首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetable oils, typically high in n − 6 fatty acids, are necessary alternatives in fish feed production. Such oils have been tested in salmonid diets with good growth results, but with major changes in lipid composition. The aim of this study was to provide information regarding the effect of the higher dietary n − 6/n − 3 fatty acid ratio caused by vegetable oil on growth, chemical composition and bone development, on eicosanoid production and on formation and mineralization of bone.A feeding experiment was carried out in juvenile Atlantic salmon (Salmo salar). Groups of fish (1.28 g) were fed diets added fish oil (FO) or soybean oil (SO) as the main lipid source through the 174 days long experimental period with sampling points at days 0, 31, 53, 96, 136 and 174 up to smoltification. Subsequently, fish performance was observed after 2, 8 and 18 months in sea water.Weight was significantly higher in the fish oil group (95.4 g) than in the soybean oil group (87.4 g) after the 174 days experimental period. This difference developed during short day treatment prior to smoltification, and the fish oil group had a significantly higher growth rate (TGC) during this period (1.62 vs 1.45). Whole body mineral analysis displayed low levels of Ca (2400 and 3500 mg kg−1) and P (3200 and 3900 mg kg−1) in all samples. The corresponding Ca:P ratio ranged from 0.74 to 0.91. On day 136 the level of Ca, and Ca/P ratio, were significantly higher in the fish oil group than in the soybean oil group. There was a significant increase in n − 6 fatty acids and decrease in n − 3 fatty acids in the soybean oil group compared to the fish oil group for both TAG and PL in vertebrae. Individual variation was large in plasma prostaglandin E2 (PGE2), and at day 174 the trend was towards a higher level in the soybean oil group. Radiography analyses demonstrated a distinctive pattern of development of spinal pathology with time and fish size, similar in both groups. Hyper dense vertebrae dominated at earlier stages, fusion-type malformations dominated at harvest size. The histological examination of the vertebrae revealed no differences between treatments.The results suggest that vegetable oil as a replacement for fish oil influence the arachidonic acid level in phospholipids of vertebrae, may slightly increase production of PGE2 in blood, and reduce vertebrae mineralization around the sensitive smoltification phase. These trends did not lead to any detectable skeletal malformations. Differences in growth and vertebrae mineralization observed around smoltification disappeared during the seawater phase.  相似文献   

2.
This study was undertaken to evaluate the role of polychaete Nereis diversicolor in bioremediation of waste water and its growth performance and fatty acid composition in an integrated culture system with great sturgeon, Huso huso. Three treatments consisting of N. diversicolor fed with H. huso waste (FNW), N. diversicolor fed with fish feed waste (NW), and fish waste without the worm (FW) were considered at water temperature of 23°C for 8 weeks. The obtained results demonstrated that N. diversicolor in the flow‐through system could grow via feeding with the fish waste water. The pure production and survival rate of harvested Nereis in NW treatment were significantly higher than those of FNW treatment (< .05). However, no significant difference was observed in specific growth rate and weight gain between these two treatments (> .05). The highest removal efficiency of waste water including total nitrogen (56%), total phosphorus (53%), NO2‐N (91%), NH3‐N (35%), PO4‐P (47%), BOD5 (60%) were seen in FNW treatment. Also, the highest additional efficiency of NO3‐N occurred in FW (37%) treatment. Certain fatty acids specifically 20:5 ω3 (eicosapentaenoic acid [EPA]) and 22:6 ω6 (docosahexaenoic acid [DHA]) were also abundant in Nereis, and analysis revealed some differences due to the diet. These results demonstrated that the promotion of growth by cultured Nereis can enhance the decomposition rate of organic matter in enriched sediment and minimize negative effects in fish farms. These results also suggest that the use of N. diversicolor is an excellent potential candidate for an integrated aquaculture and nutrient recycling including the removal of organic wastes.  相似文献   

