首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用程序升温式酯化反应研究了GIC-90固体酸催化剂催化α-蒎烯与草酸酯化反应的规律,结果表明该酯化反应选择性较好,皂化后粗龙脑得率为45%~55%,副产物中二聚体较少,为8%~10%。反应放热量较小,通过控制外加热源电压可灵活调节反应温度程序,并可惜此调节粗龙脑得率和组成。  相似文献   

2.
固体酸催化α—蒎烯酯化—皂化合成龙脑的研究   总被引:2,自引:0,他引:2  
采用程序升温式酯化反应研究了GIC-90固体酸催伦α-蒎烯与草酸酯化反应的规律,结果表明该酯化反应选择性较小,皂化后粗龙脑得率为45%-55%,副产物中二聚体较不,秋8%-10%。反应放热量较小,通过控制外加热源电压可灵活调节反应温度程序,并可借此调节粗龙脑得率和组成。  相似文献   

3.
首次采用纳米级固体超强酸SO4^2-/ZrO2为催化剂合成乙酸芳樟酯,考察了催化剂用量、反应温度、反应时间、乙酐与芳樟醇摩尔比(酐醇比)等因素对反应的影响。结果表明,反应温度30℃、反应时间6.5h、催化剂用量为原料质量的2.5%、酐醇比为2.5:1时,芳樟醇转化率为93.2%,产物中乙酸芳樟酯含量为53.78%,总酯含量为76.89%。通过与其它催化剂对比发现,本实验反应时间较短,催化剂可重复使用,有较好的应用潜力。  相似文献   

4.
作者研制成功了一种合成龙脑的新方法——氯乙酸法。此法所得产品质量很好,其中正龙脑含量通常在96%以上,而不含异龙脑。试验证明,在适当的温度(70℃)和催化剂存在下,正龙脑得率很高,蒎烯转化率较高。酯化反应能在稳定条件下操作,不会发生爆炸事故,克服了草酸法的缺点。本文论述了氯乙酸法的工艺过程,并对其反应条件、小型试验放大和模拟扩大试验的结果等,进行了讨论。  相似文献   

5.
通过莰烯和草酸在硼酐催化作用下的重排加成(酯化)反应合成了草酸二异龙脑酯,探讨了原料配比、催化剂用量、反应温度以及反应时间对酯化反应的影响。研究结果表明,莰烯(13.6 g)、草酸和催化剂的质量比为1.7∶2∶1,反应温度为55℃、反应时间为96 h的条件下,莰烯的转化率为89.5%,草酸二异龙脑酯的选择性为95.6%。产物通过IR、LCMS-IT-TOF、1H NMR、13C NMR等手段进行了结构鉴定与表征。  相似文献   

6.
SO2-4/ZrO2-TiO2复合型固体超强酸催化剂对α-蒎烯异构化反应有很高的催化活性和较好的选择性。通过GC-MS分析,异构反应的主产物是莰烯,副产物主要是三环烯和α-松油烯,另有6种产物,含量在1%~6%。实验考察了该催化剂的制备条件如钛与锆物质的量比、硫酸浸渍浓度、焙烧温度对其催化性能的影响。结果表明,催化剂的制备条件不同,对莰烯选择性和α-蒎烯转化率有较大影响。适宜的催化剂制备条件是钛∶锆为4∶1、硫酸浓度0.5mol/L、焙烧温度600℃。用上述条件所制的SO2-4/ZrO2-TiO2复合型固体超强酸作为α-蒎烯异构化反应的催化剂。作者对影响反应过程的主要因素进行了探讨。优化的工艺条件:反应时间1~2h、反应温度130℃±2℃、催化剂用量3%。该条件下α-蒎烯转化率96.58%,莰烯选择性57.39%。此外,还考察了催化剂放置时间对异构产物的影响和催化剂重复使用情况。  相似文献   

7.
用固体超强酸MoO3/ZrO2催化松节油水合反应.考察了催化剂的催化性能与其酸强度的关系.研究了合成α-松油醇的最佳工艺条件。实验结果表明.催化剂的活性及选择性与其酸强度成正比;在反应温度80℃.催化剂用量为松节油质量的8%.反应时间8h.F2为助剂.松节油:溶剂:助剂:水为1:1:1:2(质量比)时.α-蒎烯的转化率为85%.生成α-松油醇的选择性为68.1%。  相似文献   

8.
研究了纳米固体超强酸SO4^2-/ZrO2催化松油醇乙酰化反应。通过正交试验得出反应的最佳工艺条件:反应温度50℃,反应时间5h,催化剂用量3%,乙酐和松油醇摩尔比(酐醇比)为1.3:1。在此条件下进行稳定性实验,产物中总酯的含量为92.79%,主要副产物柠檬烯和异松油烯的含量为5.27%,松油醇的转化率100%;催化剂的活性和选择性都优于普通固体超强酸,而且可重复使用5次。  相似文献   

