首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Re‐ensiling of previously ensiled forage has been a common practice in Brazil, and the use of inoculants may provide a means of reducing dry‐matter (DM) loss. This study aimed to determine the effect of re‐ensiling and the use of microbial inoculants on the quality of sorghum silage. Treatments were presence/absence of an inoculant (Lactobacillus plantarum and Propionibacterium acidipropionici) in the silage, and the re‐ensiling, or not, of the material after 24 h of exposure to air, and these were tested in a factorial 2 × 2 design. Losses due to gas, effluent and total DM were assessed, as were the fermentation characteristics, chemical composition, aerobic stability, and aerobic counts of microorganisms. Effluent loss was higher in re‐ensiled silage, and these silages had lower lactic acid content and higher levels of acetic and propionic acids. The in vitro DM digestibility was lower in the re‐ensiled sorghum silages. The re‐ensiled silage had higher aerobic stability. The inoculant only increased the acetic acid content of the silage. The re‐ensiling of sorghum silage increased effluent loss by 71·2%, and reduced DM digestibility by 5·35%. The use of inoculant did not influence the quality of sorghum silage.  相似文献   

2.
This study was conducted to evaluate the effects of Lactobacillus plantarum, molasses and/or ethanol on fermentation quality and aerobic stability of total mixed ration (TMR) silage, which is widely used in dairy cow diets at mid‐to‐late lactation in Tibet. TMR was treated with ethanol (E), molasses (M), Lactobacillus plantarum(L), ethanol+molasses (EM), ethanol+Lactobacillus plantarum (EL) plus control. After 45 d of ensiling, inoculant significantly (< 0·05) increased lactic acid (LA) concentration and decreased pH, ammonia nitrogen (AN) concentration, and aerobic bacterial and yeast counts, compared to control. After the first 3 d of aerobic exposure, LA for silages without ethanol started to decrease, while LA for E silages almost remained unchanged till the end of the aerobic exposure period. The pH in TMR silages without ethanol gradually increased, while that for E and EL remained about 4·60 and 4·00, respectively, and EL showed the lowest pH among six silages over the course of aerobic exposure. Aerobic bacterial counts in control, M and EM silages were significantly higher (< 0·05) than those in E, L and EL, and yeast counts in E and EL silages were significantly lower (< 0·05) than those in other silages after 9 d of aerobic exposure. The results suggest that inoculation with L. plantarum was more effective in altering fermentation characteristics than adding molasses, while ethanol showed a potential to protect TMR silages from pH increase and delayed the growth of aerobic bacteria and yeast either alone or in combination with L. plantarum.  相似文献   

3.
Effects of wilting, ensiling and type of additive on α‐tocopherol and β‐carotene contents in legume–grass mixtures were examined. Swards of birdsfoot trefoil + timothy (Bft + Ti), red clover + timothy (Rc + Ti) and red clover + meadow fescue (Rc + Mf) were harvested as a first regrowth in August 2005. Forage was wilted to a dry‐matter (DM) content of 273 g kg?1 and ensiled without additive or with an inoculant or acid. Wilting decreased α‐tocopherol concentration by 30% in the Bft + Ti mixture (P = 0·015). Untreated Bft + Ti silage had higher α‐tocopherol content than red clover silages (56·9 vs. 34·2 mg kg?1 DM; P = 0·015). The α‐tocopherol concentration of Bft + Ti forages increased during ensiling from 41·1 mg kg?1 DM in wilted herbage to 56·9, 65·2 and 56·8 mg kg?1 DM in untreated, inoculated and acid‐treated silage respectively (P = 0·015). The inoculant increased α‐tocopherol content in the red clover silages (50·1 vs. 34·2 mg kg?1 DM; P = 0·015) compared with untreated red clover silages. Red clover mixtures had lower β‐carotene content than Bft + Ti (32·3 vs. 46·2 mg kg?1 DM; P = 0·016), averaged over treatments. In conclusion, wilting had small effects but the use of bacterial inoculant as an additive and a Bft + Ti mixture increased α‐tocopherol concentration in the silage.  相似文献   

