首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 10‐week growth trial was conducted to evaluate the effect of raw corn starch levels on the growth, feed utilization, plasma chemical indices and metabolic enzyme activities of juvenile yellowfin seabream Sparus latus. Four semi‐purified experimental diets with different raw corn starch levels (5%, 10%, 20% and 26%) and a high‐protein control diet were prepared before the experiment and hand‐fed to triplicate groups of juvenile yellowfin seabream Sparus latus. Weight gain and specific growth rate for fish fed the diet containing 26% raw corn starch were significantly lower than those for fish fed 10% or 20% corn starch diets or the high‐protein control diet. Fish fed 10% or 20% corn starch diets had a slightly better growth performance than those fed the 5% corn starch diet. Feed efficiency ratio and protein efficiency ratio (PER) for 20% raw corn starch fed fish were the highest among all groups, although no statistically significant differences were found among the experimental groups. The high‐protein control group had a significantly lower PER value than other groups. Protein productive values for fish fed the 5% raw corn starch diet and the high‐protein control diet were significantly lower than those of fish fed the 20% raw corn starch diet, but not significantly different from the values of any other group. The values of intraperitoneal fat ratio, viscerosomatic index and condition factor, as well as body and muscle compositions, were unaffected by corn starch levels. The hepatosomatic index and liver glycogen level for fish fed 5%, 10%, 20% raw corn starch and the high‐protein control diets were equal but significantly lower compared with that of fish fed the 26% raw corn starch diet. Plasma values of the fish were not affected by various dietary treatments, except that a significantly higher plasma glucose concentration was measured in the high‐protein control group compared with the values in the other groups. There were variations in the activities of hepatic hexokinase and pyruvate kinase of the yellowfin seabream after they had been fed different dietary raw corn starch levels for 10 weeks. The overall results showed that a 20% inclusion level of raw corn starch in the diet was better utilized by juvenile yellowfin seabream than 5%, 10% or 26% levels and had a protein‐sparing effect.  相似文献   

2.
It is generally considered that fish respond to dietary energy densities on a consistent basis irrespective of what macronutrient source the dietary energy originates from. To test this assumption, two experiments were undertaken to establish the different roles of protein, lipid and starch as energy sources in underpinning nutritional bioenergetics in juvenile barramundi, Lates calcarifer. To do this, a range of ingredients were evaluated for their digestible protein (DP) and digestible energy (DE) value. Following this, a series of diets were formulated to an equivalent DE basis, and observed a minimum DP:DE ratio required for fish of 80 g. However, in each of the diets the proportion of DE available from protein, lipid or starch was varied to bias the contribution of each macronutrient on the origin that DE when fed to the fish. Growth of fish fed the protein diet was better than those fed the lipid diet, which was better than those fed the starch diet. Feed intake was lower in the protein diet than the lipid diet, and both were lower than the starch diet. Feed conversion was most efficient in the protein diet fed fish, which was better than the lipid diet fed fish, which was better than the starch diet fed fish. Whole fish composition varied among treatments, with differences observed in the dry matter composition, whole body lipid and gastrointestinal tract lipid content. Typically, lipid and dry matter composition were in synchrony and were usually higher in the starch fed fish and lower in the lipid fed fish. When flux of protein, lipid and energy was assessed in terms of deposition efficiencies, some significant differences were observed. Protein deposition efficiency was relatively conservative, but ranged from 33% in the starch diet fed fish to 41% in the lipid diet fed fish. Lipid deposition efficiency was more dramatic; ranging from 40% in the lipid diet to 182% in the starch diet. Energy deposition efficiency was relatively conservative among treatments, ranging from 50% to 56% efficient. Overall, the results from this study show that there is a clear hierarchy in preference for energy substrates by juvenile barramundi, such that protein > lipid > starch.  相似文献   