9.
主要研究了MoO3/ZrO2金属氧化物型固体超强酸作催化剂在α--蒎烯异构反应中的应用.由反应产物的GC-MS分析可知,该催化剂具有较高的催化活性和较好的选择性,异构反应的主产物是莰烯.实验分析表明,只有用(NH4)6Mo7O24·4H2O为原料制备的MoO3/ZrO2才具有超强酸的性质.通过实验分析催化剂焙烧温度、用量、反应时间和反应温度等因素对异构反应的影响,得出这些因素对催化剂的活性有较大影响,但对选择性影响较小.异构化反应最佳条件是催化剂在800℃下焙烧3 h,用量为α--蒎烯量的3%,反应温度120℃±2℃,反应时间8 h.在上述最佳条件下,α-蒎烯转化率为93.5%,莰烯选择性为60.7%.  相似文献   

10.
固体超强酸SO4^2—/ZrO2催化α—蒎烯异构化反应研究   总被引:3,自引:2,他引:1  
考察了SO2-4/ZrO2型催化剂的制备条件如硫酸浓度、焙烧温度和焙烧时间对催化剂催化性能的影响。实验结果表明,在硫酸浓度较低时,焙烧3h催化剂的活性随焙烧温度的提高而下降;在较低硫酸浓度和较低焙烧温度条件下,催化剂的性能受焙烧时间的影响不大,对产物分布有一定的影响。用上述SO2-4/ZrO2固体超强酸催化α 蒎烯异构化反应,反应温度130℃±2℃,催化剂质量用量为原料的4%,α 蒎烯转化率88.8%,生成莰烯的选择性55.4%。测定了几种催化剂的哈默特常数,并用透射电子显微镜(TEM)对催化剂进行了形貌表征。  相似文献   

11.
为了使呋喃甲醛的制备过程绿色化,以ZrOCl2为原料,利用沉淀-浸渍法初步制备了SO24-/ZrO2固体酸,并应用于催化木糖制备呋喃甲醛的反应.采用L9(34)正交试验确定了适宜的反应条件:木糖质量浓度10g/L、催化剂用量20 g/L、反应温度220℃、反应时间3h.之后采用单因素试验考察了催化剂制备条件对呋喃甲醛产率的影响.得到的催化剂最佳制备条件为:H2SO4浸渍浓度1.0 mol/L、焙烧温度550℃、焙烧时间5h,呋喃甲醛产率达最大值47%.实验结果表明:SO24-/ZrO2固体酸在催化木糖制备呋喃甲醛方面,具有较大发展潜力.  相似文献   

12.
固体超强酸SO2-4/ZrO2催化α-蒎烯异构化反应研究   总被引:5,自引:2,他引:3  
考察了SO2-4/ZrO2型催化剂的制备条件如硫酸浓度、焙烧温度和焙烧时间对催化剂催化性能的影响.实验结果表明,在硫酸浓度较低时,焙烧3h催化剂的活性随焙烧温度的提高而下降;在较低硫酸浓度和较低焙烧温度条件下,催化剂的性能受焙烧时间的影响不大,对产物分布有一定的影响.用上述SO2-4/ZrO2固体超强酸催化α-蒎烯异构化反应,反应温度130℃±2℃,催化剂质量用量为原料的4%,α-蒎烯转化率88.8%,生成莰烯的选择性55.4%.测定了几种催化剂的哈默特常数,并用透射电子显微镜(TEM)对催化剂进行了形貌表征.  相似文献   

13.
SO2-4/ZrO2-TiO2复合型固体超强酸催化剂对α-蒎烯异构化反应有很高的催化活性和较好的选择性.通过GC-MS分析,异构反应的主产物是莰烯,副产物主要是三环烯和α-松油烯,另有6种产物,含量在1%~6%.实验考察了该催化剂的制备条件如钛与锆物质的量比、硫酸浸渍浓度、焙烧温度对其催化性能的影响.结果表明,催化剂的制备条件不同,对莰烯选择性和α-蒎烯转化率有较大影响.适宜的催化剂制备条件是钛∶锆为4∶ 1、硫酸浓度0.5 mol/L、焙烧温度600 ℃.用上述条件所制的SO2-4/ZrO2-TiO2复合型固体超强酸作为α-蒎烯异构化反应的催化剂.作者对影响反应过程的主要因素进行了探讨.优化的工艺条件:反应时间1~2 h、反应温度130 ℃±2 ℃、催化剂用量3%.该条件下α-蒎烯转化率96.58%,莰烯选择性57.39%.此外,还考察了催化剂放置时间对异构产物的影响和催化剂重复使用情况.  相似文献   