4.
This study evaluated the effect of two fibrolytic enzyme products, applied at baling, on the chemical composition and digestibility of alfalfa hay. Three replicate bales of alfalfa hay (82% dry matter) were produced with the application of one of five treatments including an untreated control and one of two fibrolytic enzyme products (DYC and ECO), either applied alone or in combination with a ferulic acid esterase‐producing bacterial additive. The enzyme products were applied on the basis of endoglucanase activity. The neutral detergent fibre (NDF) concentration and accumulated temperature after storage of hay produced using DYC‐ or ECO‐based treatments were greater (< 0·05) than untreated hay, except for hay bales produced using ECO alone. Bales produced using ECO‐based treatments had a greater (< 0·05) in vitro NDF digestibility compared with untreated bales. The application of fibrolytic enzymes at baling may potentially improve NDF digestibility without negatively affecting chemical composition or increasing aerobic deterioration. However, the effects of fibrolytic enzymes varied depending on the product applied. Combining ferulic acid esterase‐producing bacterial additives with fibrolytic enzymes did not improve the nutritive value of hay after storage.  相似文献   

5.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

6.
The effects of ensiling lucerne with graded inclusion of Cistus ladanifer condensed tannins (CT) on in silo fermentative parameters, in vitro organic matter digestibility (IVOMD) and on in situ rumen degradability of dry matter (DM) and crude protein (CP) were studied. Lucerne forage ( Medicago sativa subsp. sativa ) was sprayed with different solutions of C. ladanifer CT extract in 60 ml of water in order for dose 0 (control), 40 (L40), 80 (L80) and 120 (L120) g of CT per kg of lucerne DM and was ensiled in lab‐scale silos. After 35 days, the silages were analysed for chemical composition, and the in situ ruminal degradability was determined in rams. The inclusion of CT in the silages caused an important dose‐dependent reduction in soluble‐N, NH3‐N and a large increase in true protein content and N bound with neutral detergent fibre (NDF‐N), which indicates an effective proteolysis reduction during ensiling. Also, the rumen undegradable protein (RUP) increased linearly (< 0.01) with CT inclusion. However, a linear decrease (< 0.02) of 5%, 13% and 22% of IVOMD was observed for the silages L40, L80 and L120 respectively. The results obtained suggest that C. ladanifer CT can be used as silage additives to reduce proteolysis of high‐protein forages during ensiling. A level of CT of 40 g/kg DM seems to be the best compromise between the gains achieved by the protection of CP degradation in silo and in the rumen and the losses associated with the depression of the digestion and absorption.  相似文献   

7.
The chemical composition of silage consumed by cattle can influence the subsequent rumen microbial fermentation patterns and methane (CH4) emissions. The objectives of this study were to (i) evaluate the effect of ensilage on the in vitro rumen methane output of perennial ryegrass and (ii) relate the silage fermentation characteristics of grass silages with in vitro rumen methanogenesis. Three pre‐harvest herbage‐conditioning treatments and seven silage‐additive treatments were used in a laboratory‐scale silo experiment to produce a diversity of silage fermentation characteristics. Ensilage reduced (< 0·01) the in vitro rumen CH4 output (mL CHg?1 dry matter (DM) disappeared). This reflected differences in the direction of rumen fermentation (lower acetic (< 0·05) and higher propionic (< 0·001) acid proportions in volatile fatty acids) rather than major changes in the extent of in vitro rumen fermentation (i.e. mmol VFA g?1 DM). The magnitude of the decrease in CH4 output (mL g?1 DM incubated) owing to ensilage increased as the extent of silage fermentation, and in particular the lactic acid concentration, increased. In contrast, among silages with relatively similar extents of silage fermentation (i.e. total fermentation products), an increase in the proportion of lactic acid in silage fermentation products led to a more extensive in vitro rumen fermentation and thus to a greater CH4 output (mL g?1 DM).  相似文献   

8.
Bird strike is a significant problem for the aviation industry, caused in part by the attractiveness of the grass surrounding airports to birds. Endophyte‐infected grasses such as Avanex® have been shown to reduce bird populations at airports through the production of secondary metabolites. These metabolites are unpalatable to herbivorous, omnivorous and granivorous birds and are known to reduce insect densities, thereby making the sown areas less attractive to insectivorous birds. Raptors also provide a bird‐strike threat which could be reduced by controlling mouse populations around airports. In this study, the effect of endophyte‐infected seed on mouse feeding behaviour has been investigated. By performing a choice trial offering diets containing endophyte‐infected and endophyte‐free tall fescue seed, it was shown that endophyte‐infected seed was less palatable to mice (< 0·001 in a 14‐d trial). Furthermore, when diet positions were reversed, mouse feeding behaviour was modified to again select endophyte‐free material (< 0·001 over a further 14 d). This result shows that endophyte‐infected grasses could not only be used in the control of bird populations but they also have the potential to control mouse populations which in turn would decrease the number of raptors. This use of endophyte‐infected grasses in areas surrounding airport runways shows great promise for the aviation industry.  相似文献   

