首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据已知的普通小麦α-醇溶蛋白基因序列设计引物,采用PCR方法克隆基因并进行序列分析。从柱穗山羊草Y127中克隆得到1个α-醇溶蛋白基因序列Gli2-Z-2,它具有α-醇溶蛋白基因的典型结构特征,编码区全长939 bp,编码313个氨基酸。氨基酸序列比较显示,Gli2-Z-2在多聚谷氨酰胺区比已报道的α-醇溶蛋白序列有较多的谷氨酰胺残基。  相似文献   

2.
本文根据已报道的α-醇溶蛋白基因5’上游调控区和编码区的保守序列,设计特异性引物,以5份密穗小麦DNA为模板,用PCR克隆的方法获得了51条α-醇溶蛋白基因5’上游调控区序列。对长度大于380 bp的19条序列进行了分析,发现19条序列均含有与基因表达相关的重要调控元件,包括胚乳基序元件TGTAAAG、GCN4类似元件ATGAGTCAT、CAAT框、AAA G基序、TA-TA框、GCN4类似基序ATGAC(T)GATCAT以及CAC-box,同时在序列中出现了AACA元件。序列比对表明,密穗小麦与普通小麦和乌拉尔图小麦α-醇溶蛋白5’上游调控区存在较为丰富的变异,遗传差异较大。对各序列的5’上游调控区进行聚类分析,结果发现基于调控区序列不能完全区分材料的种属,同时根据已知染色体位置的序列,可以看出上游调控区序列并未表现出染色体特异性。  相似文献   

3.
本研究利用一对α-醇溶蛋白基因的特异引物,从小麦近缘植物尾状山羊草Y46中克隆获得5个α-醇溶蛋白基因,与NCBI已提交的α-醇溶蛋白序列进行多重比对分析发现,本研究获得的α-醇溶蛋白基因与已知的小麦及其近缘植物中的α-醇溶蛋白基因序列具有较高的相似性,其编码的氨基酸序列存在一定的多态性;在潜在的致敏性上,在这5个α-醇溶蛋白序列中未发现任何已知的与乳糜泻病相关的抗原表位,这在小麦及其近缘植物中较为罕见;进化分析表明,来自C染色体组中的α-醇溶蛋白与来自M和U染色体组的α-醇溶蛋白具有较近的亲缘关系。  相似文献   

4.
斯卑尔脱小麦α-醇溶蛋白基因克隆与序列分析   总被引:1,自引:0,他引:1  
【目的】进一步了解斯卑尔脱小麦(Triticum spelta L.)α-醇溶蛋白基因序列信息。【方法】根据已知的普通小麦α-醇溶蛋白基因序列设计引物,采用PCR方法,克隆基因并进行序列分析。【结果】从NGB5149中克隆得到两个α-醇溶蛋白基因序列Gli-Spelt-1和Gli-Spelt-2(GenBank登录号分别为DQ234066和DQ234067)。它们具有α-醇溶蛋白基因的典型结构特征,但Gli-Spelt-1是一个假基因。Spelt-Gli-2编码区全长849 bp,编码263个氨基酸。【结轮】氨基酸序列比较显示,Gli-Spelt-1和Gli-Spelt-2与已报道的α-醇溶蛋白序列有较高的一致性。  相似文献   

5.
为研究优质强筋小麦品种郑麦366α-醇溶蛋白的组成,应用简并引物进行PCR扩增,从郑麦366中扩增得到13条核苷酸序列,其中9条序列推导的氨基酸序列具有完整的开放阅读框。进一步分析显示,克隆的9个基因(分别命名为ZM366-1—ZM366-9)编码的蛋白质均具有α-醇溶蛋白的典型结构特征,根据T-细胞毒性抗原表位数目和多聚谷氨酰胺区特征分别将ZM366-1、ZM366-2定位到6A染色体,ZM366-3、ZM366-4定位到6D染色体,ZM366-5—ZM366-9定位到6B染色体。蛋白质二级结构预测显示,克隆的9个α-醇溶蛋白都仅含有α-螺旋结构,其中B基因组α-醇溶蛋白的α-螺旋含量明显高于其他基因组。同源系统进化树分析表明,克隆的9个α-醇溶蛋白具有明显的基因组特异性。  相似文献   

