首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Reasons for performing study: A new, simpler, technique of colloidal centrifugation has recently been developed, designated single layer centrifugation (SLC). This technique requires evaluation by comparison with a density gradient for its ability to select the best quality spermatozoa and its practicality of use on studfarms. Objective: To compare the effect of 2 methods of colloidal centrifugation, density gradient centrifugation and single layer centrifugation, on stallion sperm motility, yield and survival, using freshly collected extended stallion semen. Methods: Aliquots of extended stallion semen from 10 stallions (38 ejaculates) were processed by the 2 methods of colloidal centrifugation. For both uncentrifuged and centrifuged samples, sperm yield was calculated and subjective sperm motility assessed over several days to provide an estimate of sperm survival. Some stored semen samples, held at 4°C overnight, were also available for testing. Results: For fresh, extended semen, a similar recovery yield of motile spermatozoa was seen for the 2 methods of preparation for single layers and density gradients, respectively. Sperm motility and survival rate were significantly improved by colloidal centrifugation compared to unprocessed ejaculate, without any significant difference between methods (SLC vs. gradient). However, the yield was reduced by 18–20% when cold‐stored semen was used for centrifugation compared to fresh semen; and more variation between ejaculates was observed than for fresh ejaculates. Again, sperm motility and sperm survival were improved in the centrifuged sperm preparations compared to stored, unprocessed ejaculates. Potential relevance: The 2 colloid centrifugation techniques produce equivalent sperm preparations in terms of sperm quality. However, the SLC method would be more practical and convenient for use in the field.  相似文献   

2.
The aim of the present study was to evaluate the quality of raw and cooled semen in Icelandic stallions. Experiments were performed using seven stallions aged between 3 and 19 years. From each stallion, six ejaculates were collected, and semen quality was determined. Thereafter, the semen was split into eight equal parts and processed with and without centrifugation using the extenders INRA 82-egg yolk, INRA 96, GENT, and Equi-Pro to a final concentration of 30 × 106 sperm/mL. The extended semen was then cooled in an Equitainer, where it was stored for 24 hours, and subsequently refrigerated for another 24 hours at 5°C. Immediately after dilution as well as after 24 and 48 hours storage, sperm motility was analyzed using computer-assisted sperm analyzer, and viability was assessed after dual DNA staining with SYBR-14 in combination with propidium iodide. The results show that the stallion had a significant (P < .05) influence on all variables evaluated in raw semen, and mean (±SEM) values of 43.4 ± 4.3 mL for the volume, 193.0 ± 17.0 × 106 sperm/mL for the concentration, 6.7 ± 0.5 × 109 for total sperm and 73.5 ± 2.1% for total sperm motility, 48.7 ± 2.0% for progressive motility, and 65.3 ± 2.0% for rapid cells were measured. In the cold-stored semen, all variables were significantly (P < .05) influenced by the stallion, extender, and storage time (48 hours). Except for Equi-Pro, all extenders examined were suitable for cooled semen preservation. For storage of more than 24 hours, centrifugation and removal of the seminal plasma were advantageous for all extenders with the exception of Equi-Pro.  相似文献   

3.
Urospermia is a major ejaculatory dysfunction affecting stallions. It has been thought that urine-contaminated semen should not be cryopreserved; however, on select cases, urine contamination of semen cannot be avoided. A recent study suggested that urospermic semen can be cryopreserved after cushion centrifugation and extension. Thus, this study aimed to assess the use of single-layer colloid centrifugation (SLC) to process frozen-thawed urine-contaminated stallion semen. Raw ejaculates (n = 55) from eight stallions were split into three groups: no urine, low (20%), or high (50%) urine contamination. Semen was extended 1:1, cushion-centrifuged, and resuspended at 200 million sperm/mL in BotuCrio. Resuspended semen was loaded in 0.5 mL straws and cryopreserved in liquid nitrogen. Samples were thawed (37°C for 30 seconds) and processed by SLC (400 g/30 minutes). Percentages of total motility (TM) and progressive motility (PM) were assessed with computer-assisted semen analyzer. Sperm viability (%VIAB) and yield were assessed with a NucleoCounter before and after gradient centrifugation. Data were analyzed with two-way ANOVA and Tukey’s test. The motility parameters TM before SLC (control: 35 ± 2; low: 33 ± 0.7; high: 22 ± 1.8) after SLC (control: 51 ± 3.6; low: 42 ± 2.2; high: 25 ± 2.8) and PM before SLC (control: 24 ± 1.8; low: 21 ± 1.14; high: 12 ± 1.5) and after SLC (control: 40.3 ± 3.2; low: 31 ± 3.9; high: 14 ± 2) significantly decreased with increasing urine contamination. Urine contamination marginally reduced (P < .05) sperm viability after cryopreservation before SLC (control: 45 ± 0.7; low: 27 ± 0.2; high: 27 ± 0.3) and after SLC (control: 54 ± 0.5; low: 49 ± 0.7; high: 38 ± 0.6). Recovery rates of sperm after centrifugation were not significantly different between groups. In conclusion, urine contamination affects sperm motility parameters in a dose-dependent manner. Post-thaw SLC selected sperm with higher motility and viability in control and low groups but only selected sperm with higher viability in the high group.  相似文献   