14.
复合型固体超强酸SO040201.gif (140 bytes)/ZrO2-TiO2催化α-蒎烯异构反应研究   总被引:4,自引:0,他引:4  
《林产化学与工业》2004,24(2):15-19
SO2-4/ZrO2-TiO2复合型固体超强酸催化剂对α-蒎烯异构化反应有很高的催化活性和较好的选择性.通过GC-MS分析,异构反应的主产物是莰烯,副产物主要是三环烯和α-松油烯,另有6种产物,含量在1%~6%.实验考察了该催化剂的制备条件如钛与锆物质的量比、硫酸浸渍浓度、焙烧温度对其催化性能的影响.结果表明,催化剂的制备条件不同,对莰烯选择性和α-蒎烯转化率有较大影响.适宜的催化剂制备条件是钛∶锆为4∶ 1、硫酸浓度0.5 mol/L、焙烧温度600 ℃.用上述条件所制的SO2-4/ZrO2-TiO2复合型固体超强酸作为α-蒎烯异构化反应的催化剂.作者对影响反应过程的主要因素进行了探讨.优化的工艺条件反应时间1~2 h、反应温度130 ℃±2 ℃、催化剂用量3%.该条件下α-蒎烯转化率96.58%,莰烯选择性57.39%.此外,还考察了催化剂放置时间对异构产物的影响和催化剂重复使用情况.  相似文献   

15.
固体超强酸作为酯化反应的催化剂,充分显示了该类催化剂酸强度高、催化活性好、无污染等优点,但这类多相催化反应体系往往存在反应界面小、传质阻力大等弊端,当固体微粒达到纳米级就可以扩大其表面积,提高其催化活性。本采用微波法成功制备出纳米级固体超强酸SO4^2-/ZrO2.同时将其用于催化酯化合成乳酸正酯,并优化了合成乳酸正酯的工条件。  相似文献   

16.
以自制诺卜醇和乙酸为原料,固体超强酸SO4^2-/ZrO2-TiO2为催化剂,甲苯为带水剂,在微波辐射条件下合成乙酸诺卜酯,考察了微波辐射条件和催化剂制备条件、催化剂用量等对乙酸诺卜酯得率的影响。结果表明,微波辐射温度、时间及催化剂的制备条件和用量对乙酸诺卜酯得率有较大影响。优化的工艺条件为:诺卜醇质量20g,醇酸物质的量比1:1.15,微波辐射温度105℃,微渡功率650W,辐射时间85min,催化剂SO4^2-/Zr02-TiO2(Ti与Zr质量之比为6:1,焙烧温度450℃)用量为诺卜醇质量的2.5%,该条件下乙酸诺卜酯得率81.3%。此外,催化剂可重复使用4次。与普通加热反应相比,时间缩短,产物得率提高。  相似文献   

17.
筛选出了用α-蒎烯三步法合成制紫苏葶的一种新型催化剂SO4^2-/TiO2型固体超强酸,得到催化剂制备的最适工艺条件为:硫酸浓度0.5mol/L、催化剂焙烧温度300℃、焙烧时间3h。用上述条件制备的催化剂催化桃金娘烯醛异构化制紫苏醛,得到最适工艺条件为:反应温度400℃、反应压力28kPa、空气流速12h^-1。桃金娘烯醛的最高转化率达87.45%,紫苏醛的收率达41.29%,三步反应总转化率为33.49%。用IR、程序升温脱附(TPD)和BET比表面积对催化剂进行了表征,并将催化剂特性与它们的催化性能相关联。实验结果表明:SO4^2-/TiO2固体超强酸催化剂表面形成螯合配位;该催化剂的活性随其比表面积和总酸量的增加而增大。  相似文献   

18.
催化松节油合成松油醇的研究   总被引:4,自引:1,他引:3  
用固体超强酸MoO3/ZrO2催化松节油水合反应,考察了催化剂的催化性能与其酸强度的关系,研究了合成α-松油醇的最佳工艺条件.实验结果表明,催化剂的活性及选择性与其酸强度成正比;在反应温度80 ℃,催化剂用量为松节油质量的8 %,反应时间8 h,F2为助剂,松节油∶溶剂∶助剂∶水为1∶1∶1∶2(质量比)时,α-蒎烯的转化率为85 %,生成α-松油醇的选择性为68.1 %.  相似文献   

19.
采用溶胶-凝胶法制备了磁性纳米固体超强酸SO4^2-/TiO2-Fe3O4,以松香甘油酯的合成为目标反应,探讨了制备条件对SO4^2-/TiO2-Fe3O4催化剂酯化性能的影响。得出最佳制备条件为:Ti与Fe的摩尔比为30:1,用浓度为1.5mol/L的H2SO4浸泡.在450℃下焙烧3h。并采用IR、TEM等分析手段对该催化剂结构进行了表征.用改进的Hammett指示剂法测定了催化剂的酸强度。  相似文献   

20.
催化α-蒎烯聚合   总被引:4,自引:0,他引:4  
制备了中孔A1系和Zr系分子筛,用H2SO4和H3BO3处理中孔分子筛(MCM-41)分别得到强酸性SO4^2-/A1-MCM-41、SO4^2-/Zr-MCM-41、BO3^3-/A1-MCM-41及BO3^3-/Zr-MCM-41中孔分子筛催化剂。XRD、FT-IR及Hammet,指示剂测试结果表明:这些中孔分子筛具有一定的长程有序性,结晶较好;强酸基团已进入MCM-41骨架内部,并与骨架原子形成了化学健,从而产生强酸中心;H0值小于-12.76,具有超强酸性。以它们为载体,负载A1C13制成复合催化剂,催化α-蒎烯聚合,考察了载体种类、负载量及溶剂极性对α-蒎烯聚合的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号