3.
The aim of this study was to gain insight into how Nile tilapia (Oreochromis niloticus) regulate feed and energy intake in response to diets low and high in starch and cellulose. It was hypothesized that high-starch diets would reduce feed intake due to the effect of high blood glucose level, and that stomach volume may limit feed intake of fish fed diets low in energy. Four experimental diets, low starch–no cellulose inclusion, high starch–no cellulose inclusion, low starch–with cellulose inclusion, and high starch–with cellulose inclusion, were formulated. The high-starch diets and diets with cellulose inclusion were 17.5% more energy-diluted than the low-starch diets and diets without cellulose inclusion, respectively. Male tilapia were fed to apparent satiation for six weeks. Feed and digestible energy intake of fish fed diets with cellulose inclusion increased and decreased by 8.3% and 5.5%, respectively, compared to fish fed diets without cellulose inclusion. This suggests the role of stomach volume in restricting feed consumption. Fish fed high-starch diets achieved only 0.5% more feed intake and 13.9% less digestible energy intake than fish fed low-starch diets. The lower increase in feed intake and higher decrease in digestible energy intake of fish fed high-starch diets than of fish fed diets with cellulose inclusion suggests that high blood glucose suppresses feed intake in Nile tilapia. An alternative explanation for the differences in feed and digestible energy intake of fish fed different diets was based on the fact that heat production was not influenced by starch nor cellulose-inclusion levels. Thus, under satiation feeding, oxygen uptake capacity may determine feed and digestible energy intake in fish rather than blood glucose or stomach volume.  相似文献   

4.
Dietary inclusion of a water-soluble fraction of blue mussel Mytilus galloprovincialis was examined as a feeding stimulant for juvenile Japanese flounder Paralichthys olivaceus . The control diet mainly consisted of fish meal, potato starch, and pollack liver oil. Five, 10, and 20% (weight/weight) of the control diet was exchanged with aqueous extracts of blue mussel meat in experimental groups. Fish of about 10 g in initial body weight were fed each diet to satiation, twice daily, 6 d per wk for 6 wk at 20 C. The final body weight, weight gain, and feed efficiency of fish fed the diets containing blue mussel extracts were significantly higher than those of fish fed the control diet. However, these parameters were not different among experimental groups containing blue mussel extract independent of the inclusion level of extract. A similar trend was shown in protein efficiency ratio as fish fed the control diet had a significantly lower protein efficiency ratio than the other dietary groups. Compared to the control diet, higher plasma protein and lower triglyceride were found in fish fed the diets with the extract, while other blood constituents were relatively similar for the dietary groups tested. On the other hand, whole-body crude lipid content and lipid retention of fish fed the diets with the extract were generally significantly higher than those of fish fed the control diet. Whole body crude protein was identical regardless of the dietary composition; however, protein retention of fish showed a similar trend to lipid retention.  相似文献   

5.
An experiment was performed to evaluate the growth performance and feed utilization of white sea bream juveniles (initial weight, 14 g) fed diets of cornstarch of different origins (normal and waxy). Four experimental diets were formulated to be isolipidic and to contain normal and waxy starch (26% or 42%) at two protein (36% and 48%) levels. The growth trial lasted 15 weeks and, at the end of the trial, there were no differences in the growth rate among groups. At the highest dietary starch level – but not at the lowest level – the feed efficiency ratio and PER were significantly lower in fish fed the waxy starch diet. Protein efficiency ratio and N retention (% N intake) were not affected by starch source but were significantly higher in the diets with a lower protein content. No differences in energy retention (% energy intake) were observed among groups. Except for the protein content, which was significantly higher in fish fed diets with a high protein level, no other differences were observed among groups in whole‐body composition. Hepatosomatic Index (HSI) was significantly higher in fish fed high‐starch diets, but there were no differences in visceral indices among groups. The apparent digestibility coefficients of protein and energy were not affected by the dietary starch level, but were significantly lower in diets including waxy starch. Glutamate dehydrogenase activity was higher in fish fed high‐protein diets, but it was not affected by dietary starch source. Alanine aminotransferase and aspartate aminotransferase activities were not different among groups. Glucose 6‐phosphate dehydrogenase, malic enzyme and fatty acid synthetase activities were not affected by the dietary starch level, but were significantly lower in fish fed waxy starch. The results of this study indicate that diets for white sea bream juveniles may include up to 42% starch without negative effects on fish performance. Moreover, normal starch appears to be more efficiently used as an energy source than waxy starch.  相似文献   