6.
为研究六倍体小麦中ω-醇溶蛋白基因簇的启动子差异,以普通小麦品种‘Fielder’为试验材料,利用同源克隆的方法,克隆ω-醇溶蛋白基因的编码区和启动子序列,并进行生物信息学相关分析。结果表明:1)共克隆得到11条不同的基因序列(MN441496~MN441506),其中6条(MN441496~MN441497和MN441503~MN441506)编码ARE/Q型ω-醇溶蛋白,5条(MN441498~MN441502)编码SRL型ω-醇溶蛋白。2)ARE/Q型ω-醇溶蛋白基因编码区长度范围在972~1 158bp,SRL型ω-醇溶蛋白基因编码区长度范围在1 303~1 419bp,这种差异主要由中间重复区的Indel类型和数量不同造成。3)ARE/Q型ω-醇溶蛋白基因启动子在-300bp含有1个典型的endosperm box,而SRL型ω-醇溶蛋白基因启动子在-300和-600bp处各含有1个endosperm box。这些ω-醇溶蛋白基因启动子上的差异,可能引起表达水平的差异。  相似文献   

7.
克隆偏凸山羊草中的fastω-醇溶蛋白基因,并对其序列和IgE结合抗原表位进行分析,以期了解IgE结合抗原表位在D~v和M~v基因组中的分布,并为制备单克隆抗体进行IgE结合抗原表位的定量分析奠定基础。结果表明,从偏凸山羊草中克隆获得8个fastω-醇溶蛋白基因(KY368672—KY368679),其中,3个fastω-醇溶蛋白(KY368672—KY368674)由D~v基因组编码,其余5个(KY368675—KY368679)由M~v基因组编码。序列分析发现,获得的fastω-醇溶蛋白与已发表的fastω-醇溶蛋白具有相似的序列结构,KY368672为SRQ型ω-醇溶蛋白,KY368673和KY368674为TRQ型ω-醇溶蛋白,KY368675—KY368679均为SRL型ω-醇溶蛋白。另外,在M~v基因组编码的fastω-醇溶蛋白中,发现了与α-醇溶蛋白相似的多聚谷氨酰胺序列。IgE结合抗原表位分析表明,M~v基因组编码的fastω-醇溶蛋白比D~v基因组编码的fastω-醇溶蛋含有更多的IgE结合抗原表位。  相似文献   

8.
四川小麦地方品种AS1643中α/β醇溶蛋白基因   总被引:2,自引:0,他引:2  
用PCR方法从四川小麦地方品种AS1643中克隆到3个α/β-醇溶蛋白基因,即Gli-AS1643-1(GenBank No.DQ166376)、Gli-AS1643-2(GenBank No.DQ166377)和Gli-AS1643-3(GenBank No.DQ166378)。其中,Gli-AS1643-1和Gli-AS1643-2的编码区长度分别为873bp和852bp,可编码270和263个氨基酸残基的成熟蛋白。Gli-AS1643-3由于在编码区内有一个提前终止密码子,为不可编码成熟蛋白的假基因。序列比较显示Gli-AS1643-1、Gli-AS1643-2和 Gli-AS1643-3分别与GenBank中的α/β-醇溶蛋白基因具有较高的一致性,且序列结构非常相似。它们的N-端氨基酸序列与各种α-、β-、γ-和α/β-醇溶蛋白的基本一致,但与ω-醇溶蛋白和低分子量谷蛋白亚基的明显不同。N-端12肽串联重复紧密相关的5个脯氨酸框和类似于微卫星序列编码的2个多聚谷氨酰胺区域。在Gli-AS1643-2的N-端存在腹泻疾病活性序列,C-端含有12型腺病毒感染序列。Gli-AS1643-1、Gli-AS1643-2和Gli-AS1643-3各由6个保守的半胱氨酸残基形成3个分子内二硫键。  相似文献   

