首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
为了研究酸洗处理对生物炭性质的影响及其对生物油浆体系中生物炭吸附生物油的影响,笔者采用HCl酸洗处理,分别制备了对松木原料酸洗和对热解炭化料酸洗的生物炭,同时在相同的热解条件下制备了仅水洗处理的生物炭作为实验对照。采用傅里叶红外光谱、比表面积及孔径分析、X射线衍射、拉曼光谱等手段对上述3种生物炭进行表征,并利用3种生物炭吸附生物油,利用气相色谱-质谱联用分析被不同生物炭样品吸附的生物油的成分差别。实验结果表明,松木原料酸洗对热解炭的性质影响更大,炭表面的C=O和C—O含量增加,比表面积也更大,而晶体结构和石墨化程度变化不大。3种生物炭均对生物油有较好的吸附性能,对糖类、酚类、酸类、酮类、醛类都有较强的吸附力。由于酸洗预处理松木原料的生物炭具有较高含量的C=O和C—O、较大的比表面积,对生物油有更高的吸附能力,也对生物油中酸类、酮类的吸附选择性更好。生物炭能够通过氢键和静电作用吸附易促进结焦的酸类、酮类,通过π-π相互作用吸附易结焦的酚类,有利于抑制生物油浆的结焦,推动生物油浆的广泛应用。  相似文献   

2.
首先总结了生物基炭材料的吸附机理,并根据作用机理去延伸分析生物基炭原料的选取,以及生物基炭的制备和表面改性方法。综合讨论了炭材料孔道结构、表面官能团等内在因素,以及初始浓度、吸附剂用量、吸附时间、溶液pH值、温度等外在因素对吸附性能的影响,此外,对吸附热力学、吸附等温线和吸附动力学等吸附特性展开分析。最后,总结了生物基炭材料实际应用存在的问题以及未来多样化发展方向,以期对生物基炭材料在印染废水高效处理中的应用提供参考和借鉴。  相似文献   

3.
通过桂花树干制备生物炭,利用硝酸和高锰酸钾对桂花树干生物炭进行修饰(活化)处理,研究了其对水溶液中染料亚甲基蓝(MB)的吸附能力。研究了温度、pH值、吸附时间和初始浓度对生物炭染料吸附性能的影响。生物炭及改性生物炭准二级动力学拟合的判决系数均为0.999。准二级动力学模型模拟的平衡吸附量更符合实际值。采用扫描电镜(SEM)和紫外分析方法(UV-vis)对生物炭吸附剂改性前后进行了测试,研究表明:改性桂花树干生物炭可以作为合成染料的高效吸附剂。  相似文献   

4.
生物炭制备过程中部分无机灰分以及热解副产物会附着在生物炭的表面,这些被附着的灰分及热解副产物会随生物炭一起进入环境中,由于其性质较活跃,在环境中易发生变化,会在一定程度上影响生物炭的结构及其对污染物的吸附行为.以稀酸、稀碱两种溶液作为洗脱剂,对纤维板生物炭进行洗脱处理以去除灰分及热解副产物.通过对比洗脱前后生物炭的元素...  相似文献   

5.
为了研发一种新型复合生物油再生剂,并探究其对长期老化沥青化学成分的再生作用,采用蓖麻油植物沥青(COA)与环氧大豆油(ESO)按照不同复配比例制备了复合生物油再生剂,确定了复合生物油中蓖麻油植物沥青与环氧大豆油的最优复配比例;基于红外光谱变化研究了蓖麻油植物沥青与环氧大豆油的原位动态化学反应机制,以及沥青再生前后的化学成分变化情况。结果表明,按照蓖麻油植物沥青和环氧大豆油质量比1∶3复配制得的复合生物油再生剂可以有效地将长期老化沥青的基本性能恢复至老化前水平。蓖麻油植物沥青和环氧大豆油发生了开环缩合反应,生成含脂肪族的聚合物,该反应在老化沥青再生过程中仍然可以持续地进行,并继续影响再生沥青的基本性能。在蓖麻油植物沥青和环氧大豆油的共同作用下,再生沥青中的亚砜基和羰基官能团含量减少。该研究提供了一种长期老化沥青的复合生物油再生剂,并揭示了其对长期老化沥青化学成分的影响及再生作用。  相似文献   

