strong-oligotrophic freshwater reservoir in Siberia, Russia, during June 1992 and march 1993. In summer, total Hg in the water column ranged from 0.14 to 0.77 ng Hg/L, with the highest concentrations observed in the central basin of the lake in surface water samples. Labile inorganic Hg was found to be 7 to 20 % of the total Hg content. Highest total Hg concentrations were found in river waters: up to 2 ng Hg/L. Labile methylmercury (MeHg) concentrations ranged from 2 to 38 pg Hg/L in the water column, with the higher concentrations in the central part of the lake, and showing a slight increase in near bottom waters. Labile MeHg makes up 1 to 15 % of the total Hg content in the water column, with larger fractions in deep waters. The slight increase of the MeHg gradient with depth corresponds with the O2 minimum region. Highest MeHg concentrations were observed in river waters (up to 145 pg Hg/L) and in some bays of the lake (up to 160 pg Hg/L). In these high temperature- and phytoplankton-rich water masses, the MeHg-fraction increased up to 35 % of total Hg. Labile MeHg concentrations in water samples taken in winter in the southern basin (under the ice cover), showed slightly higher concentrations than in summer, possibly due to an early spring bloom. In rainwater, total Hg ranged from 3 to 20 ng Hg/L and MeHg from 0.1 to 0.25 ng Hg/L. In snow, a large fraction of total Hg is bound to particulate matter; concentrations of total Hg ranged from 8 to 60 ng Hg/L and labile MeHg from 0.1 to 0.25 ng Hg/L. Atmospheric Hg was found to be 0.73 to 2.31 ng/m3 as gaseous Hg and 0.005 to 0.02 ng/m3 in its particulate form. Spatial distribution patterns of atmospheric Hg show slightly higher concentrations over the central part of the lake and the Selenga river delta. In winter, atmospheric Hg values (measured in the southern region), ranged from 1.2 to 6.1 ng/m3 as total gaseous Hg and 0.02 to 0.09 ng/m3 as total particulate Hg, and are higher than in summer, probably influenced by coal burning and traffic by the local population. MeHg contents in fish ranged from 20 ng Hg/g dry weight in small Cottocomephorus to 300 ng Hg/g dry weight in pike and trout species, which were caught in organic-rich waters.  相似文献   

6.
Atmospheric mobilization and exchange at the air-water interface are significant features of biogeochemical cycling of Hg at the Earth's surface. Our marine studies of Hg have been extended to terrestrial aquatic systems, where we are investigating the tropospheric cycling, deposition and air-water exchange of Hg in the mid-continental lacustrine environs of northcentral Wisconsin. This program is part of a multidisciplinary examination into the processes regulating the aquatic biogeochemistry of Hg in temperate regions. Trace-metal-free methodologies are employed to determine Hg and alkylated Hg species at the picomolar level in air, water and precipitation. We have found Hg concentrations and atmospheric fluxes in these fresh water systems to be similar to open ocean regions of the Northern Hemisphere. A well constrained mass balance for Hg has been developed for one of the lakes, Little Rock Lake, which is an extensively studied clear water seepage lake that has been divided with a sea curtain into two basins, one of which is untreated (reference pH: 6.1) while the other is being experimentally acidified (current pH: 4.7). This budget shows that the measured total atmospheric Hg deposition (ca. 10 μg m−2 yr−1) readily accounts for the total mass of Hg in fish, water and accumulating in the sediments of Little Rock Lake. This analysis demonstrates the importance of atmospheric Hg depositional fluxes to the geochemical cycling and bioaccumulation of Hg in temperate lakes. It further suggests that modest increases in atmospheric Hg loading could lead directly to enhanced levels of Hg in biota. Analogous modeling for monomethylmercury (MMHg) is as yet limited. Nevertheless, preliminary data for the atmospheric deposition of MMHg indicate that this flux is insufficient. to account for the amounts of MMHg observed in biota. An in-lake synthesis of MMHg is implicated. The importance of volatile Hg which is principally in the elemental form, and its evasion to the atmosphere is also illustrated. We suggest that the in-lake production of Hg° can reduce the Hg (II) substrate used in the in-lake microbiological synthesis of MMHg.  相似文献   