6.
The ability of juvenile silver perch (Bidyanus bidyanus) to utilize dietary raw wheat meal, raw wheat starch, gelatinized wheat starch and dextrin as energy sources to spare protein for growth was quantified. Energy utilization and protein sparing were assessed by comparing the weight gain, energy retention efficiency, protein retention and body composition of silver perch that had been fed a series of diets in which the basal diet (low carbohydrate) was systematically replaced with graded levels of each carbohydrate ingredient or an inert diluent, diatomaceous earth. The protein content decreased as the carbohydrate content increased, giving four different protein to energy ratios for each of the four carbohydrate sources (except for the 60% inclusion level, at which only three carbohydrate sources were tested). Silver perch were efficient at utilizing carbohydrate for energy to spare protein. Silver perch fed diets containing up to 30% wheat meal, raw wheat starch, gelatinized wheat starch or dextrin exhibited similar growth, protein retention and energy retention efficiency to the fish fed the basal diet. Weight gain of silver perch fed diets containing wheat meal or carbohydrates at 45% inclusion content had significantly reduced weight gain when compared with fish fed the basal diet. However, protein retention and energy retention efficiency were similar or better. Whole‐body protein levels of silver perch remained constant regardless of carbohydrate sources, and there was no evidence of increasing whole‐body lipid concentrations for fish fed diets with up to 60% dietary carbohydrate. Silver perch were more efficient at utilizing processed starch (either gelatinized starch or dextrin) than wheat meal or raw wheat starch.  相似文献   

7.
Manipulation of the ratio of amylopectin (α‐[1,4] and α‐[1,6] linked glucose) to amylose (α‐[1,41 linked glucose) starches in the carbohydrate fraction of the diet has been used to improve carbohydrate and lipid metabolism in mammalian models. A 10‐wk feeding trial was conducted to determine the effect of dietary amylopectin/amylose ratio on growth and composition of growth of advanced sunshine bass (Morone chrysops × M. saxatilis) fingerlings (60 g, initial weight). Fish were fed cold‐pelleted, semipurified, isonitrogenous (35% crude protein), isocaloric (3.6 kcaVg protein), isolipidic (5%) diets containing 25% carbohydrate. The carbohydrate fraction of the diets was composed of either glucose, dextrin, 100% amylopectin/0% amylose, 70% amylopectin/30% amylose, or 30% amylopectin/70% amylose. Diets differing in ratios of amylopectin/amylose were achieved by adjusting the proportion of high‐amylopectin (100% amylopectin) to high‐amylose (70% amylose) corn starch. Diets were fed to fish in quadruplicate 76‐L tanks (seven fish/tank) connected to a brackish water (5‐7%v) recirculating culture system with biofiltration. Weight gain ranged from 195 to 236% of initial weight (60 g) and was significantly greater (P < 0.1) for fish fed diets containing 25% carbohydrate as dextrin or as 70% amylose and significantly lower in fish fed diets in which carbohydrate was composed of 30% amylose, 100% amylopectin, or glucose. Feed efficiency ranged from 0.52 to 0.61 and was higher in fish fed the diet containing the highest concentration of amylose and lower in fish fed the diet containing glucose. Hepatosomatic index was highest (2.71) in fish fed the diet containing glucose and lowest (1.401.45) in fish fed diets containing high‐amylose cornstarch. Intraperitoneal fat ratio was distinctly lower in fish fed diets containing some amylose as compared to those fed diets without amylose. Liver lipid was significantly lower (4.8%) in fish fed the diet containing glucose and almost twice as high (7.3‐8.9%) in fish fed the diets containing any starch. Glycogen content of the liver decreased from approximately 12% in fish fed the diet containing glucose to 5% in fish fed the diets containing amylose. Muscle proximate composition and ratio were unaffected by the dietary treatments. Fasting levels (15 h) of blood glucose in fish reared for 10 wk on the diet containing glucose were significantly elevated (5.5 mmol/L) when compared to fasting levels of those that had been reared on diets containing starch (3.4‐1.1 mmol/L). Fish fed the diet containing glucose exhibited maximum blood concentrations (14.6 mmoVL) 4 h postprandial then rapidly declined to nearly fasting levels within 8 h postprandial. In contrast, maximum plasma glucose concentrations in fish fed diets containing starch were roughly half (6.8‐8.1 mmol/L) those of fish fed the diet containing glucose. Blood glucose in fish fed diets containing dextrin or predominantly amylopectin starch remained elevated longer than that of fish fed diets containing glucose or predominantly amylose starch. Glycemic response appeared to decrease with increasing dietary amylose content. These data suggest that feeding diets in which a greater portion of the starch is amylose may be a useful strategy for improving carbohydrate use in sunshine bass.  相似文献   