6.
在碱性条件下,木质素可部分替代苯酚与甲醛反应制备木质素基酚醛树脂,酚醛树脂经物理发泡,高温碳化工艺生成木质素基泡沫炭。为达到调控木质素基泡孔炭的泡孔结构,改善其孔径分布比例的目的,选用600℃碳化后的泡沫炭(CF-600℃)作为活化基体,利用化学试剂KOH对泡沫炭进行原位活化。研究结果表明:纯碱木质素可以部分取代苯酚,与甲醛发生缩合反应生成酚醛树脂;酚醛树脂基泡沫在450℃时有最大分解速率2.04%/min,炭收率为54.36%; 600℃碳化后的泡沫炭(CF-600℃)、900℃碳化后的泡沫炭(CF-900℃)与KOH原位活化后的泡沫炭(CF-KOH)呈玻璃网状结构,泡孔由50~300μm的泡孔及孔壁组成; 3种泡沫炭皆为无定型炭,非石墨化的炭质结构; KOH原位活化后的泡沫炭(CF-KOH)微孔比例下降,中孔比例上升,比表面积可达1 094.14 m~2/g;且3种泡沫炭的表观密度在0.10~0.15 g/cm~3之间,压缩强度最高可达0.35 MPa。  相似文献   

7.
由CO2等温室气体排放带来的全球变暖问题是目前最严峻的环境问题之一。因此,利用多孔炭材料作为其高效吸附材料的研究得到了广泛的关注。系统综述了近年来用于CO2吸附的5种多孔炭材料,即煤/石油焦基活性炭、生物质多孔炭、炭气凝胶、金属有机骨架衍生物和碳纳米材料,以及多孔炭材料主要的4种制备方法(高温炭化与活化法、水热炭化法、溶胶-凝胶法和模板法),并重点讨论其结构与CO2吸附性能的关系;随后对多孔炭材料的孔结构和表面化学性质吸附CO2的机理进行总结。最后,提出多孔炭材料吸附CO2发展过程中尚待解决的问题,并对其未来的发展方向进行了展望。  相似文献   

8.
生物炭对元谋燥红壤土壤肥力与番茄生长的影响   总被引:4,自引:0,他引:4  
采用室内盆栽试验,分别在燥红壤中掺入稻壳(DK)、烟秆(YG)、橡胶木(XJ)3种不同的生物炭,每种生物炭共设置5个处理梯度(按炭土比1%、3%、5%、7%、10%添加),外加无生物炭添加的对照CK共16个处理,研究生物炭对燥红壤土壤肥力与番茄生长的影响。结果表明,稻壳炭10%处理土壤全磷较CK提升207.15%;烟秆生物炭10%处理对土壤全氮和速效钾较CK分别提升337.54%与360.56%;橡胶木生物炭10%处理对土壤有机质和速效磷较CK处理分别提升247.98%与394.36%。3种供试生物碳15种处理对土壤过氧化氢酶活性较CK处理下降24.89%-136.58%;土壤脲酶较CK处理除XJ1、XJ3与XJ7提升54.83%、3.22%和38.71%以外,其余各处理均比CK处理较低;土壤蔗糖酶活性较CK处理除YG10处理提高8.77%外,其余处理均低于CK处理水平。15种处理中橡胶木炭1%处理下的番茄植株生物量、根系体积、产量都达到最高,较CK相比分别提高120.00%、202.49%和368.62%。可得结论,生物炭的添加能够显著提高元谋燥红壤的土壤肥力,增加番茄产量,可以作为土壤改良剂在元谋地区应用。  相似文献   

9.
生物炭具有较大的比表面积和发达的孔隙结构,表面含有大量官能团,这些特性使得生物炭在水体污染物的处理方面具有强大的发展前景。近年来,越来越多的学者开始研究生物炭复合材料的制备,利用物理、化学方法对生物炭进行改性,提高吸附材料对水体中的重金属的吸附性能。对生物炭的特性、复合材料的改性方法以及其对重金属的吸附机理等进行综述,并提出了生物炭吸附材料未来的研究方向,应该开展重金属复合污染的研究,以期为生物炭材料的大规模应用提供参考。  相似文献   