4.
The objective was to investigate whether it is possible to improve the quality of stallion semen, with respect to sperm morphology and chromatin integrity, both of which have been linked to fertility, using either density gradient centrifugation (DGC) or a new method, hereby named single layer centrifugation (SLC). The two methods of colloidal centrifugation were evaluated using 38 ejaculates from 10 stallions. Sperm morphology, subjective motility and sperm chromatin integrity were compared in uncentrifuged samples and in centrifuged sperm preparations. The proportion of morphologically normal spermatozoa varied between stallions (p < 0.001) and was increased by both methods of colloidal centrifugation (median value before centrifugation 67.5%; after SLC 78%; after DGC 77%; p < 0.001). The incidence of certain abnormalities was reduced, e.g. proximal cytoplasmic droplets were reduced from 12.9% to 8.8% (p < 0.001), and mid-piece defects from 5.3% to 1.4% (p < 0.05). Similarly, sperm motility and chromatin integrity were significantly improved (p < 0.001), with no difference between the two centrifugation methods. Centrifugation through colloids can enrich the proportions of stallion spermatozoa with normal morphology and normal chromatin structure in sperm preparations. The new method, SLC, was as effective as DGC in selecting motile stallion spermatozoa with normal morphology and intact chromatin. SLC, being simpler to use than DGC, would be appropriate for routine use by stud personnel to improve stallion sperm quality in insemination doses.  相似文献   

5.
Slow-cooled stallion spermatozoa, with and without seminal plasma removed by centrifugation, were diluted in Kenney's extender (KE) containing nonfat dry skim milk with glucose and antibiotics or in KE supplemented by adding a modified high-potassium Tyrode's medium (KMT). Four ejaculates from each of four stallions were collected and divided factorially across these four treatments. Percentage of motile sperm, path velocity, and linearity immediately after treatment (0 h) and after storage at 4 degrees C for 24, 48, and 72 h were evaluated objectively by use of a HTM-2030 sperm motility analyzer. Stallions were a significant source of variation (P less than .01) throughout. After sperm had cooled, effects of stallion, extender, centrifugation, and their interactions were all found to be significant (P less than .01). The motility at 0, 24, 48, and 72 h for centrifuged KE was 74, 47, 39, and 24%; for uncentrifuged KE was 76, 56, 50, and 37%; for centrifuged KMT was 76, 75, 72, and 64%; and for uncentrifuged KMT was 80, 50, 26, and 13%, respectively. The extender x centrifugation interaction, after 24, 48, and 72 h of storage, accounted for half or more of the variation. Whereas centrifugation of semen extended in KE seemed to be harmful to sperm, motility of sperm extended in KMT after centrifugation was remarkably conserved for 72 h and was superior to all other treatments (P less than .05). This extender is promising for preserving liquid stallion semen when it must be transported before use in artificial insemination.  相似文献   