9.
华山新麦草α-醇溶蛋白基因的克隆及原核表达分析   总被引:1,自引:0,他引:1  
 【研究目的】克隆华山新麦草(Psathyrostachys huashanica)的α-醇溶蛋白基因,并对其进行生物信息学分析,构建该基因的原核表达载体,在大肠杆菌中诱导表达融合蛋白。【方法】采用同源克隆法从华山新麦草基因组DNA中分离克隆出α-醇溶蛋白基因并进行序列分析,将克隆的华山新麦草α-醇溶蛋白基因Gli-Ns-5克隆到表达载体pET-28a (+)上,获得重组质粒pET28a-Gli-Ns转化大肠杆菌BL21 (DE3)并诱导表达。【结果】从华山新麦草基因组DNA中克隆了4个α-醇溶蛋白基因:Gli-Ns-2 (FJ713595)、Gli-Ns-3 (GQ139525)、Gli-Ns-4 (GQ139526)和Gli-Ns-5 (GQ139527)。序列分析表明,4条序列具有α-醇溶蛋白基因的典型结构特征,含有8个或9个半胱氨酸残基,序列FJ713595为假基因。利用所构建的大肠杆菌表达载体,经IPTG诱导,华山新麦草α-醇溶蛋白基因Gli-Ns-5(GQ139527)可在原核系统中特异性表达。Western-blot证实融合蛋白可成功表达。【结论】克隆了4个华山新麦草的α-醇溶蛋白基因序列,基因Gli-Ns-5(GQ139527)可在原核表达系统中成功表达,为小麦品质改良提供了新的候选基因。  相似文献   

10.
以黄淮麦区主推小麦品种郑麦369为材料,利用简并引物和PCR扩增技术对其ω-醇溶蛋白基因进行克隆,获得15条ω-醇溶蛋白核苷酸序列(分别命名为ZM369-1~ZM369-15)。NCBI BLAST分析表明,克隆序列与已知序列的相似度均为82%~99%,推断其为ω-醇溶蛋白基因家族基因。通过FGENESH在线软件预测显示,ZM369-1和ZM369-15具有完整的开放阅读框,分别可编码318,407个氨基酸残基;其余13条序列均因内部提前出现1个或多个终止密码子,推测其为假基因。进一步分析显示,15个基因推导的氨基酸序列均具有ω-醇溶蛋白典型分子结构特征,其中ZM369-15属于未曾报道过的ARP类型,同时在重复区存在1个半胱氨酸残基的插入。此外,在NCBI数据库中没有找到与ZM369-1和ZM369-15相似度高的ω-醇溶蛋白氨基酸序列,推测其为新ω-醇溶蛋白基因。CD免疫肽识别分析表明,免疫肽段Gli-ωt在15条氨基酸序列中均有分布,免疫肽段Gli-ω1只分布于假基因推导得到的氨基酸序列中。系统进化树分析表明,本研究克隆得到的15个基因分别来源于A,D基因组;相同基因组来源的ω-醇溶蛋白基因大都可形成相对集中的分支,表明其具有一定的基因组特异性;相同类型ω-醇溶蛋白基因都能形成相对集中的分支,推测其类型与进化有关。  相似文献   

11.
刘畅  杨足君  肖燕  李光蓉  任正隆 《安徽农业科学》2006,34(18):4530-4531,4541
以提莫菲维小麦基因组DNA为模板,采用设计的小麦种子醇溶蛋白的保守引物进行PCR扩增,扩增产物插入pMD-18T载体,并转化到大肠杆菌DH5α中,对阳性克隆进行测序。结果表明,扩增产物长度为1 002 bp,包含一个完整的284个氨基酸的编码区,基因库登录号为DQ861428。序列比对表明,该序列为-αgliadin基因家系成员。利用-αgliadin基因的编码氨基酸序列建立系统树,分析表明该序列与栽培小麦供体物种一粒小麦的-αgliadin基因聚在一大类中,因而被定位在提莫菲维小麦的A染色体组上。  相似文献   