10.
生物炭控制高施氮竹林土壤氨挥发效果研究   总被引:1,自引:0,他引:1  
通过模拟土柱试验,研究生物炭(水稻秸秆炭和竹炭)不同施用量(炭、土质量比分别为1∶100或1∶20)控制高施氮(每千克土壤施N 46 mg)竹林土壤氮素(NH3)挥发的效果。结果表明,生物炭添加能够有效降低NH3的挥发(每500 g土壤,由对照处理的3.83 mg降至0.05—0.94 mg),且炭、土质量比为1∶20的处理对NH3挥发的控制效果显著优于1∶100的生物炭处理。土壤添加尿素后,铵态氮(NH+4-N)含量为每千克土壤7.54 mg,生物炭添加处理使土壤NH+4-N含量升高至每千克土壤7.84—9.77 mg。同时,秸秆生物炭施用可以提高土壤水分含量6.18%—12.45%,而竹炭施用对土壤水分含量无显著影响。可见,不同生物炭施用可以通过固持土壤NH+4-N和(或)保持土壤水分,实现有效控制高施氮竹林土壤NH3挥发的效果。  相似文献   

11.
在高温氮气流中制备竹基和木基生物质炭,并将其掺入聚丙烯(PP)中制备生物质炭-聚丙烯复合材料,探究生物质炭对复合材料力学性能的影响。通过拉曼光谱(Raman)、X射线衍射(XRD)和衰减全反射(ATR)红外光谱及复合材料中的空隙因子归一化分析表明:竹基生物质炭和木基生物质炭具有明显的石墨特性;与纯聚丙烯相比,竹基生物质炭-聚丙烯复合材料有效拉伸强度降低了约10%;木基生物质-聚丙烯复合材料拉伸强度为32.3 MPa,冲击强度为17.4 J/m,与纯聚丙烯相比,木基生物质炭-聚丙烯复合材料的拉伸模量、抗弯强度和抗弯模量分别增加56%、19%和67%;木基生物质炭掺入热塑性聚丙烯中可增强复合材料的力学性能。  相似文献   

12.
泡沫炭具有低密度、高强度、高导电性、多孔骨架结构等诸多优点,是一种高端的整体性先进碳材料。在多种泡沫炭制备的原材料中,木质素因其可再生、低成本、高产量、高芳香性等特点而逐渐受到重视。基于木质素的热学性质复杂且特殊,近年来笔者开发了一种简单、高效的木质素基泡沫炭合成方法。为进一步实现泡沫炭结构与性能的调控,本研究主要通过使用聚对苯二甲酸乙二醇酯(PET)对木质素进行掺杂,考察PET可能对木质素转化过程中产生的影响,以及转化产物(新型泡沫炭)的材料结构与性能,从而提出PET掺杂对木质素基泡沫炭合成的影响。研究结果表明,PET的掺杂对于木质素的发泡过程有调节作用,其与木质素较好的相容性可以成功制备出木质素-PET基泡沫炭。PET的含量对泡沫炭的体密度、真密度、微观孔泡结构、机械强度等均有较为显著的影响。相比之下,X射线衍射和拉曼光谱结果表明PET掺杂对于泡沫炭的微观碳结构几乎没有影响。当PET掺杂量提升为20%时,泡沫炭的性能略有下降,可能与PET与木质素的均匀混合难度提升相关。本研究提出了通过掺杂高分子以改变新合成方法下泡沫炭结构与性能的思路,对泡沫炭的合成和调控具有指导意义。  相似文献   

13.
随着人类对环境污染和资源危机等问题认识的不断深入,开发利用廉价、可再生、可降解的天然高分子材料日益受到重视。木质素是总量仅次于纤维素的第二大天然高分子材料,是自然界中唯一能提供可再生芳基化合物的非石化资源,木质素及其分子结构研究备受关注。木质素主要由愈创木基(G)、紫丁香基(S)和对羟基苯基(H)3种基本结构单元组成,其存在不仅能够增强植物细胞壁的机械强度,同时也能够防止微生物对细胞壁的侵害,使木质化的植物直立挺拔,不易腐朽。在植物细胞壁中,木质素和半纤维素以共价键形式结合,构成木质素-碳水化合物复合体,其与纤维素微纤丝交联在一起,形成了一个复杂的三维网络结构,这一结构被认为是植物细胞壁天然的抗降解屏障。在生物炼制过程中,木质素在木质纤维原料细胞壁中的分布特点直接影响生物质的转化效率,因此,在原位状态下研究植物细胞壁木质素分子结构、微区分布以及细胞壁水平的溶解规律具有重要意义。在传统湿部化学中,定性或定量研究木质素分子结构普遍采用的是磨木木素和克拉森木素,这2种方法都需要对木质素样品进行物理或化学预处理,不可避免地会改变木质素样品天然状态下的分子结构。尽管传统的光学和电子显微技术能够提供木质素的微区分布信息,但是样品通常需要染色处理,且制样过程繁琐。相比较而言,显微拉曼光谱技术因其无损、快速、高分辨率和高灵敏度等特点在研究大分子结构、区域化学等方面具有得天独厚的优势。本文首先对G、S、H型木质素模型物拉曼光谱特征峰及这些结构单元在生物质原料中的特征峰进行归属,并简要介绍影响木质素拉曼光谱的因素,在此基础上综述该技术在植物细胞壁木质素微区分布和生物质预处理过程中木质素溶解规律等方面的研究进展,最后对该技术在木质素研究领域的发展方向进行展望,以期为植物生理学和生物炼制研究领域,尤其是设计高效的生物质预处理工艺提供新思路和新方法,进而拓宽该技术在生物大分子研究中的应用范围。  相似文献   