3.
The objective of this study was to assess the effects of rearing density on the growth and fatty acid profile of Nereis diversicolor and on its capability to bioremediate wastewater in an integrated culture system with rainbow trout (Oncorhynchus mykiss). To this end, a batch of juvenile N. diversicolor (0.03 ± 0.01 mg) was assigned into four different densities (T1 = 250, T2 = 500, T3 = 1,000, T4 = 2,000, besides T0 = with no worm) in three replicates. The worm groups were fed with solid waste that was supplied from tanks containing rainbow trout (107.17 ± 13.5 g; 1.39 ± 0.18 kg/m3). During the experiment (60 days), the water temperature was 17.71 ± 0.6°C. The results revealed that SR%, SGR% and WG% of N. diversicolor in T1 were significantly higher than those of T2, T3 and T4. Both FER rate and biomass gain in T4 were significantly higher than those in the other groups. The highest removal rate of NO2‐N (73.72%), NH3‐N (65.70%), PO4‐P (59.32%), BOD5 (69.60%) and TSS (82.33%) were observed in T4. The major fatty acids presents were palmitic acid, oleic acid, linoleic acid, stearic acid and alpha‐linolenic acid in all worm‐treated groups, with no difference observed in the concentration of these fatty acids among them. Taken together, these findings suggest that organic wastes from rainbow trout farms could be recycled to achieve a sustainable aquaculture goal, and demonstrate that a high percentage of fatty acids in fish feed is not absorbed by rainbow trout but is done by N. diversicolor.  相似文献   

4.
Fatty acid composition, conjugated linoleic acid and cholesterol contents in the muscles of three freshwater fish species (Barbus plebejus escherichi, Capoeta capoeta capoeta and Rutilus rutilus) were determined under natural extreme temperate (July) and cold (January) conditions. The aim of the study was to determine whether there were differences in these components of the muscle lipids among these three fish species under extreme natural conditions. Samples were analyzed using gas chromatography. Palmitic, oleic, docosahexaenoic and eicosapentaenoic acids were the predominant fatty acids in all fish in both months. The percentages of polyunsaturated fatty acids, n − 3 polyunsaturated fatty acids, n − 6 polyunsaturated fatty acids and eicosapentaenoic + docosahexaenoic acids in the muscle of B. plebejus escherichi and C. capoeta capoeta were significantly higher in January (P < 0.05) than in July. The ratio of n − 6 to n − 3 polyunsaturated fatty acids was lower than 0.60 in all fish species, with C. capoeta capoeta showing the lowest ratio in January (0.36). The levels of cholesterol and conjugated linoleic acid ranged from 103.46 to 150.10 mg/100 g oil and from 16.27 to 35.45 mg/100 g oil, respectively, for all samples in both months. There were no statistical differences in cholesterol levels among the three fish species in July and January. Conjugated linoleic acid contents were significantly higher in January in B. plebejus escherichi and C. capoeta capoeta. Of the three species tested, the extreme temperate and cold conditions affected B. plebejus escherichi the most.  相似文献   

5.
The relative contributions of live Artemia metanauplii and an inert diet for growth of Senegalese sole larvae and postlarvae were assessed through the analysis of carbon stable isotopes ratios (δ13C) in both diets and whole larval tissue. Larvae were reared on four dietary regimes: 100% live prey (rotifers and Artemia), 100% inert formulated diet and two co-feeding regimes of 70:30 and 30:70 ratios of Artemia and inert diet, respectively. Larvae from the live food regime and both co-feeding regimes showed a steep increase in δ13C from 10 days after hatching (DAH) as a result of the onset and continuation of Artemia consumption. From 12 DAH fish larvae from all the regimes showed significant isotopic differences as their δ13C increased to final asymptotic values of − 15.1, − 15.6 and − 16.3‰ in the live food, 70:30 and 30:70 regimes, respectively. Carbon turnover rates in larvae from both live food and co-feeding regimes were relatively high (0.071 to 0.116 d− 1) but more than 90% of the observed change in fish tissue isotopic values was accounted for by the retention of carbon in new tissue growth. A two-source, one-isotope mixing model was applied to estimate the nutritional contribution of Artemia and inert diet to postlarvae growth in the co-feeding regimes. At 23 DAH, the relative contribution of live and inert diets to tissue growth in larvae was respectively, 88 and 12% for the 70:30 co-feeding regime and 73 and 27% for the 30:70 co-feeding regime. At 17 DAH, the estimated proportion of tissue carbon derived from the inert diet was higher at 23 and 38% for the 70:30 and 30:70 regimes, respectively. The results suggest that co-feeding regimes in Solea senegalensis larvae may be adjusted to meet ontogenetic changes in the capacity for larvae to utilise inert diets. The contrasting levels of carbon isotope discrimination between diet and tissue in larvae reared on either 100% live feed or 100% inert diet indicate relatively poor utilization of nutrients from the inert diet. The use of isotopic discrimination factors as potential indicators of the digestive physiological performance of a consuming organism in regards to its diet is discussed.  相似文献   