6.
The importance of seminal plasma (SP) components for stallion semen quality and freezability is little known. This study aimed to evaluate the relationship between SP components and fresh/cryopreserved stallion semen quality. Semen of 30 stallions was collected, and then, SP was recovered and lyophilized. Total protein (TP), vitamin C (CVIT), vitamin E (EVIT), vitamin A (AVIT), iron (Fe), copper (Cu), magnesium, and zinc (Zn) in SP were assessed. Sperm was frozen in an extender supplemented with lyophilized SP. In fresh semen motility, abnormal morphology (AM), sperm vitality (SV), and plasma membrane integrity (PMI) were evaluated. In post-thaw semen, additionally, total motility (TM), progressive motility (PM), straight line velocity (VSL), curvilinear velocity (VCL), average path velocity (VAP), amplitude of lateral head displacement (ALH), and beat cross-frequency (BCF) were assessed. Levels of component of SP were established by a distribution analysis. Generalized linear models were fitted. Comparisons of means were done with Tukey's test. Correlation and regression analyses were performed. Vitamins and ions were found to be related to fresh semen quality. For post-thaw sperm, medium TP showed higher semen quality. Negative regression and correlation coefficients between CVIT and all post-thaw semen parameters were found. Low EVIT yielded the lowest PM, VSL, and VAP values, while a high level of AVIT yielded the best results for sperm quality. A high level of Cu yielded higher results for TM, PM, VCL, and ALH. Moreover, a negative correlation was found between Zn, SV, and PMI. In conclusion, SP composition influences fresh and post-thaw stallion semen quality.  相似文献   

7.
The dilution effect and effect of restoring seminal plasma (SP) proportion in diluted semen were determined in chilled Asian elephant sperm. Semen was collected from eight males, and samples with ≥30% motile sperm were used in the study. Tris‐glucose‐egg yolk extender (TE) was used for cooled storage at 4°C for 48 hr. In experiment 1 (n = 18), semen was diluted to 1:1, 1:3, 1:7 and 1:15 with TE (volume per volume). There were no significant changes in sperm viability and sperm with normal acrosome integrity among dilutions, but sperm motility and motility velocities were greater (p < .05) in the 1:1 dilution than those of the 1:7 and 1:15 dilutions at 48 hr of storage. In experiment 2, supplemented SP was derived from elephants and stallions. In experiment 2.1, diluted semen (1:7 dilution) was restored with SP to obtain a 1:2 proportion (n = 8). Sperm motility, viability and sperm with normal acrosome integrity were similar among treatments, but motility velocities were greater (p < .05) with stallion SP at 48 hr of storage. In experiment 2.2, diluted semen (1:15 dilution) was restored with SP to obtain a 1:3 proportion (n = 10). Sperm viability and sperm with normal acrosome integrity were similar among treatments at 48 hr of storage. However, sperm motility and motility velocities were greater (p < .05) with stallion SP than those of others. In conclusion, elephant sperm motility was affected by a dilution effect and restoration of SP proportion with stallion SP, but not with elephant SP, could improve motility in chilled highly diluted sperm.  相似文献   

8.
Reasons for performing study: An improvement in sperm quality after single layer centrifugation (SLC) has been seen in previous studies using small sample sizes (for example, n = 10 stallions). There is a need to investigate whether this improvement is repeatable over several breeding seasons with a larger number of stallions (n ≥ 30 stallions). Objective: To make a retrospective analysis of the results of SLC performed on more than 250 sperm samples (176 ejaculates) from 31 stallions in 3 consecutive breeding seasons. Methods: Sperm quality (motility, proportion of morphologically normal spermatozoa and the proportion of spermatozoa with undamaged chromatin) was assessed before and after SLC. Results: All parameters of sperm quality examined were significantly better in sperm samples after SLC than in their unselected counterparts (P<0.001 for each parameter). The yield of spermatozoa obtained after SLC was influenced by the type of extender used and also by the concentration of spermatozoa in the original ejaculate, with fewer spermatozoa being recovered when the loading dose contained a high concentration of spermatozoa. The optimal concentration was approximately 100 × 106/ml. Sperm concentration in the samples loaded on to the colloid influenced the sperm yield while the type of semen extender affected sperm quality and survival. Furthermore, the scaled‐up SLC method was found to be suitable for use with a range of ejaculates, with similar sperm kinematics being observed for standard and scaled‐up preparations. Conclusions: SLC consistently improved the quality of stallion sperm samples from a large number of ejaculates. The method could be scaled‐up, allowing larger volumes of ejaculate to be processed easily from a wide range of stallions.  相似文献   