12.
小麦品种“川农16”α-醇溶蛋白基因序列分析   总被引:2,自引:1,他引:1  
 【目的】克隆和分析“川农16”醇溶蛋白基因,为其进一步遗传改良提供更多依据。【方法】根据已报道的α-醇溶蛋白基因序列设计引物,对小麦品种“川农16”总DNA进行PCR扩增得到约900 bp的DNA片段,分离纯化后连接到pMD18-T载体上,转化后筛选阳性克隆进行测序。【结果】获得4个不同的基因序列:Gli2-CN16-9、Gli2-CN16-12、Gli2-CN16-14和Gli2-CN16-6,GenBank登录号分别为DQ246446、DQ246447、DQ246448和DQ246449。其中,Gli2-CN16-9、Gli2-CN16-12和Gli2-CN16-14分别为861、870和900 bp,可分别编码286、289和299个氨基酸残基的成熟蛋白;而Gli2-CN16-6编码区长度为852 bp,由于存在2个提前终止密码子,不能编码有功能的成熟蛋白,为假基因。【结论】序列比较显示它们与α-醇溶蛋白基因有很高的一致性;与γ-和ω-醇溶蛋白基因差异明显。  相似文献   

13.
【目的】利用E.coli体外大量高效表达带有1个额外半胱氨酸残基的α-醇溶蛋白,经Ni+-NTA柱纯化获得目标蛋白,通过氧化-还原反应将其整合到基础面粉中,利用粉质仪研究其对面团流变学特性的影响,以确定该基因表达产物的加工品质效应。【方法】根据α-醇溶蛋白基因编码区保守序列设计引物,从小麦品种陕253中克隆到1条含α-醇溶蛋白基因编码区的目的片段,长度为1243bp(GenBank登录号GQ891685),构建了该基因的原核表达载体pET32a-S253-Agli,在大肠杆菌E.coliBL21(DE3)中经IPTG诱导表达,对表达的蛋白进行亲和层析及低温冷冻干燥回收、纯化,通过微量掺粉试验,在4g粉质仪上测定其对面团流变学特性的影响。【结果】该基因片段包含900bp的完整编码序列及部分5′-调控元件;Uniq domainⅡ区第6位氨基酸密码子C→G的转换,导致丝氨酸Ser→半胱氨酸Cys的变化,这1额外的半胱氨酸将有可能参与形成1个分子间二硫键;用IPTG诱导表达,经SDS-PAGE及Western blotting检测,证实融合蛋白表达成功并主要以包涵体形式存在;粉质结果表明,添加S253-Agli蛋白虽然能够增加面团的带宽及机械耐力系数,却因显著缩短面团稳定时间及形成时间而对面团的粉质参数产生了总体的负面效应。【结论】具有1个额外半胱氨酸残基的α-醇溶蛋白GQ891685增强了面筋弹性,但降低了面筋强度。  相似文献   

14.
利用酸性聚丙烯酰胺凝胶电泳(A-PAGE),按国际通用醇溶蛋白块的命名方法分析了5+10亚基龙麦19小麦品种中来源于5+10亚基供体Marquis的3条醇溶蛋白谱带.结果表明:这3条醇溶蛋白谱带是由Gli-1位点Gli-Alm 基因编码的醇溶蛋白块.  相似文献   

15.
醇溶蛋白是玉米主要的储存蛋白,其中α-醇溶蛋白含量最为丰富,对玉米籽粒品质有重要影响。本研究利用全基因组数据鉴定α-醇溶蛋白基因家族,并从基因保守motif、玉米籽粒不同发育时期基因的表达谱以及转录因子Opaque2对该家族成员表达的影响3个方面分析玉米α-醇溶蛋白基因家族。结果显示,玉米参考基因组中存在39个α-醇溶蛋白基因,其中z1A、z1B、z1C和z1D 4个亚族成员分别为12个、8个、14个和5个。基因保守motif分析发现该家族基因序列高度保守。表达谱分析结果显示该家族表达模式差异较大,其中z1A亚族在籽粒发育时期表达量最高。利用RNA-seq数据剖析在种子发育阶段Opaque 2(O2)野生型和突变体编码该家族成员的表达差异,结果显示O2突变体中z1C亚族成员表达显著下调,z1A亚族表达略有下调,z1B和z1D亚族成员表达量没有显著的变化。本研究在重新注释α-醇溶蛋白家族成员信息的基础上,对该家族的表达谱进行了分析,为今后玉米籽粒品质育种提供了必要遗传信息。  相似文献   