6.
The growth performance and stress response in striped knifejaw, Oplegnathus fasciatus (body weight 100–300 g) reared under four photoperiods (6L:6D, 12L:12D, 16L:8D and 24L:0D) were investigated. Fish were fed a commercial diet to apparent satiation, two times a day for 8 weeks. A trial of acute handling and confinement stress was also carried out to investigate the stress-induced levels of different stress indicators in O. fasciatus. Blood was also collected from undisturbed fish which was considered as control. Although there were no significant differences in weight gain, specific growth rate (SGR) and feed conversion efficiency (FCE) in fish exposed to 6L:6D, 16L:8D and 24L:0D photoperiods, all parameters in these photoperiods were significantly higher than those of 12L:12D photoperiod (P < 0.05). There was no significant difference in protein retention efficiency (PRE) between fish exposed to 16L:8D and 24L:0D photoperiods, but PRE in both photoperiods was significantly higher than that of 12L:12D photoperiod.Acute stress significantly increased the plasma levels of cortisol (110.3 ng ml− 1) and glucose (195.4 mg dl− 1), and decreased plasma levels of total protein (0.8 g dl− 1); however, all parameters were returned back to the levels indistinguishable from those of control, undisturbed fish within 24 h. The levels of cortisol, glucose and total protein in fish exposed to different photoperiods during the study were far from the stress-induced levels (P < 0.05). The results demonstrated that the growth performance of O. fasciatus reared from 100 to 300 g can be stimulated significantly by using the manipulated photoperiods where feeding time may be playing an important role to increase food intake and feed conversion efficiency. It also revealed that the artificial photoperiods did not cause significant stress response in fish.  相似文献   

7.
The purpose of this study was to investigate the effect of freshwater rearing on the fatty acid profiles of the whole body and muscle tissue of the European sea bass (Dicentrarchus labrax). Half of initial fish were gradually acclimated to freshwater (FW) kept at the same temperature to salt water and grown in same conditions as their counterparts in saltwater (SW). The decrease in salinity caused an increase in the percentages of 18:1n − 9, 24:1n − 9, 18:3n − 3, 18:2n − 6 and decrease in the percentages of 14:0, 15:0, 20:0, 21:0, 20:5n − 3 and 22:6n − 3 both in the whole body and in the muscle tissue fatty acid profiles. The lipids of FW-reared fish contained significantly (P < 0.01) higher percentages of 18:2n − 6 and 18:3n − 6 than that of SW-reared fish. However, percentages of 20:5n − 3 and 22:6n − 3 fatty acids decreased significantly (P < 0.05) compared with those of salt water-reared European sea bass. There was a clear trend of decrement in the percentages of n − 3 PUFA fatty acids due to the decrease in water salinity. However, the percentages of n − 6 PUFA fatty acids were also increased with the decrease in water salinity. We concluded that the FW acclimation is followed by changes in certain lipid classes of sea bass muscle tissue and whole body samples. n − 3/n − 6 PUFA ratios were characteristic to previously reported ratios for both FW- and SW-reared European sea bass. In addition, EPA/DHA ratios were basically similar for the fish reared in both SW and FW indicating the equal nutritional value of the final products in terms of providing PUFA’s for human nutrition.  相似文献   