9.
The aim of the present study was to investigate the influence of various centrifugation methods on sperm loss and quality of frozen-thawed semen. From at a total of 8 Warmblood stallions of the National Stud Farm in Avenches, 3 ejaculates each were collected and seminal plasma was removed using 3 different centrifugation regimes. In method I (reference method) centrifugation occurred by a speed of 600 x g during 10 minutes. In method II 1000 x g was used during 2 minutes while in method III centrifugation was performed by 2000 x g during 2 minutes. After centrifugation 90%, of the supernatant was removed and sperm loss calculated. After resuspension of the pellet with freezing medium, functional membrane integrity was evaluated by HOS-test and motility determined. In frozen-thawed semen motility, viability as well as functional membrane integrity (HOS-test) and acrosome status using chlortetracyclinassay (CTA) were assessed. Our results demonstrate that mean sperm loss (I, 1.9%; II, 8.7%; III, 3.7%) was significantly (P < 0.05) different between the three centrifugation regimes. Regarding semen quality of frozen-thawed semen, HOS in method III (52.1%) was significantly lower than in methods I (55.5%) and II (55.3%). Evaluation of the acrosome status by CTA showed that more than 70% of sperm cells were capacitated and 25% capacitated and acrosome reacted. From our results we conclude that sperm loss and functional membrane integrity (HOS-test) in frozen-thawed semen were significantly influenced by the centrifugation regime. Therefore, stallion semen should be centrifuged at 600 x g during 10 minutes before freezing in order to obtain low sperm loss and a good quality of frozen-thawed semen.  相似文献   

10.
Although single layer centrifugation (SLC) selects robust spermatozoa from stallion semen, the effect of individual variation has not been studied in detail. The objective of this study was to determine the variation among stallions in the effects of SLC on sperm quality during cooled storage for up to 48 hr. Semen samples from seven stallions (18 ejaculates) were split, with one portion being used for SLC and the other serving as a control (CON). Sperm quality (kinematics, reactive oxygen species (ROS) production, membrane integrity (MI) and chromatin integrity) were analysed at 0, 24 and 48 hr using computer-assisted sperm analysis and flow cytometry. Sperm quality was better in SLC than in CON at all timepoints, especially chromatin integrity and MI (p < .0001 for both), and some categories of ROS production (e.g. proportion of live hydrogen peroxide negative spermatozoa, p < .0001), but the degree of improvement varied among stallions and type of ROS (p < .05–p < .0001). Total and progressive motility were also better in SLC samples than in CON at 24 and 48 hr (p < .0001), although the effect on sperm kinematics varied. The interaction of treatment, time and stallion was not significant. In conclusion, sperm quality was better in SLC samples than in CON, although there was considerable individual variation among stallions. The improvement in sperm quality, particularly in chromatin integrity, was clearly beneficial, and therefore the use of this technique would be warranted for all stallion semen samples.  相似文献   

11.
This study aimed to evaluate stallion sperm survival after 24 h of cooled storage in the presence of seminal plasma (SP) derived from the sperm-rich fractions (SRF) or sperm-poor fractions(SPF) of the ejaculate, without SP, or in the presence of SP from other stallions. Ejaculates were collected from four stallions using an automated phantom, which separated the semen into five cups. Centrifuged and washed spermatozoa from cup 2 (SRF) were mixed with skim milk extender to a concentration of 100 x 10(6) sperm/ml and then 1:1 (v/v) with SP from the stallion's own or another stallions' second (SP-SRF) or last cup (SP-SPF). Skim milk extender (K) and skim milk extender supplemented with modified Tyrode's medium (KMT) were used as control treatments. After a 24-h storage period in a transport container, spermatozoa were evaluated for motion characteristics and plasma membrane integrity by calcein acetoxymethyl (AM)/propidium iodide staining. The percentage of spermatozoa with intact plasma membranes after storage was lower in SP-SRF than in SP-SPF, and the highest in K (P < 0.05). Progressive motility (PMOT) was lower for sperm stored in SP-SRF than for sperm stored in SP-SPF (P < 0.05), but there was no significant difference in total motility (TMOT). Sperm stored in KMT (P < 0.05) registered the highest TMOT and PMOT percentages. Osmolarity was significantly higher and pH lower in K than in KMT or SP. Treatment with SP-SPF from three stallions benefited the PMOT of sperm from one stallion. These preliminary findings suggest that SP from SRFs may be more harmful during storage than SP from SPFs. Removal of SP improves sperm survival in KMT extender, and exchanging SP between stallions seems to influence sperm survival.  相似文献   