8.
Raw corn starch (RCS), raw tapioca starch (RTS), raw potato starch (RPS), pre‐gelatinized corn starch (PCS), pre‐gelatinized tapioca starch (PTS) and pre‐gelatinized potato starch (PPS) were evaluated as starch sources in diets for yellowfin seabream Sparus latus in a 56‐day growth trial. Seven isonitrogenous semi‐purified diets comprising a non‐starch cellulose control diet and the six different starch sources holding 200 g kg−1 starch each were prepared and fed to triplicate groups of juvenile yellowfin seabream S. latus. Fish were fed for 8 weeks. Weight gain (WG) and specific growth rate (SGR) for fish fed RCS, RTS and RPS diets were equal, as well as for fish fed PCS, PTS and PPS diets, but values in groups fed the raw starch sources were significantly higher compared with fish fed the pre‐gelatinized starches. Feed efficiency and protein efficiency ratio in fish fed different starch source diets showed no significant differences but were significantly higher than those fed a non‐starch control diet. Protein productive value was improved by starch incorporation to diets. PCS, PTS or PPS groups showed lower feed intake compared with RCS, RTS or RPS groups, and the differences were significant between PCS, PPS and RCS, RPS groups. Whole‐body protein and ash contents and muscle compositions were not affected by different starch sources. Whole‐body and liver lipid contents, liver moisture and glycogen contents were significantly affected by starch source. Values of hepatosomatic index, intraperitoneal fat ratio, viscerosomatic index and condition factor did not vary between experimental treatments. Plasma total protein concentration for RCS, RTS or RPS fed fish was significantly higher than that for PCS, PTS or PPS fed fish, but significantly lower than that for non‐starch fed fish. Plasma cholesterol and triacylglycerol concentrations were unaffected by starch source, but were significantly higher in fish fed the non‐starch control diets. Plasma glucose concentrations in all dietary groups were relatively stable. In conclusion, raw corn, tapioca and potato starches at a 200 g kg−1 inclusion level were well utilized as energy sources by yellowfin seabream, which was evidenced by better WG and SGR. Pre‐gelatinization of the starches had no positive effect on starch utilization.  相似文献   

9.
葡萄糖和玉米淀粉对草鱼生长和肠系膜脂肪沉积的影响   总被引:2,自引:0,他引:2  
田丽霞 《水产学报》2000,24(5):438-441
采用30%葡萄糖或玉米淀粉作为糖源的配制两种纯化饲料,饲养初始体重为(35.94±1.86)g的两组草鱼,经过为期9周的生长试验,观察葡萄糖和玉米淀粉对草鱼生长和肠系膜脂肪沉积的影响.实验结果显示摄食葡萄糖饲料的草鱼其相对生长率、饲料效率和蛋白质效率均显著高于玉米淀粉组,而肠系膜脂肪占鱼体的百分比在葡萄糖饲料组和淀粉饲料组之间存在显著性差异,分别为1.85%±0.46%和3.56%±0.45%.由此可见,葡萄糖比玉米淀粉对草鱼的生长具有更好的作用,而玉米淀粉比葡萄糖更容易引起草鱼肠系膜脂肪沉积的增加.  相似文献   

10.
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.  相似文献   

11.
Diets high in various carbohydrates were fed to mosquitofish,Gambusia affinis holbrooki, to determine the effects on amylase expression. Both amylase activity and amount of amylase protein were used as measures of amylase expression. Fish were fed for 21 days in one experiment, seven days in a second experiment and 24 h in a third. The first experiment compared responses of fish fed on a high-starch diet relative to a control diet. The second and third experiments compared responses on four diets relative to the control diet: maltose, starch, glucose, and glucose + cyclic adenosine monophosphate (cAMP). In the first two experiments whole visceral extracts were used. In the third experiment, gut and hepatopancreatic extracts were examined separately. Diet had a significant affect on the amount of amylase in all three experiments but affected amylase activity only in the 24 h experiment. Generally, glucose decreased amylase expression while maltose or cAMP + glucose increased it. Length of feeding period and tissue type also had significant effects on amylase expression.Paper IV on the amylase gene-enzyme system in fishes.  相似文献   