7.
Zhang  H.  Lindberg  S. E.  Marsik  F. J.  Keeler  G. J. 《Water, air, and soil pollution》2001,126(1-2):151-169
Air/surface exchange of mercury was investigated over background soils at five sites in the Tahquamenon River watershed in the Michigan Upper Peninsula in the summer of 1998. Measurements of Hg fluxes were performed during middayperiods using the ORNL Teflon dynamic flux chamber. Mean Hg emission fluxes were 1.4±0.3–2.4±1.0 ng m-2 hr-1 for three shaded forest sites and 7.6±1.7 ng m-2 hr-1 for an open field site. Hg dry deposition was observed at a heavily shaded forest site overwet soils (mean = –0.3±0.2 ng m-2 hr-1). Theoverall mean Hg flux was 1.4±1.4 ng m-2 hr-1for the four shaded forest sites. The Hg fluxes observed at these sites are similar to those found at other northern background sites. Significant, rapid response of Hg emission to solar radiation was observed over these background soils. Artificial irrigation over these soils induced immediate andmeasurable increases in Hg emission. Soil temperature was found to be less influential to Hg air/surface exchange over these heavily shaded forest background soils than we have seen elsewhere.  相似文献   

8.
Aerosol and total vapor-phase Hg concentrations in air have been measured at Walker Branch Watershed, Tennessee for ≈ 2 yr. Airborne Hg at this site is dominated by vapor forms which exhibit a strong seasonal cycle, with summer maxima that correspond to elevated air temperature. Concentrations in this forest are near background levels; however, concentrations at a site within 3 km are significantly elevated due to emissions from Hg-contaminated soils. The concentration data have been combined with a recently modified dry deposition model to estimate dry deposition fluxes to the deciduous forest at Walker Branch. Weekly mean modeled Vd values for Hg° ranged from <0.01 (winter) to > 0.1 (summer) cm s1. Weekly dry deposition fluxes ranged from <0.1 μg m−2 during winter to > 1.0 μgg m−2 in the summer. Our dry deposition estimates plus limited measurements of wet deposition in this area indicate that dry deposition may be the dominant input process in this forest, at least during the summer.  相似文献   

9.
As part of current efforts to understand the cycling of mercury (Hg) in the atmosphere, information is needed on its atmospheric speciation. Almost no data exists on water-soluble Hg(II) species in ambient air. A new technique for measuring gas phase water soluble Hg(II) species has been developed, utilizing a high-flow refluxing mist chamber. Extensive testing has been carried out, including attempts to rule out production of artifact Hg(II). Measurements at two locations (East-Central Tennessee and the Ohio-Indiana border) found approximately 0.05–0.15 ng/m3 of reactive Hg(II), representing ca. 3 to 5% of the total gaseous Hg. Limited tests of artifact Hg(II) production in the mist chamber by ozone oxidation and co-sampled aerosol Hg(II) suggest that the majority of the collected Hg(II) exists in ambient air in the gas phase.  相似文献   

10.
The dry and wet deposition of N and S compounds to the Baltic Sea Basin were assessed using daily concentration measurements of air and precipitation concentrations, and actual meteorological data on precipitation, daily wind speed and wind direction, as well as the buoyant fluxes at the air- sea interface. The data cover the period 1980–86. Both concentrations and deposition levels show distinct south-north gradients and strong seasonal variability. Dry deposition is an important contribution in the case of S (25 to 80%) but is less significant for the N compounds (10 to 30%). The contribution of particles to dry deposition is negligible for S, equivalent to the gaseous contribution for oxidized N and about 10 to 20% for reduced nitrogen compounds. The obtained total annual deposition of about 1.4 to 1.8 g(S) m?2 for the S compounds, and 1 g(N) m?2 for the N compounds are comparable with, but on the upper side of, previous empirical and model estimates.  相似文献   