8.
In this study, effects of grape Vitis vinifera seed oil supplementation (0, 250 mg, 500 mg, 1,000 mg/kg feed) for 60 days on rainbow trout Oncorhynchus mykiss juveniles were investigated. The average final fish weights were not different between the control group and 500 mg/kg feed group (p > .05), but 250 mg/kg feed group were lower than those of the control group, and 1,000 mg/kg feed group were higher than those of the control group. Although the SFA, MUFA and n3 ratios of the control group were higher than that of the other groups, no statistical difference was found. The highest fatty acids in the fish were palmitic acid C 16: 0 in the SFA group and C 18: 1n‐9 and docosahexaenoic acid C 22: 6n‐3 in the PUFA group. The EPA ratio was significantly increased in all groups compared with the control group. The DHA ratio was significantly higher in the control group than in the experimental groups, and there was no difference between the experimental groups. Urea were significantly lower in the 250 mg/kg feed group. Total protein and aspartate aminotransferase were significantly increased in the 1,000 mg/kg feed group. Only the 1,000 mg/kg feed group showed an increase in antioxidant activities, and this concentration also yielded positive results in terms of growth performance, survival rates, fatty acid composition and antioxidant enzyme activities in rainbow trout juvenile and can be used as a natural feed additive.  相似文献   

9.
Fish oil (FO) substitution has been studied in many marine carnivorous fish, but seldom in marine herbivorous or omnivorous species. To evaluate the feasibility of using soybean oil (SO) as a dietary lipid and confirm its capability of converting C18 polyunsaturated fatty acid (PUFA) into long chain polyunsaturated fatty acid (LC‐PUFA) in the marine herbivorous teleost Siganus canaliculatus, juvenile fish were fed with four formulated diets differing in lipid composition, with SO accounting for 0.76% (SO0), 23% (SO23), 45% (SO45) and 67% (SO67) of total dietary lipid respectively. After feeding for 8 weeks, growth performance including weight gain, specific growth rate, feed conversion ratio and protein efficiency rate were better in the SO23 and, especially, SO45 groups than in the SO0 and SO67 groups (< 0.05). Tissue fatty acid compositions were affected by diet, with the liver contents of eicosapentaenoic (EPA), docosapentaenoic (DPA), docosahexaenoic (DHA) acids and total n‐3 PUFA displaying parallel changes with the corresponding dietary fatty acids. While the muscle contents of EPA, DPA and total n‐3 PUFA between SO0 and SO23 groups, and the liver contents of arachidonic acid (ARA) and 20:4n‐3, as well as the muscle content of 20:3n‐6 between SO0 and SO45 groups showed no difference, confirming the biosynthesis of LC‐PUFA from C18 precursors in vivo as the contents of corresponding fatty acids in diets SO23/SO45 were much lower than those in diet SO0 (< 0.05). The results indicate that SO may be a suitable dietary lipid source for S. canaliculatus, and can replace up to 67% or 45% of total dietary FO without negatively compromising growth performance or nutritional quality of fish respectively. Moreover, the study increases our knowledge of FO substitution in marine herbivorous fish.  相似文献   

10.
为分析刺参养殖池塘底泥生物组成的季节变化及其对刺参食物来源的影响,本研究于2012年5—12月以16:1(n-7)/16:0及EPA作为硅藻的特征脂肪酸标志,20:4(n-6)作为褐藻的特征脂肪酸标志,DHA及DHA/EPA作为鞭毛藻或原生动物的特征脂肪酸标志,18:1(n-7)及奇数碳和支链脂肪酸(oddbr FAs)作为细菌的特征脂肪酸标志调查了荣成靖海湾刺参养殖池塘底泥和刺参脂肪酸组成的季节性变化特征。结果显示,硅藻、褐藻、多种异养细菌及鞭毛藻或原生动物为底泥的主要组成生物,且各类生物组成的季节变化显著,其中硅藻的特征脂肪酸16:1(n-7)/16:0及EPA最高值出现在冬季,褐藻的特征脂肪酸20:4(n-6)含量为秋季最高,细菌的特征脂肪酸18:1(n-7)及(oddbr FAs)最高值出现在夏季,鞭毛藻或原生动物的特征脂肪酸DHA含量为冬季最高。相关性分析显示,刺参食物中的硅藻、鞭毛藻或原生动物和细菌主要来源于底泥。研究表明,刺参养殖池塘底泥中主要生物组成季节性变化显著,进而引起刺参食物来源的季节性变化。  相似文献   