12.
The influence of two carbohydrates, starch and glucose, on hepatic enzyme activities of juvenile tilapia,Oreochromis niloticus xO. aureus, were investigated. Fish were fed either starch or glucose diet solely for 12 weeks or fed either starch or glucose diet for the first 6 weeks and then switched the diet each other for the last 6 weeks. Fish fed only the starch diet gained more (p < 0.05) body weight, had better feed conversion, higher protein deposition and energy retention values than fish fed the glucose diet. These parameters generally decreased in fish when the starch diet was fed first and then switched to the glucose diet, or increased in fish when the glucose diet was fed first and then switched to the starch diet. The starch — fed fish had higher body lipid content than glucose — fed fish. Body lipid decreased in fish transferred from the starch to glucose diet orvice versa when fish were transformed from the glucose to the starch diet. Hepatic hexokinase, phosphofructokinase, and glucose-6-phosphatase activities in fish were not affected by the different dietary regimes. Malic enzyme (ME), glucose-6-phosphate dehydrogenase (G-6-PD) and phosphogluconate dehydrogenase (PGD) activities were higher in the fish fed the starch diet than in those fed the glucose diet. Changing the diet from starch to glucose decreased ME, G-6-PD and PGD activities, whereas, changing the diet from the glucose to the starch increased these enzyme activities in fish liver. These results suggest that lipogenic enzyme activity can adapt to dietary carbohydrates in the fish liver.  相似文献   

13.
Abstract.— This study evaluated the effects of dietary protein concentration (26, 28, and 32%) on growth. feed efficiency, processing yield, and body composition of USDA103 and Mississippi "normal" (MN) strains of channel catfish raised in ponds. Fin-gerling channel catfish (average weight = 32.5 and 47.3 g/fish for USDA103 and MN strains, respectively) were stocked into 24 0.04-ha ponds (12 ponds/ strain) at a density of 18,530 fish/ha. Fish were fed once daily to apparent satiation from May to October 1999. There were no interactions between fish strain and dietary protein concentration for any parameters measured. Regardless of dietary protein concentrations, the USDA103 strain consumed more feed and gained more weight than the MN strain. There were no differences in feed conversion ratio (FCR) or survival between the two strains. Feed consumption, weight gain, FCR, and survival were not affected by dietary protein concentration. The USDA103 strain exhibited a lower level of visceral fat, a higher carcass yield, a lower level of fillet moisture, and a higher level of fillet fat than the MN strain. Regardless of fish strains, fish fed the 32% protein diet had a lower level of visceral fat and a higher fillet yield than fish fed the 26% protein diet. Fish fed the 32% protein diet were also higher in carcass yield as compared to those fed the 28% protein diet. Fillet moisture, protein, and fat concentrations were not affected by dietary protein concentration. Results from this study indicate that the USDA103 strain of channel catfish appears to possess superior traits in growth characteristics compared with the MN strain that is currently cultured commercially. Both strains appear to have the same dietary protein requirement.  相似文献   

14.
为探讨饲料中添加不同小麦淀粉和脂肪水平对大黄鱼幼鱼生长、饲料利用以及糖代谢关键酶活力的影响,进行了为期8周的生长实验。设计了3个小麦淀粉水平(5%、10%和30%)和2个脂肪水平(5%和10%)的3×2的两因子实验,配制了6种等氮的饲料,分别喂养平均体质量为(6.75±0.12)g的大黄鱼幼鱼。结果显示,饲料中小麦淀粉和脂肪水平对大黄鱼增重率(WG)、特定生长率(SGR)、饲料效率(FE)、成活率(SR)、肝体比(HSI)和肥满度(CF)无显著交互作用,对脏体比(VSI)有显著交互作用。在同一脂肪水平下,淀粉水平为30%组WG和SGR显著高于10%淀粉组。不同小麦淀粉和脂肪水平对肝糖原含量无显著交互作用,而对肌糖原含量有显著交互作用,在饲料脂肪水平为5%时,30%小麦淀粉水平下的肝糖原含量显著高于10%和20%淀粉水平,10%淀粉水平下的肌糖原含量显著高于20%和30%淀粉水平;在脂肪水平为10%时,10%淀粉水平下的肝糖原含量显著高于20%和30%淀粉水平,而30%小麦淀粉水平下的肌糖原含量显著高于10%和20%淀粉水平。小麦淀粉和脂肪水平对血清中谷丙转氨酶(ALT)、谷草转氨酶(AST)、总胆固醇(TC)和葡萄糖(GLU)含量无显著交互作用,对总蛋白(TP)和甘油三酯(TG)交互作用显著。不同小麦淀粉和脂肪水平对肝脏脂肪酶活性有显著的交互作用,对淀粉酶活性无显著交互作用;同一脂肪水平下,脂肪酶的活性随着淀粉水平的升高而升高,同一饲料淀粉水平下,饲料脂肪水平为10%组的脂肪酶活性显著高于5%组。不同小麦淀粉和脂肪水平对肝脏丙酮酸激酶(PK)的活性有显著的交互作用,而对葡萄糖激酶(GK)、磷酸果糖激酶(PFK)、磷酸烯醇式丙酮酸羧激酶(PEPCK)、1,6-二磷酸果糖酶(FBPase)和6-磷酸葡萄糖酶(G6Pase)的活性均无显著交互作用。研究表明,当饲料脂肪水平为5%时,大黄鱼能够通过调节糖酵解关键酶活性及肝糖原含量来维持血糖平衡,改善对小麦淀粉的利用能力;而当脂肪水平为10%时,大黄鱼对小麦淀粉的利用能力降低。  相似文献   