9.
A first cut of timothy, treated with water (untreated), formic acid (FA), cellulase + lactic acid bacteria (CB), cellulase + hemicellulase (CH) or cellulase + hemicellulase + a lignin-modifying enzyme (CHL), was ensiled in pilot-scale silos. Silages, except CB, were fed to four male cattle, each equipped with a rumen and duodenal cannula, in a digestibility trial designed as a 4 × 4 Latin square. The animals were fed a diet of 400 g of concentrate and 600 g of silage at a level of 70 g DM kg?1 live weight (LW0·75). All enzyme-treated silages were well-preserved with a more extensive fermentation than in FA silage. The quality of untreated silage was poorer as indicated by higher pH and ammonia-N content. The amount of effluent from enzyme-treated silages ranged from 116 to 127 g kg?1; for FA and untreated silages values were 101 g kg?1 and 80 g kg?1, respectively. Total DM losses from enzyme-treated silages were higher than from FA silage (P < 0·05). No significant differences were noticed between silages in the apparent digestibility of organic matter (OM), neutral-detergent fibre (NDF), acid-detergent fibre (ADF) or nitrogen (N). The apparent digestibility of cellulose was higher with enzyme-treated silages than with FA silage (P < 0·05). The values for microbial N flow at the duodenum were 80·0, 91·9, 80·7 and 70·5g N d?1, and for the efficiency of rumen microbial N synthesis 38·6, 47·6, 36·9 and 32·5 g N kg?1 OM apparently digested in the rumen for untreated, FA, CH and CHL silages, respectively. In the rumen the molar proportion of propionate was higher (P < 0·01) and that of butyrate lower (P < 0·01) with enzyme-treated silages when compared with FA silage. The proportion of butyrate was also lower with untreated than with other silages (P < 0·01). The rumen residence time of NDF and ADF was longer (P < 0·05) with enzyme-treated silages than with FA silage.  相似文献   

10.
We aimed to evaluate the effects of chitosan and microbial inoculant addition to sugarcane silage fermentation, gas and effluent losses, chemical composition, in situ dry matter (DM), neutral detergent fibre (NDF) degradation and aerobic stability. A completely randomized design with four treatments (n = 40) was performed. It was arranged in a 2 × 2 factorial scheme with chitosan [0 and 6 g/kg of sugarcane DM—1.66 g/kg of natural matter (NM)] and microbial inoculant (0 and 8 mg/kg on NM). Each g of inoculant contained 3.9 × 1010 UFC/g of Pediococcus acidilactici and 3.75 × 1010 UFC/g of Propionibacterium acidicipropionici. The addition of microbial inoculant increased lactic acid concentration in silos treated with chitosan. Furthermore, chitosan increased pH and tended to increase acetic acid of silage. In contrast, the inoculant decreased pH and acetic acid, besides increasing ethanol concentration. As chitosan addition increased DM recovery, inoculant addition decreased it. Chitosan decreased NDF and acid detergent fibre (ADF) level and increased DM degradation, while inoculant decreased DM content, DM and NDF degradation. In addition, chitosan improved the aerobic stability only in non‐inoculated silos. Thus, chitosan has a positive effect on silage fermentation, reducing fermentative losses, and improving silage chemical composition and degradation. Conversely, the addition of microbial inoculant negatively affected silage DM recovery, chemical composition, and its association with chitosan decreased the aerobic stability when compared to the exclusive use of chitosan.  相似文献   