11.
The influence of feed oils on fatty acid compositions of cod liver oils was examined to investigate how fatty acid profiles are modified, and to provide estimates of feed oil compositions needed to give liver oils meeting production guidelines [3–11% 18:2n−6, 7–16% 20:5n−3 (EPA) and 6–18% 22:6n−3 (DHA)]. Attention was directed to examination of cod liver oil contents of n−6 and n−3 fatty acids, the essential fatty acids. Data, mostly taken from published work, were subjected to regression analysis to investigate the relationships between the percentages of fatty acids (18:2n−6, total n−6 fatty acids, 18:3n−3, 20:5n−3, 22:6n−3 and total n−3 fatty acids) in feed oils and their percentages in liver oils.  相似文献   

12.
Tomita  Yuki  Ando  Yasuhiro 《Fisheries Science》2009,75(2):445-451
Positional distribution of fatty acids in triacyl-sn-glycerols (TAG) of the flathead flounder Hippoglossoides dubius has been reinvestigated in order to accurately determine the contents of tetracosahexaenoic acid (24:6n-3) in the sn-1, sn-2, and sn-3 positions. Flesh TAG obtained from three flounders were subjected to stereospecific analysis using a suitable procedure for fish TAG analysis. The 24:6n-3 acid was found in the three positions at the concentrations of 0.3–5.5 mole% (the sn-1 position), 1.6–23.3 mole% (the sn-2 position), and 0.6–8.9 mole% (the sn-3 position). In contrast to a previous analysis, the present analysis revealed that 24:6n-3 is preferentially esterified in the sn-2 position followed by the sn-3 and sn-1 positions. Other polyunsaturated fatty acids, docosahexaenoic acid (22:6n-3; DHA) and docosapentaenoic acid (22:5n-3; DPA), showed a similar distribution pattern. These results indicate that the general tendency observed for long-chain polyunsaturated fatty acids in marine fish TAG can be extended to the distribution of 24:6n-3 in flathead flounder TAG. Because the use of flathead flounders is entirely for human food, we thus intake 24:6n-3 concentrated in the sn-2 position of their TAG.  相似文献   