15.
A 56‐day growth trial was conducted to study the utilization of hydrolysed potato starch by juvenile Atlantic salmon Salmo salar L. using a restricted feeding regime. Two diets supplemented with either 15% or 30% hydrolysed potato starch and a control diet without carbohydrate supplementation were each fed to triplicate groups of salmon. Feeding rate varied from 1.4% to 2.0% of body weight per day, so that fish were fed similar amounts of protein and lipid. In spite of the restricted feeding used, no growth stimulation was measured as a consequence of the additional starch intake. No variation was found in protein utilization, measured as protein efficiency ratio values (PER), while feed utilization showed decreased values as starch intake increased. Plasma glucose concentrations did not vary as a consequence of increased starch intake when measured 24 h after feeding, indicating efficient regulation of plasma glucose. In fish fed the 30% starch, the plasma triacylglycerol concentration was significantly increased, which may point to de novo lipid synthesis from the high starch intake. No variation was found in plasma cholesterol or protein concentrations, or asparagine aminotransferase, alanine aminotransferase and lactate dehydrogenase activities. This shows that the fish health status and liver function were normal (no mortality was registered). Liver and muscle showed increased glycogen levels as a function of increased starch intake. The same diets were also fed to juvenile white sturgeon Acipencer transmontanus and hybrid tilapia Oreochromis niloticus×O. aureus. These results are presented separately.  相似文献   

16.
Abstract A 3 × 3 factorial experiment was conducted using three strains of channel catfish Ictalurus punctatus, USDA102, USDA103, and Mississippi normal (MN), and three concentrations of dietary protein. Three practical diets were formulated to contain 25, 35, or 45% crude protein with digestible energy/protein ratio of 10.0, 8.1, or 6.8 Kcal/g, respectively. Juvenile channel catfish (mean initial weight: 15.1 g/fish) were fed the experimental diets twice daily to approximate satiation for 8 wk. Regardless of dietary protein concentration, the USDA 103 strain consumed more feed, gained more weight, and converted feed more efficiently than other two strains. The MN strain consumed less feed and gained less weight than the other strains. Regardless of the strain of channel catfish, differences in weight gain, feed consumption, and feed conversion ratio were observed among fish fed diets containing various levels of protein with the 35% protein diet being the best. Neither dietary protein concentration nor strain had significant effect on fillet protein level. Data pooled by fish strain showed that fish of MN strain had lower fillet fat and higher moisture than fish of other two strains. Data pooled by dietary protein showed that fish fed the 45% protein diet had a lower level of fillet fat than fish fed the 35% protein diet, but this did not appear to be a strain effect, rather it was a result of decreased feed consumption. Results from this study clearly demonstrate that per formance of the USDA103 strain of channel catfish was superior to other strains tested. The growth characteristics of the USDA103 strain of channel catfish make the strain a promising candidate for commercialization. However, data are needed on performance of the strain from fingerling to marketable size under conditions similar to those used for the commercial culture of channel catfish prior to their release to the catfish industry.  相似文献   