12.
In this work, we studied retrospectively the influence of several factors on semen quality of the Spanish Purebred (SPB) stallion. Among these factors, we considered stallion age, season, and interval between two consecutive collections. The semen was collected from 11 SPB stallions (634 ejaculates). Semen quality was evaluated based on volume, concentration, and motility of the ejaculates. Results showed that the semen collected in autumn and winter was more concentrated in comparison with that collected in spring and summer, when the volume of ejaculate was the highest. Those ejaculates collected from younger stallions were characterized by having the smallest volume and the highest sperm concentration. When incorporating an SPB stallion into a program of artificial insemination, it is important to take into account all of these factors to achieve the maximum reproductive potential of the animal.  相似文献   

13.
Seminal plasma (SP) contains several types of compounds derived from the epididymides and accessory glands. The aim of this study was to examine the protein composition of different ejaculate fractions. Trial I: fractionated ejaculates were collected from two normal and two subfertile stallions. Samples containing pre‐sperm fluid and the first sperm‐rich jets (HIGH‐1), the main sperm‐rich portion (HIGH‐2), the jets with low sperm concentrations (LOW), and a combined whole‐ejaculate (WE) sample was centrifuged, and the SP was filtered and frozen. A part of each SP sample was stored (5°C, 24 h) with spermatozoa from HIGH‐2 and skim milk extender. Sperm motility was evaluated after storage in extender mixed with the stallion’s own SP or SP from one of the other stallions (sperm from a normal stallion stored in SP from a subfertile stallion and vice versa). Protein composition was analysed using reverse‐phase liquid chromatography (RP‐HPLC), N‐terminal sequencing and mass spectrometry. The area‐under‐the‐curve (AUC) was used for quantitative comparison of proteins within fractions. Trial II: semen samples were collected from seven stallions. Fractions with the highest (HIGH) and lowest (LOW) sperm concentrations and WE samples were examined using SDS‐PAGE and densitometry. No significant differences emerged between fractions in the AUC‐values of the Horse Seminal Protein‐1 (HSP‐1) and HSP‐2 peaks, or the peak containing HSP‐3 and HSP‐4 (HSP‐3/4). Levels of HSP‐1, HSP‐2 and HSP‐3/4 were not significantly correlated with total sperm motility, progressive sperm motility or average path velocity after storage. Significant differences between ejaculate fractions in the amount of different protein groups present in SP were not found in Trial I; but in Trial II, the proteins in the 60–70 kDa range were more abundant in LOW than in HIGH and WE, indicating that this band contained proteins derived mainly from the seminal vesicles, which produce most of the SP in LOW.  相似文献   

14.
The objective of this research was to improve the techniques in processing chilled and frozen‐thawed horse semen. In a preliminary experiment (Exp. I), different techniques for sperm selection and preparation [Swim‐up, Glass wool (GW) filtration, Glass wool Sephadex (GWS) filtration; Percoll] were tested for their suitability for equine spermatozoa and results were compared with the routine procedure by dilution (Exp. I). In the main experiment (Exp. II), two sperm preparation techniques (GWS, Leucosorb®) refering to the results of Exp. I and a previous study of our group (Pferdcheilkunde 1996 12, 773) were selected for processing complete ejaculates either for cooled‐storage or cryopreservation. In a third experiment (Exp. III), pregnancy rates from inseminations with semen processed according to the techniques tested in Exp. II were compared with those obtained with semen processed according to routine procedures. In Exp. I (six stallions, six ejaculates/stallion), between 48 and 92% of spermatozoa were lost following the different sperm selection procedures (p < 0.05). Preparation of sperm increased percentage of progressively motile spermatozoa (pms) [Swim‐up, GW, GWS vs dilution, Percoll (p < 0.05)] and decreased percentage of sperm head abnormalities [Swim‐up, GW, GWS vs dilution, Percoll (p < 0.05)] probably by not improving the quality of individual cells, but by elimination of spermatozoa of inferior quality. In Exp. II (eight stallions, three ejaculates/stallion) Leucosorb® and GWS procedures allowed the filtration of large volumes (extended ejaculates) for routine laboratory practice. GWS and Leucosorb® filtration resulted in increased motility, membrane integrity and sperm viability after storage of spermatozoa until 48 h at +5°C when compared with control (diluted) and centrifuged semen (p < 0.05). Significantly more spermatozoa were recovered after centrifugation (87.8 ± 15.4%) compared with GWS (63.5 ± 18.6%) and Leucosorb® filtration (53.6 ± 22.3%). GWS or Leucosorb® procedure resulted in successful cryopreservation of stallion semen without centrifugation for removal of seminal plasma. The per cycle conception rate of inseminated mares using 200 × 106 pms transferred within 8 h after collection of semen was not affected by GWS filtration or Leucosorb® separation when compared with centrifugation (n.s.; Exp. III). In conclusion, GWS and Leucosorb® filtration results in the improvement of semen quality and should be considered as a method for stallion semen processing. Additional studies are needed for the evaluation of potentially higher fertilizing ability of stallion spermatozoa separated by techniques for sperm selection.  相似文献   