14.
微波加热方法制备活化生物质炭的研究   总被引:2,自引:0,他引:2  
笔者采用微波加热的方式以松木片为原料、KOH为活化剂制备活化生物质炭,探索了3种不同KOH/生物质炭的配比(0.5、1.5和3.0)条件下的活化生物质炭的孔结构和甲苯吸附量。甲苯吸附量的测试采用了一种简便、高效、环保和廉价的方法。结果表明,配比为3.0的活化生物质炭达到最高的比表面积2044m~2/g,微孔比表面积也达到最高值1712m~2/g。对不同浓度的甲苯进行吸附,在甲苯浓度为400ppmv时,配比为3.0的活化生物质炭显示了最大的吸附量56.0%。而对高浓度甲苯吸附,配比为3.0的活化生物质炭的吸附量则可达到71.9%,并且其吸附等温线数据能很好的拟合DQSAR吸附模型。  相似文献   

15.
[目的 ]研究降雨丰沛,土壤水分长期饱和条件下生物炭对杉木人工林土壤铁还原的影响,分析土壤铁还原菌、解磷菌群落结构变化规律,最终明确生物炭对土壤铁还原的影响及与磷形态转化的关系。[方法 ]以杉木人工林红壤为供试土壤,收集林下杉木叶烧制成300℃和500℃生物炭,以0、1%、3%占比添加生物炭进行40 d的室内培养。测定土壤基本化学养分,采用修正后的Hedley方法测定土壤中不同磷素形态含量,利用高通量测序技术分析土壤解磷菌与铁还原菌群落结构。[结果 ]淹水处理后土壤活性磷含量增多,并且随生物炭添加量的增加而增加,其中水溶态有机磷和碳酸氢钠态无机磷占比较大;残渣态磷含量随生物炭添加量的增加而减少。淹水处理组的铁还原菌基因拷贝数高于非淹水处理组,且同一水分条件下随生物炭烧制温度的增加而增加,淹水处理组的亚铁离子含量远高于非淹水处理,且随生物炭添加量的增加而降低,淹水处理组的土壤化学性质例如pH、全碳、全磷含量高于非淹水处理组,且随生物炭添加量的增加而上升。在淹水处理中土壤解磷菌群落丰富度随烧制温度的升高而增加,并且解磷菌群落结构和多样性增强。[结论 ]厌氧条件促进Fe(Ⅲ)还原,生物炭的添...  相似文献   

16.
为探讨施用生物炭对国槐人工林土壤理化性质的影响,在北京市房山区3年生国槐人工林内设置样地,采用随机区组设计,共设4种处理,各处理分别施用0(CK)、1(T1)、2(T2)、4(T3)kg·m-2碳当量的生物炭,6个月后测定其土壤理化性质。结果表明:与对照(CK)相比,施用生物炭各处理的土壤有机碳含量均明显增加,增加幅度为42.3%~159.8%;土壤饱和持水量均明显增加,增加幅度为6.5%~19.4%,以T2处理的效果最好。>2.000 mm的水稳性大团聚体含量均显著增加,0.053~0.250 mm的水稳性微团聚体含量均显著降低,团聚体平均重量直径和粒径>0.250 mm团聚体含量(R>0.25)均显著增加,团聚体几何平均直径均明显增加,土壤团聚体的稳定性明显提高,以T2处理的效果最好。施用一定量的生物炭可降低其土壤容重,其中T2处理的土壤容重显著低于对照的T1处理的。生物炭的施用明显改善了国槐人工林土壤的理化性质,其中以生物炭施用量为2kg·m-2时对国槐人工林土壤改良的效果最好。  相似文献   