13.
This study evaluated the potential for manipulating the fatty acid composition of juvenile red seabream, Pagrus auratus. Prior to the start of the study, three groups of fish had been reared for 3 months on a fish oil based diet or diets where the added fish oil had been replaced with either canola or soybean oil. In the present study, fish that had previously been fed either the canola or soybean oil diets were fed a fish oil based diet. Three additional treatments included fish being maintained on their original diets of fish oil, canola oil or soybean oil. Fish were fed their respective diets twice daily to apparent satiety for 32 days. Samples of fish from each treatment were collected after 0, 1, 2, 4, 8, 16 and 32 days. Composition and growth of the fish were determined at each sample point. Most treatments showed no differences in growth performance, although fish fed a fish oil diet after previously being fed a soybean oil diet showed slightly better growth. No significant differences among treatments were observed in proximate composition of the fish, although there was a significant increase in total fat and individual fatty acid (g kg?1 live‐weight) content of the fish from all treatments over the period of the study. No significant changes in the relative fatty acid composition (% of total fatty acids) over time were observed in the three treatments where fish were maintained on their original diets. In contrast, fish that were previously fed either the canola or soybean oil diets and were then fed a fish oil diet had significant changes in both the relative (% of total fatty acids) and absolute (g kg?1 live‐weight) fatty acid content. Key changes observed included a decrease in the relative levels of polyunsaturated fatty acids (PUFA) such as 18 : 2n ? 6 and 18 : 3n ? 3. Increases in the relative levels of the long‐chain polyunsaturated fatty acids (lcPUFA) 20 : 5n ? 3 and 22 : 6n ? 3 were also observed in both treatments. The rates of absolute (g kg?1 live‐weight) change/accumulation of these fatty acids followed an exponential equation that differed for each fatty acid in each treatment. Examination of the retention efficiency of specific fatty acids also showed marked differences between fatty acids within treatments and also differences between treatments. Biologically important fatty acids such as 20 : 5n ? 3 and 22 : 6n ? 3 had only moderate retention efficiencies and these were unaffected by treatment. In contrast, the retention efficiencies of 18 : 2n ? 6 and 18 : 3n ? 3 suggested selective retention of these fatty acids when fed fish oil diets, but moderate catabolism when fed the plant oil diets. There were also high retention efficiencies of most saturated and monounsaturated fatty acids suggestive of active retention and/or active synthesis of these fatty acids by the fish. The results of this study, particularly the increases in lcPUFA, support the usefulness of a fish oil based finisher diet for fish raised predominantly on plant oil based diets.  相似文献   

14.
Diacronema vlkianum was grown in polyethylene bags at two different temperatures (18 and 26°C) in the laboratory. The biochemical composition level decreased when the temperature increased from 18 to 26°C. The maximum cell number at 18°C was 11.9 × 106 cells ml−1, while maximum cell number at 26°C was 1.6 × 106 cells ml−1. The maximum level of α-tocopherol was 257.7 ± 21.6 μg g−1 dry weight (DW) at 18°C. The highest total carotenoids and chlorophylls were 6.5 mg g−1 DW and 4.3 mg g−1 DW, respectively, and the main pigments were determined as astaxanthin and lutein. Polyunsaturated fatty acids were found to be the predominant group, reaching 39.5% of the total fatty acids at 18°C. This comprised 20:5(n − 3) as the main polyunsaturated fatty acids (20.4%, at 18°C) followed by 22:6(n − 3) (4.8%, at 18°C). The results suggest that D. vlkianum can be successfully used as feed in shellfish hatcheries or aquaculture hatcheries, either as a substitute or in association with other microalgae, when this algae is cultured at 18°C.  相似文献   

15.
We held juvenile big-headed turtles, Platysternon megacephalum, from eastern China, at temperatures from 20 to 29.4 °C to determine effects on feeding, growth and food conversion. Food intake increased significantly from 20 to 22.4 °C, remained high until 27.1 °C, and then decreased dramatically at 29.4 °C. Digestive efficiency for energy decreased as temperature increased, whereas the digestive efficiency of protein increased from 20 to 25 °C, and decreased at higher temperatures. The relationships between specific growth rate (SGR), food conversion coefficient (Cc) and temperature (T) were curvilinear, and could be described by quadratic equations: SGR = −0.01 T2 + 0.47 T − 5.24 and Cc = −0.37 T2 + 17.20 T − 181.85. Maximum growth was estimated to occur at 23.9 °C, with 90% of the maximum being achieved within the range of 21.9–25.8 °C; maximal food conversion occurred at 23.2 °C, with a 90% range from 21.0 to 25.4 °C. The temperature range (22–25 °C) found to promote best growth and food conversion in juvenile P. megacephalum is lower than for many other freshwater turtles. Temperatures of 22–25 °C are recommended for use in culture of this species to maximize growth and food conversion.  相似文献   