15.
The objective of this study was to compare semen parameters and embryo recovery rates of cooled stallion semen extended with INRA 96 or BotuSemen Gold. In experiment 1, 45 ejaculates from nine mature stallions were collected, assessed, and equally split between both extenders and then extended to 50 million sperm/mL. Then, the extended semen was stored in three passive cooling containers (Equitainer, Equine Express II, and BotuFlex) for 48 hours. In experiment 2, the same ejaculates extended in experiment 1 were cushion-centrifuged, the supernatant was discarded, and the pellets were resuspended at 100 million sperm/mL with their respective extender. Semen was then cooled and stored as in experiment 1. In both experiments, sperm motility parameters, plasma membrane integrity, and high mitochondrial membrane potential were assessed at 0, 24, and 48 hours post cooling. For experiment 3, 12 mares (n = 24 cycles) were bred with 48 hour–cooled semen from one stallion. Semen was processed as described in experiment 1. Mares had embryo flushing performed by 8-day post-ovulation. In experiment 1, BotuSemen Gold displayed superior total and progressive motility relative to INRA 96 (P < .05). There were no significant differences between the types of containers in any experiment. In experiment 2, INRA 96 and BotuSemen Gold extenders had similar total and progressive motility, but BotuSemen Gold had superior sperm velocity parameters at all timepoints. Embryo recovery was identical for both extenders (50%). Finally, the results obtained herein suggest that BotuSemen Gold is a suitable alternative to be included in semen cooling tests against INRA 96 in clinical practice.  相似文献   

16.
Conception rates for mares bred with transported-cooled and fresh stallion semen were collected over a 4-yr period (1998–2002) for two stallions. Both stallions stood at a commercial breeding farm. Semen from both stallions was used immediately after collection on the farm and after 24 to 48 h of cold storage when transported to locations in the U.S. and Canada. Semen for insemination of mares located on the farm was extended with a commercially available skim milk glucose extender (SKMG). Spermatozoal motility following cold storage for spermatozoa diluted in SKMG extender was unacceptable. Thus, semen from both stallions was centrifuged, and spermatozoa were resuspended in SKMG supplemented with modified PBS. In a previous study, the percentage of motile spermatozoa increased following centrifugation and reconstitution of the sperm pellet in SKMG-PBS as compared with semen dilution in SKMG (Stallion A: 15% vs 47%; Stallion B: 18% vs 43%). In the current study, 22 of 25 (88%) and 3 of 4 (75%) mares conceived with transported-cooled semen from Stallions A and B, respectively. Conception rates for mares inseminated with transported semen did not differ (P>0.05) from those inseminated on the farm with fresh semen. These data illustrate that stallion owners can modify standard cooled semen processing procedures and semen extender composition to improve post-storage spermatozoa motility and to obtain acceptable fertility.  相似文献   

17.
The current study evaluated post-thaw semen parameters of stallion semen cryopreserved in cryovials and subjected to multiple partial thaw-refreeze cycles. Five fertile stallions were collected twice, and ejaculates were analyzed for concentration, percent membrane integrity, motility, morphology, and sperm chromatin structure (SCSA). Semen processed with freezing extender from each ejaculate was cryopreserved in both 1.2-mL cryovials and 0.5-mL straws. Cryovials were subjected to eight subsequent partial thaw-refreeze cycles. Cryovials were warmed for approximately 30 seconds; then, a sample of cryopreserved semen was removed with a 16-gauge needle, and the cryovial was immediately refrozen in liquid nitrogen. A piece of 0.5-mL straw cut under liquid nitrogen from the same stallion and ejaculate was thawed alongside each cryovial to serve as a control. Thawed samples were analyzed for percent membrane integrity, motility, and SCSA. Post-thaw parameters of motility and membrane integrity were analyzed by one-way or two-way analysis of variance with repeated measures when appropriate. The SCSA data were analyzed using a mixed regression model. Post-thaw motility and percentage of intact sperm were significantly lower when sperm was cryopreserved in cryovials compared to straws. However, these parameters may remain adequate for use in assisted reproductive techniques (ARTs) such as intracytoplasmic sperm injection through all cryovial thaws. Additionally, DNA denaturability was not affected by semen packaging method and was only affected by thaw number, increasing at post-thaws 5 and 6. This technique may offer a unique approach for cryopreservation and utilization of stallion sperm for ARTs in the future.  相似文献   