11.
To assess the sources, transport and deposition of atmospheric mercury (Hg) in Michigan, a multi-site network was implemented in which Hg concentrations in event precipitation and ambient samples (vapor and participate phases) were determined. Results from the analysis of 2 years of event precipitation samples for Hg are reported here. The volume-weighted average Hg concentration in precipitation was 7.9, 10.8 and 10.2 ng/L for the Pellston, South Haven and Dexter sites, respectively. Yearly wet deposition of Hg for 1992–93 and 1993–94 was 5.8 and 5.5 μg/m2 at Pellston, 9.5 and 12.7 μg/m2 at South Haven and 8.7 and 9.1 μg/m at Dexter. A spatial gradient in both the Hg concentration and wet deposition was observed. Northern Michigan received almost half the deposition of Hg recorded at the southern Michigan sites. The concentration of Hg in precipitation exhibited a strong seasonal behavior with low values of 1.0 to 2.0 ng/L in winter and maximum values greater than 40 ng/L in summer. The spring, summer and autumn precipitation accounted for 89 to 91% of the total yearly Hg deposition. Mixed-layer back trajectories were calculated for each precipitation event to investigate the meteorological history and transport from potential Hg source regions. Elevated Hg concentrations were observed with air mass transport from the west, southwest, south, and southeast. At each of the sites precipitation events for which the Hg concentration was in the 90th and 10th percentile were-analyzed for trace elements by ICP-MS to investigate source impacts.  相似文献   

12.
Natural geological Hg deposits control the Hg levels inthe upper Katun river. Very high levels of total Hg areobserved in the watercolumn (up to 20 ng L-1) and thesediments (up to 244 μg g-1) close to the depositarea, but almost normal levels (1.8 ng L-1 in the watercolumn and 0.14 μg g-1 in the sediments) are reached60 km downstream of that zone. In general, low dissolvedmethylmercury (MMHg) concentrations were found (0.04–0.05 ngL-1) due to unfavourable methylation conditions. The MMHgconcentrations in the sediments vary from 23.3 ng g-1, inthe vicinity of the geological Hg deposits, to 0.17 ng g-1 60 km downstream.Total Hg levels in Lake Teletskoye (a geological activearea) are slightly increased (1.1–1.8 ng L-1) compared toLake Baikal and fairly constant alover the Lake, suggestingmultiple sources. High mercury concentrations in springs andsoils coincide with high radon concentrations in the samecompartments as well as high soil exhalation fluxes. Theseresults in combination with the fact that Lake Teletskoye islocated in an active fault zone suggest that the Rn and Hgsources may be fault aligned spring waters and deep seatedgases escaping through open cracks. Methylmercuryconcentrations in the Lake (0.03–0.1 ng L-1) werecomparable to the concentrations found in Katun river butrelative to the total Hg burden this means a higher percentage.  相似文献   

13.
The greatest sources of atmospheric emissions of SO2 in Estonia are caused by power plants (TP) which use oil shale. Since 1990 the amount of SO 2 discharges has continuously decreased due to fall in production of electric energy, and it was from TP as follows: in 1990–1991 about 180–200 thousand tons, in 1992 about 140 and in 1993–1994 about 100 thousand tons. In 1990 the annual mean emission intensity of SO 2 from all North-East (NE) Estonian pollution sources was fixed to be about 6.kg/s, with a maximum of 9.5–11 kg/s in winter period. In 1992–1993 the corresponding values were 3.5–4.6 and 5.1–6.8 kg/s. The single maximum concentrations (MC, per 30 min.) of SO 2 in the overground air layer would be in the ranges 25–450 μg/m 3 depending on emission intensity and wind parameters. The annual mean concentrations are below 25 μg/m 3 on the main territory, but may be up to 50–75 μg/m 3 near the power plants. In Kohtla-Järve town the annual mean values of 15.8–19.1 μg/m 3 and MC values of 271–442 μg/m 3 were fixed during 1991–1994 by automatic air monitoring system. Many arable lands, forest areas and wild-life preserves are subjected to relatively high sulphur precipitation loads, exceeding 0.5 g S/m2 per year, of which the role of emissions from local sources is about 60–95%. On the basis of air pollution concentration maps, the landscape of NE Estonia is classified into zones of high, moderate and low pollution level.  相似文献   