16.
玉米贮存蛋白及高蛋氨酸相关基因研究进展   总被引:1,自引:0,他引:1  
成熟的玉米籽粒中蛋白质含量为8%~10%,其中,约80%为胚乳蛋白,主要由被称为醇溶蛋白(zein)的胚乳贮存蛋白所构成。玉米醇溶蛋白分为α,β,γ和δ等4种类型,其中,α类型包含19kDa和22kDaα-醇溶蛋白2个组分,β类型只有15kDaβ-醇溶蛋白1种,γ类型包含16kDa、27kDa和50kDaγ-醇溶蛋白等3个组分,而δ类型包含10kDa和18kDaδ-醇溶蛋白等2个组分。在玉米醇溶蛋白中,α类型占70%以上,但其蛋氨酸含量非常低,只有1%~2%。约占20%的β类型,其蛋氨酸含量约10%。γ类型和δ类型的醇溶蛋白在胚乳中的含量很少,但这两类醇溶蛋白的蛋氨酸含量很高,最高分别达到21%和37%。不同的醇溶蛋白由分属于不同多基因家族的基因所编码,涉及到65~100个基因,这些基因存在于不同的染色体上;其中10kDaδ-醇溶蛋白的结构基因dzs10已在高蛋氨酸转基因育种中得到应用。  相似文献   

17.
运用生物信息学方法,根据已知的黑麦75Kγ-黑麦碱DNA序列设计引物,对8份不同类型的普通小麦材料进行PCR扩增,均获得一条约400 bp的特异扩增带。对新中长和99L2的扩增带分别进行克隆测序,序列登录号为:DQ432029和DQ432030。分析表明,DQ432029和DQ432030序列完全一致,由377个碱基组成。BLAST分析发现,该序列与普通小麦γ-醇溶蛋白基因的同源性最高,相似性达92%,表明它是一个小麦γ-醇溶蛋白基因。同时,此序列与所有已知γ-醇溶蛋白基因序列存在显著差异,因而可以认为它是普通小麦γ-醇溶蛋白基因家族的一个新序列。所有不同类型的小麦材料都扩出一条同样大小的清晰、明亮带,此扩增带可以作为普通小麦该γ-醇溶蛋白新基因的特异分子标记。  相似文献   

18.
以澳冰草(Australopyrum retrofractum)基因组DNA为模板,用小麦种子醇溶蛋白的保守引物进行PCR扩增,对扩增产物进行克隆测序。结果表明,获得的扩增片段总长度为936 bp,包含一个完整的262个氨基酸的编码区,基因库登录号为EF536330,序列比对表明该序列为α-gliadin基因家系成员。利用α-gliadin基因的编码氨基酸序列建立系统树分析表明,序列EF536330不能与源于普通小麦的A、B和D染色体组的α-gliadin基因序列聚在一起,而单独聚为一类,推测所获得的来自澳冰草W染色体组的序列EF536330为麦类α-liadin基因家系的新类型。  相似文献   

19.
以构建的油茶近成熟种子cDNA文库和EST文库为基础,采用分子克隆技术,分离克隆1个14-3-3蛋白的全长cDNA序列,由1 156个核苷酸组成,5'非编码区57 bp,3'非编码区301 bp,开放阅读框长777 bp,编码259个氨基酸.该基因编码蛋白的分子质量为29.466 ku,等电点4.78,无信号肽序列,是非分泌蛋白,命名为Co-14-3-3a.推测的二级结构有9个α-螺旋,1个反平行的β-折叠,位于αC和αD之间.  相似文献   

20.
[目的]分离克隆马尾松α-蒎烯合成酶基因cDNA全长.[方法]根据其他松科植物α-蒎烯合成酶基因保守区域设计引物,扩增出基因的部分片段,再结合RACE技术分别扩增出基因3’端和5’端序列,通过序列拼接获得cDNA全长,结合生物信息学软件分析该基因编码蛋白的特性.[结果]马尾松α-蒎烯合成酶基因cDNA全长为2 103 bp,编码区1 980 bp,编码629个氨基酸,含有1个N端结构域、1个金属结合结构域和1个天冬氨酸富集基序(DDMYD).[结论]该方法成功克隆了马尾松α-蒎烯合成酶基因cDNA全长序列,具有单萜烯合成酶基因的典型特征,序列提交至GenBank,获得登录号KF547035.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号