17.
SHI-YEN  SHIAU  YU-HUNG  LIN 《Fisheries Science》2002,68(5):991-995
ABSTRACT : The aim of the present study was to investigate carbohydrate utilization by the grouper Epinephelus malabaricus reared at 23°C. Two isoenergetic semipurified diets were prepared with two carbohydrate sources (glucose and starch). Each diet was fed to triplicate groups of grouper in a recirculating rearing system for 8 weeks. Water temperature was held constant by a thermal controller at 23 ± 1°C. Weight gain, feed efficiency (FE) and protein efficiency ratio (PER) of fish fed the starch diet were significantly higher ( P  < 0.05) than those of fish fed the glucose diet. Body lipid content of the starch-fed group of fish was higher than that of glucose-fed group of fish. Hepatic hexokinase and glucose-6-phosphate dehydrogenase activities were higher in fish fed the starch diet than fish fed the glucose diet. Fish fed the glucose diet had higher hepatic glucose-6-phosphatase activity than fish fed the starch diet. These results suggest that starch is better utilized by grouper than glucose when the water temperature is 23°C.  相似文献   

18.
Abstract.— Feeding experiments were conducted to evaluate corn gluten meal (CGM) as an alternative protein source for fish meal in the diet of Japanese flounder Paralichthys olivaceus . A diet containing 75% white fish meal as a sole protein source was the control, and 20, 40, and 60% of fish meal protein was replaced with CGM protein in the experimental feeds. Juvenile fish of about 8 g initial body weight were fed each diet to apparent satiation twice a day. 6 d per week for 8 wk at 20 C. Survival rates of fish ranged from 98 to 100% and were not significantly different ( P > 0.05) among treatments. Final body weight, weight gain, feed efficiency and protein efficiency ratio of fish fed the diets containing CGM up to 40% substitution levels were not statistically different from those of fish fed the control diet. All production parameters for fish fed the diet replacing 60% of fish meal protein were significantly lower than the control ( P ≤ 0.05). Supplements of crystalline amino acids to the CGM diet improved the nutritive value of the diet. Since substitution up to 40% did not adversely affect hematological and hematochemical parameters as well as whole body composition of the cultured fish, it is suggested that up to 40% of fish meal protein can be replaced with CGM in the diet of juvenile Japanese flounder.  相似文献   

19.
Diets containing 40% glucose or starch with either 2 ppm chromium (Cr), 2 ppm vanadium (V) or without either supplement were fed to tilapia, Oreochromis niloticus×O. aureus, to investigate the effect of Cr and V on carbohydrate utilization. Each diet was fed to three aquaria with 18 fish/aquarium in a recirculating, filtered rearing system for 8 weeks. Results indicated that weight gain, protein and energy deposition were significantly (P<0.05) higher in fish fed the starch diet than in those fed the glucose diet. Chromium supplementation significantly increased the weight gain, energy deposition and liver glycogen content in fish fed the glucose diet. Delayed plasma glucose plateau and significantly higher body lipid content were observed in fish fed the glucose diet with Cr than in those without the Cr supplementation.  相似文献   

20.
The effect of dietary starch source and level on growth performance, feed utilization, apparent digestibility coefficients and liver enzyme activities involved in intermediary metabolism of gilthead sea bream juveniles was studied. Five isonitrogenous (47% crude protein) and isolipidic (15% crude lipids) diets were formulated to contain 10% native (diet NS10) or waxy (diet WS10) maize starch; 20% native (diet NS20) or waxy (diet WS20) maize starch or no starch (control). Diets were adjusted with α-cellulose. Another diet was formulated without carbohydrates, and contained 70% crude protein and 15% crude lipids (diet HP). Each diet was fed to triplicate groups of 30 fish (initial weight: 20 g) for 12 weeks. The HP group was fed to near satiation and the other 5 groups were fed on a pair-feeding scheme according to the group that ingested less feed (control diet group). The reduction of dietary protein level from 70% to 47% by the incorporation of 20% starch did not significantly affect gilthead sea bream growth performance or feed efficiency. Compared to the control diet, neither the level nor the nature of starch had any measurable effect on growth performance and feed efficiency. Digestibility of starch was unaffected by source or dietary inclusion level. Diet had no effect on plasma glucose levels, but liver glycogen was higher in diet groups NS20, WS20 and HP. Dietary carbohydrates increased GK and G6PD enzyme activities and decreased ALAT and GDH enzyme activities while had only a minor effect on FBPase activity. The nature of dietary starch tested (native or waxy) had little influence on performance criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号