14.
Ambient concentrations and dry deposition fluxes of Hg in the gas and particle phase to Lakes St. Clair, Erie and Huron were estimated with a hybrid receptor-deposition model (HRD). The ambient gas and particulate phase Hg concentrations were predicted to vary by a factor of 12 to 18 during the transport of air masses traversing the lakes. The ensemble average deposition fluxes of fine particle Hg ranged from 7 pg/m2-h to 15.3 pg/m2-h over Lake St. Clair, 0.5 to 4.2 pg/m2-h over Lake Huron and 5.1 to 20.6 pg/m2-h over Lake Erie. The deposition flux of coarse particle Hg was in the range of 50 to 84 pg/m2-h over Lake St. Clair, 4.7 to 24.2 pg/m2-h over Lake Huron and 5.1 to 20.6 pg/m2-h over Lake Erie. Gaseous Hg volatilized at a rate of 0.21 to 0.52 ng/m2-h from Lake Huron and 0.13 to 0.36 from Lake Erie. Gas phase Hg was deposited at a rate of 5.9 ng/m2-h and/or volatilized at a rate of 0.5 ng/m2-h from Lake St. Clair depending upon the location of the sampling site used in the HRD model. The effect of meteorological conditions, particle size distributions and type and location of the sampling sites played an important role in the transfer of atmospheric Hg to and/or from the lakes.  相似文献   