18.
The present study compared the quality of sperm collected by artificial vagina or pharmacologically induced ejaculation from a 10-year-old thoroughbred stallion with seminal vesiculitis. The pharmacological protocol involved intravenous administration of detomidine (0.01 mg/kg) and oxytocin (20 IU) and successfully induced ejaculation in all attempts of semen collection. Sperm motility, plasma membrane and acrosome integrity (PMAI), reactive oxygen species (ROS) levels, polymorphonuclear neutrophil (PMN) percentage, and bacterial profiles of fresh and cooled semen (5°C for 24 hr) were evaluated. Semen obtained by the pharmacological method presented reduced seminal volume, decreased PMN percentage and superior sperm motility in cooled samples. Moreover, higher PMAI and lower ROS levels were observed in semen collected by the pharmacological method. Therefore, pharmacologically induced ejaculation is an alternative to obtain semen with minimal contamination and with sperm of superior quality and longevity from stallions with seminal vesiculitis.  相似文献   

19.
Breeding mares with cryopreserved semen requires specialized equipment for storage and thawing and more intensive mare management. The objectives of this study were (1) evaluate the longevity of frozen stallion semen once it had been thawed, extended, and maintained at 5°C for 48 hours in a passive cooling container, and (2) determine fertility potential of frozen semen that had been thawed, extended, and used to inseminate mares after 24 hours of cooled storage. Eight ejaculates were collected and aliquots were cooled in either INRA96 and CryoMax LE minus cryoprotectant at a concentration of 50 million total sperm/mL. The remainder of the ejaculate was frozen in CryoMax LE extender at a concentration of 200 million total sperm/mL. Semen was thawed using 1 of 3 thawing protocols, and diluted to a concentration of 50 million total sperm/mL in either INRA96 or CryoMax LE minus cryoprotectant and cooled to 5°C. Sperm motility was evaluated at 24 and 48 hours. Eight mares were inseminated over two estrous cycles using frozen semen that had been thawed, extended in INRA96, and cooled for 24 hours. There was no difference in progressive motility at 24 or 48 hours of cooled-storage post-thaw between the 3 thawing protocols. An overall per cycle pregnancy rate of 56% (9/16 cycles) was achieved using frozen-thawed semen that had been extended and cooled for 24 hours. In summary, frozen stallion sperm was thawed, extended, and cooled to 5°C for 24 hours and still maintained adequate (>30%) sperm motility and fertility.  相似文献   

20.
The development of a reliable technique to freeze epididymal semen would provide a unique opportunity to preserve valuable genetic material from unexpectedly lost stallions. The aim of this study was to compare the apoptotic indices of sperm obtained from ejaculate, sperm recently recovered from the epididymides (EP), and sperm recovered from epididymides stored at 5°C for 24 hours (EP-stored). For the first category, two ejaculates from seven stallions were collected and then submitted to cryopreservation using an egg yolk-based extender. One week after the last semen collection, the stallions were submitted to bilateral orchiectomy, and sperm from one of the cauda epididymis was harvested immediately after castration (EP). The remaining testicle was stored in a passive refrigeration container at 5°C for 24 hours before the cauda epididymal sperm was harvested (EP-stored). Sperm harvesting from the epididymis for EP and EP-stored was performed by retrograde flushing of the caudal portion of the epididymis using a skim milk-based extender. The recovered sperm was then cryopreserved using the egg yolk-based extender. Sperm motility parameters were studied by computer-assisted semen analysis, and apoptosis was estimated by measuring caspase activity and membrane phospholipid translocation using epifluorescence microscopy. The samples were evaluated immediately (0 hour) and 8 hours after thawing. At 0 hour, no differences in sperm parameters were observed among the groups, but after 8 hours, significant statistical differences were observed in sperm motility parameters and plasma membrane integrity among the treatment groups. In addition, viable cells with no apoptotic signs were more prevalent in EP and EP-stored, suggesting that epididymal sperm is less sensitive to the cold shock caused by sperm cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号