17.
【目的】采集杉木人工林土壤,通过室内土壤培养实验,研究添加不同制备原料和制备温度的生物炭对土壤细菌群落结构及多样性的影响,为改善南方酸性红壤及合理应用生物炭提供科学依据。【方法】原土添加3%的300℃杉叶炭(BL300)、600℃杉叶炭(BL600)、300℃木屑炭(BW300)及600℃木屑炭(BW600),与对照土壤进行对比,进行培养实验80天,运用高通量测序技术对PCR所扩增16SrDNA序列的V3+V4区域进行测定。【结果】OTU韦恩图分析表明,添加BL300的土壤细菌较对照丰度提高,其他生物炭处理丰度减小;通过PCoA分析和Beta多样性分析及UPGMA聚类分析得出,添加杉叶炭后土壤细菌群落结构及多样性与对照土壤的差异显著,其中BL600与对照差异最大,添加木屑炭结果与对照较相似;添加生物炭对不同物种水平上的土壤细菌结构和功能产生一定影响,其中杉叶炭处理影响十分显著,使土壤优势菌丰度变化较大,木屑炭处理对优势菌的影响相对较小。【结论】添加BL300生物炭提高了土壤细菌的丰度,而添加其他生物炭降低了细菌丰度;不同制备原料和温度对生物炭存在影响,由于木屑炭可利用氮素不足,杉叶生物炭对土壤细菌结构和多样性的影响比木屑生物炭更显著,高温炭灰分含量较多,因此对细菌多样性的影响大于低温炭;不同的土壤细菌种群生活习性与功能不同,对生物炭组分利用程度也不同,添加生物炭能够改变土壤中优势种群的相对丰度和土壤细菌群落的整体功能。  相似文献   

18.
[目的]探讨氮沉降和生物炭添加对毛竹林丛枝菌根真菌特征的影响,为全球变化背景下毛竹林的可持续经营提供科学参考。[方法]以毛竹林为研究对象,探讨了不同梯度的氮沉降(0、 30、 60和90kg·hm-2·yr-1)和生物炭添加(0、20和40 t·hm-2)及其复合作用对毛竹林AMF侵染率和孢子密度以及土壤理化性质的影响。[结果]与对照(0kg·hm-2·yr-1 N+0t·hm-2BC)相比,氮添加显著降低了AMF侵染率(16.1%~51.7%)。高生物炭添加(40 t·hm-2)显著降低了AMF侵染率(46.0%),但提高了孢子密度(162.5%)。在氮添加处理下,生物炭添加提高了AMF侵染率,对孢子密度无显著影响。AMF侵染率与土壤p H呈显著正相关关系,与有效氮和有效磷呈显著负相关关系。AMF孢子密度与有效磷呈显著正相关关系。[结论]在氮添加处理下,生物炭添加提高了AMF侵染率,增强了毛竹与AMF的共生关系,表明在氮沉降背景下生...  相似文献   

19.
由于过量磷肥的施用、大量含磷生活、工业废水的排放,水体富营养化现象日益严重,需要经济有效的方式去除磷元素.而牡蛎壳和花生壳均为生物质废弃物,可通过二次利用来制备牡蛎壳改性花生壳生物炭.采用添加牡蛎壳的方法对花生壳生物炭进行了改性实验,探讨了不同牡蛎壳对花生壳生物炭吸附磷效能的影响.结果表明:牡蛎壳改性的花生壳生物炭显著...  相似文献   

20.
生物炭作为新型土壤改良剂正引起国内外的广泛关注,利用园林绿化废弃物制作生物炭在国内尚属起步阶段。采用小区试验方法,以紫娇花(Tulbaghia violacea)和北美海棠(North American Begonia)为供试花卉和树木,研究生物炭土壤覆盖后对花木生长的影响。结果表明,生物炭覆盖土壤对紫娇花和北美海棠生长具有显著的促进作用,并能缓解其不良生长。与对照相比,生物炭覆盖使紫娇花的黄叶、枯叶和不良长势分别下降47.8%、20%和100%,北美海棠的不良长势和枯枝率和根基萌芽分别下降80%、62.5%和50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号