15.
During the last decade a new pattern of Hg pollution has been discerned, mostly in Scandinavia and North America. Fish from low productive lakes, even in remote areas, have been found to have a high Hg content. This pollution problem cannot be connected to single Hg discharges but is due to more widespread air pollution and long-range transport of pollutants. A large number of waters are affected and the problem is of a regional character. The national limits for Hg in fish are exceeded in a large number of lakes. In Sweden alone, it has been estimated that the total number of lakes exceeding the blacklisting limit of 1 mg Hg kg-1 in 1-kg pike is about 10 000. The content of Hg in fish has markedly increased in a large part of Sweden, exceeding the estimate background level by about a factor of 2 to 6. Only in the northernmost part of the country is the content in fish close to natural values. There is, however, a large variation of Hg content in fish within the same region, which is basically due to natural conditions such as the geological and hydrological properties of the drainage area. Higher concentrations in fish are mostly found in smaller lakes and in waters with a higher content of humic matter. Since only a small percentage of the total flow of Hg through a lake basin is transferred into the biological system, the bioavailability and the accumulation pattern of Hg in the food web is of importance for the Hg concentrations in top predators like pike. Especially, the transfer of Hg to low trophic levels seems to be a very important factor in determining the concentration in the food web. The fluxes of biomass through the fish community appear to be dominated by fluxes in the pelagic food web. The Hg in the lake water is therefore probably more important as a secondary source of Hg in pike than is the sediment via the benthic food chain. Different remedy actions to reduce Hg in fish have been tested. Improvements have been obtained by measures designed to reduce the transport of Hg to the lakes from the catchment area, eg. wetland liming and drainage area liming, to reduce the Hg flow via the pelagic nutrient chains, eg. intensive fishing, and to reduce the biologically available proportion of the total lake dose of Hg, eg. lake liming with different types of lime and additions of selenium. The length of time necessary before the remedy gives result is a central question, due to the long half-time of Hg in pike. In general it has been possible to reduce the Hg content in perch by 20 to 30% two years after treatments like lake liming, wetland liming, drainage area liming and intensive fishing. Selenium treatment is also effective, but before this method can be recommended, dosing problems and questions concerning the effects of selenium on other species must be evaluated. Regardless how essential these kind of remedial measures may be in a short-term perspective, the only satisfactory long-term alternative is to minimize the Hg contamination in air, soil and water. Internationally, the major sources of Hg emissions to the atmosphere are chlor-alkali factories, waste incineration plants, coal and peat combustion units and metal smelter industries. In the combustion processes without flue gas cleaning systems, probably about 20 to 60% of the Hg is emitted in divalent forms. In Sweden, large amounts of Hg were emitted to the atmosphere during the 50s and 60s, mainly from chlor-alkali plants and from metal production. In those years, the discharges from point sources were about 20 to 30 t yr 1. Since the end of the 60s, the emission of Hg has been reduced dramatically due to better emission control legislation, improved technology, and reduction of polluting industrial production. At present, the annual emissions of Hg to air are about 3.5 t from point sources in Sweden. In air, more than 95% of Hg is present as the elemental Hg form, HgO0. The remaining non-elemental (oxidized) form is partly associated to particles with a high wash-out ratio, and therefore more easily deposited to soils and surface waters by precipitation. The total Hg concentration in air is normally in the range 1 to 4 ng m-3. In oceanic regions in the southern hemisphere, the concentration is generally about 1 ng m?3, while the corresponding figure for the northern hemisphere is about 2 ng m-3. In remote continental regions, the concentrations are mainly about 2 to 4 ng m?3. In precipitation, Hg concentrations are generally found in the range 1 to 100 ng L?1. In the Nordic countries, yearly mean values in rural areas are about 20 to 40 ng L?1 in the southern and central parts, and about 10 ng L?1 in the northern part. Accordingly, wet deposition is about 20 (10 to 35) g km?2 yr?1 in southern Scandinavia and 5 (2 to 7) in the northern part. Calculations of Hg deposition based on forest moss mapping techniques give similar values. The general pattern of atmospheric deposition of Hg with decreasing values from the southwest part of the country towards the north, strongly suggests that the deposition over Sweden is dominated by sources in other European countries. This conclusion is supported by analyses of air parcel back trajectories and findings of significant covariations between Hg and other long range transported pollutants in the precipitation. Apart from the long range transport of anthropogenic Hg, the deposition over Sweden may also be affected by an oxidation of elemental Hg in the atmosphere. Atmospheric Hg deposited on podzolic soils, the most common type of forest soil in Sweden, is effectively bound in the humus-rich upper parts of the forest soil. In the Tiveden area in southern Sweden, about 75 to 80% of the yearly deposition is retained in the humus layer, chemically bound to S or Se atoms in the humic structure. The amount of Hg found in the B horizon of the soils is probably only slightly influenced by anthropogenic emissions. In the deeper layers of the soil, hardly any accumulation of Hg takes place. The dominating horizontal flow in the soils takes place in the uppermost soil layers (0 to 20 cm) during periods of high precipitation and high groun water level in the soils. The yearly transport of Hg within the soils has been calculated to be about 5 to 6 g km?2. The specific transport of total Hg from the soil system to running waters and lakes in Sweden is about 1 to 6 g km?2 yr1. The transport of Hg is closely related to the transport of humic matter in the water. The main factors influencing the Hg content and the transport of Hg in run-off waters from soils are therefore the Hg content in soils, the transport of humic matter from the soils and the humus content of the water. Other factors, for example acidification of soils and waters, are of secondary importance. Large peatlands and major lake basins in the catchment area reduce the out-transport of Hg from such areas. About 25 to 75% of the total load of Hg of lakes in southern and central Sweden originates from run-off from the catchment area. In lakes where the total load is high, the transport from run-off is the dominating pathway. The total Hg concentrations in soil solution are usually in the range 1 to 50, in ground water 0.5 to 15 and in run-off and lake water 2 to 12 ng L?1, respectively. The variation is largely due to differences in the humus content of the waters. In deep ground water with a low content of humic substances, the Hg concentration is usually below 1 ng L?1. The present amount and concentrations of Hg in the mor layer of forest soils are affected by the total anthropogenic emissions of Hg to the atmosphere, mainly during this century. Especially in the southern part of Sweden and in the central part along the Bothnian coast, the concentrations in the mor layer are markedly high. In southern areas the anthropogenic part of the total Hg content is about 70 to 90%. Here, the increased content in these soils is mainly caused by long-range transport and emissions from other European countries, while high level areas in the central parts are markedly affected by local historical emissions, mainly from the chlor-alkali industry. When comparing the input/output fluxes to watersheds it is evident that the present atmospheric deposition is much higher than the output via run-off waters, on average about 3 to 10 times higher, with the highest ration in the southern parts of Sweden. Obviously, Hg is accumulating in forest soils in Sweden at the present atmospheric deposition rate and, accordingly, the concentrations in forest soils are still increasing despite the fact that the emissions of Hg have drastically been reduced in Sweden during the last decades. The increased content of Hg in forest soils may have an effect on the organisms and the biological processes in the soils. Hg is by far the most toxic metal to microorganisms. In some regions in Sweden, the content of Hg in soils is already today at a level that has been proposed as a critical concentration. To obtain a general decrease in the Hg content in fish and in forest soils, the atmospheric deposition of Hg has to be reduced. The critical atmospheric load of Hg can be defined as the load where the input to the forest soils is less than the output and, consequently, where the Hg content in the top soil layers and the transport of Hg to the surface waters start to decrease. A reduction by about 80% of the present atmospheric wet deposition has to be obtained to reach the critical load for Scandinavia.  相似文献   