16.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

17.
Nile tilapia (Oreochromis niloticus) is currently one of the most farmed freshwater fish and contributes significantly to total global aquaculture production. The genetically improved strain of O. niloticus (GIFT) was introduced to Papua New Guinea (PNG) in 1999 to improve food and income security. The high cost and low availability of commercial fish feed hinder the growth of GIFT farming in PNG. Stable carbon and nitrogen isotopes were used to determine the role of supplementary and natural food sources in the diet of GIFT in pond‐based aquaculture. Two treatments were used: treatment 1 was daily feeding, and treatment 2 was weekly feeding, each with three replicates. Isotopic analysis of muscle tissue and all potential food sources showed that pellet feed contributed 7% to the growth of GIFT in daily‐fed ponds and 33% in the weekly‐fed ponds. Highly enriched δ15N values for chicken manure, compared to depleted values for GIFT and other natural food sources in both treatments, clearly indicate insignificant contributions of this input to production. After 90 days of cultivation, the average final body weight of GIFT receiving daily feed inputs was 134 g (average 19 cm), while for weekly‐fed it was 92 g (17 cm). The feed conversion ratio (FCR) was poor (6.4:1) in the daily‐fed GIFT ponds compared to a better, and preferable, FCR (1:1) in the weekly‐fed ponds. The findings of this study show that pelleted feed was not the major contributor to the growth of GIFT. Genetically improved farmed tilapia aquaculture should focus on enhancing natural food availability for fish production.  相似文献   

18.
Enchytraeus albidus is a small euryhaline earthworm that is abundant in the supralittoral zone where it can be found in decaying seaweed. This species is readily mass‐cultured, and due to its relatively high contents of protein and polyunsaturated fatty acids (PUFAs), there has been a renewed interest in this species as an alternative source of valuable nutrients for fish feed. Here, we have investigated the influence of substrate salinity (0, 1, 2, 8, 15, 30 and 40 ppt) on reproduction, growth and nutrient content of worms. We found that intermediate salinities (8–15 ppt) of the substrate maximize biomass production as well as protein and PUFA contents of the worm tissue. In particular, we observed that the often used culturing of E. albidus in non‐saline growth medium resulted in low reproduction and biomass production. Increasing the salinity from 0 to 15 ppt resulted in a higher proportion of unsaturated fatty acids both in storage lipid and in membrane phospholipid fractions.  相似文献   

19.
Gastric evacuation rates of the gilthead sea bream, Sparus aurata, fed with commercial pelleted food and polychaetes (Nereis diversicolor) were determined under experimental conditions. The estimated gastric evacuation rate for pelleted food was 7.97% h–1, with a total time of digestion of approximately 9 h. The respective values for the natural food were 6.24% h–1, with a total digestion time of approximately 12 h. The daily consumption of fish reared in earth ponds in a semi-intensive aquaculture facility was estimated through 24 h cycles performed between April and August. The daily consumption varied from 18.58 to 31.98 mg g–1. There was a constant increase in the average daily consumption per individual of 1.8–4.6 g (dry weight). During these cycles, samples of stomachs were taken and the contents preserved for further observation. The feeding behaviour of the reared fish was compared with a fish sample caught in the Ria Formosa lagoon. No common species were found between samples. A total of 38 prey were identified, which suggests that the gilthead sea bream is a non-specific predator. Despite the high abundance of natural prey in the ponds, the dependence of sea bream on pelleted food was high.  相似文献   

20.
The proximate composition of the whole body and the fatty acid composition of the liver, muscle, eye and brain of wild and cultured rohu (Labeo rohita) were analyzed. The cultured species was found to have significantly (P < 0.05) higher lipid contents than its wild counterpart. The saturated (SFA) and monounsaturated (MUFA) fatty acid contents were significantly higher in the cultured species, whereas the n-6 and n-3 polyunsaturated fatty acid (PUFA) levels were higher in the wild species. Fatty acids C16:0 and C18:1 n-9 were the principal fatty acids of the SFAs and MUFAs, respectively, identified in the analyses. Docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid were the predominant PUFAs in both groups, and all three were found to be present at significantly (P < 0.05) higher levels in the wild species. Erucic acid (C22:1 n-9), which was the predominant fatty acid (30.76%) in the feed, was detected only at low levels in muscle (0.30%), liver (1.04%) and eye (1.28%) of cultured fish tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号