16.
We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California–Nevada: 2 and 15–20 µg/m2/year in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5–10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.  相似文献   

17.
Total S concentrations of Scots pine (Pinus sylvestris L.) needles studied in the Finnish subarctic (66–70°N, 24–30°E) in 1990/1992 ranged from 573 to 1153 μg g-1. Levels were found to be ≈ 900 μg g-1 (i.e. 1.3–1.8 times the ‘normal’ level of 500–700 μg g-1) in areas where the long-term ambient SO2 concentration was ≈ 2–5 μg m-3, particulate SO4 2- ≈ μg m-3 and total S deposition ≈ 0.5 g m-2. A statistically significant increase in needle total S concentrations was found towards the east, i.e. towards the smelters of the Kola Peninsula in Russia, which emit SO2. The increase in needle total S concentrations to over 900 μg g-1 close to the Russian border is thought to result mainly from exposure to high short-term SO2 concentrations. The results also suggest that wintertime S deposition may have an impact on the needle total S content. It is suggested that the UNECE long-term critical level of 15 μg SO2 m-3 for forestry in boreal and high mountain climates in Europe is too high for the pine forests in the extreme north, where the proportion of dry-deposited S may be 60–80%.  相似文献   

18.
As a result of air pollution, the content of Hg in fish has significantly increased in a large part of Scandinavia and North America. In this paper, the occurence and fluxes of Hg in Swedish forest soils and waters are reviewed and synthesized. The main objective is to describe and evaluate the present transport of anthropogenic Hg from atmospheric deposition, through the terrestrial compartment and running waters to lake basins and also to comprehend the main factors influencing these fluxes. The transportation and distribution. of Hg in forest soils and waters is closely related to the flow of organic matter. The content of Hg in humic matter is higher in southern and central areas compared to the north of the country. Compared to background concentrations, the Hg content has increased in the southern and central part by about a factor of 4–7, while the overall increase in the north is by about a factor of 2 to 3. The increased content of Hg in forest soils may have an effect on organisms and biological processes in the soil. Regarding budget calculations for whole catchment areas and for the mor layer of the soil, a reduction of about 80% from present atmospheric wet deposition must be obtained to reach “critical load” with respect to conditions in Scandinavia.  相似文献   

19.
During processing of the historic Comstock Ore, Virginia City, NV, an estimated 5.5 × 109 g of metallic mercury (Hg) were released into the Carson River Drainage Basin. The Bessels Mill site is one of at least 75 locations where Hg was used to amalgamate the gold and silver from the ore. Although the mill is no longer standing, Hg contaminated tailings attest to its past location. Mercury concentrations in samples of tailings from the Bessels Mill site are as high as 1570 μg/g. Mercury concentrations vary spatially over the site. Total Hg concentrations in air measured directly over the site are well above regional background levels (1 to 7.1 ng/m3). The highest average atmospheric Hg concentration measured at the site was 240 ng/m3 for October 1993. The estimated range of Hg flux to the atmosphere from the site was 37 to 500 ng/m2 hr. Atmospheric Hg concentrations varied seasonally, diurnally and spatially. Atmospheric Hg concentrations varied as a function of Hg concentration, soil and air temperature, wind speed and surface morphology.  相似文献   

20.
Wet deposition of total phosphorus has been measured as part of the New Jersey Atmospheric Deposition Network (NJADN). Precipitation samples were collected in 1999—2001, using automated wet-only precipitation collectors at four sites in New Jersey, representing different land-use regimes. Total phosphorus volume-weighted mean concentrations (VWM) and the wet depositional fluxes were estimated on seasonal and annual timescales. VWM concentrations (± standard error) of total phosphorus ranged from 4.1 ± 0.80 to 15 ± 8.8 μg L-1 at all sites and were of similar magnitude across the region. The wet deposition flux estimates ranged from 3.9 to 14 mg m-2 y-1. VWM concentrations and fluxes were similar to those measured at other locations in the eastern United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号