11.
Herbage from the first regrowth of perennial ryegrass-based swards was directly ensiled after treatment with a bacterial inoculant/enzyme preparation (SIL-ALL, Alltech UK) at 3·0 1 t?1, formic acid (850 g kg?1) at 2·59 1 t?1 or no additive (Control). The mean dry matter (DM) and water-soluble carbohydrate concentrations of the grass were 185 and 24·0 g kg?1 (fresh basis) respectively. Lactic acid concentrations after ensiling increased at a lower rate in formic acid-treated herbage than with the other treatments. All silages were well preserved and formic acid-treated silage had a lower ultimate concentration of lactic acid and higher concentration of water-soluble carbohydrate. Effluent output was increased on a proportional basis by ?0·06 with formic treatment, whereas the inoculant reduced effluent output by 0·05 in comparison with the mean effluent production of the control silage. The in vivo digestibilities of the silages were determined using sheep. The digestibilities of DM, organic matter and energy were significantly higher with inoculant-treated silage than with formic acid treatment, whereas values for the control silage were intermediate. The three silages were offered ad libitum to forty dairy cows with individual recording of daily intakes for a 10-week period in a randomized block experiment with four treatments. Sixteen animals were offered the control silage with half of these offered 3 kg concentrates per day (C3) and the other half offered 7 kg concentrates per day (C7). Twelve animals were allocated to each of the additive-treated silages, with concentrates offered at 5 kg d?1. Treatment effects on animal performance were measured in weeks 7–10. To compare animal performance for the treated silages with the control, an estimate of performance at 5 kg concentrates per day was obtained by regression using values obtained at 3 and 7 kg concentrates. In comparison with estimated silage intake for the control silage with 5 kg d?1 concentrates, inoculant and formic acid treatment of the silages increased dry matter intake by 0·04 (P > 0·05) and 0·13 (P > 0·01) respectively. In comparison with estimated milk production and yield of fat plus protein for the control treatment with 5 kg d?1 concentrates, neither inoculant treatment nor formic acid treatment produced any significant differences.  相似文献   

12.
A randomized block design experiment involving thirty beef cattle (mean initial live weight 462 kg) was carried out to evaluate a bacterial inoculant based on a single strain of Lactobacillus plantarum as a silage additive and to provide further information in relation to its mode of action. Three herbages were harvested on 10 August 1989 using three double-chop forage harvesters from the first regrowth of a perennial ryegrass sward which had received 170 kg N, 25 kg P2O5, and 42 kg K2O ha?1. They received either no additive (silage C), formic acid at 2·91 (t grass)?1(silage F) or the inoculant at 3·21 (t grass)?1 (silage I). Mean dry-matter (DM), water-soluble carbohydrate and crude protein concentrations in the untreated herbages were 158g kg?1, 88 g (kg DM)? and 183g (kg DM)?1 respectively. For silages C, F and I respectively, pH values were 4·01, 3·57 and 3·62; ammonia N concentrations 117, 55 and 77 g (kg total N)?1; and butyrate concentrations 2·18, 0·50 and l·24g (kg DM)?1. The silages were offered ad libitum and supplemented with 2·5 kg concentrates per head daily for 77 days. For treatments C, F and I, silage DM intakes were 6·59, 7·25 and 6·80 (s.e. 0·074)kg d?1; metabolizable energy (ME) intakes 86,99 and 94 (s.e. 0·8) MJ d?1; liveweight gains 0·90, 0·97 and 1·02(s.e.0·066) kg d?1; carcass gains 541,656 and 680 (s.e. 34·0) g d?1. Inoculant treatment increased DM (P < 0·01), organic matter (P < 0·01), crude fibre (P < 0·05), neutral detergent fibre (NDF) (P < 0·05) and energy (P < 0·05) digestibilities, the digestible organic matter concentration (P < 0·01) and the ME concentration (P < 0·05) of the total diets. Additive treatment altered rumen fermentation patterns but had little effect on the rumen degradability of silage DM, modified acid detergent (MAD) fibre, NDF or hemicellulose. It is concluded that treatment with the inoculant improved silage fermentation and increased digestibility, had little effect on silage DM intake but significantly increased carcass gain to a level similar to that sustained by a well-preserved formic acid-treated silage  相似文献   

13.
An Italian ryegrass and hybrid ryegrass sward was harvested on 11 May 1994. The mean dry‐matter (DM) content of the herbage was 197 g kg–1 fresh matter (FM), and mean nitrogen and water‐soluble carbohydrate contents were 20 and 272 g kg–1 DM respectively. Approximately 72% of total nitrogen (TN) was in the form of protein‐nitrogen. The herbage was treated with either no additive, formic acid (3·3 l t–1) (Add‐F, BP) or inoculant (2·3 l t–1) (Live‐system, Genus) and ensiled in 100 t silos. Changes in effluent composition with time showed that silage fermentation and protein breakdown were delayed by treatment with formic acid. Formic acid and inoculant treatments also inhibited amino acid catabolism during ensilage. All silages were well fermented at opening with pH values < 4·0 and ammonia‐N concentrations of ≤ 50 g kg–1 TN after 120 d ensilage. Treatment had an effect on protein breakdown as measured by free amino acid concentration, with values of 21·5, 18·2 and 13·2 mol kg–1 N at opening (191 d) for untreated, formic acid‐treated and inoculated silages respectively. Amino acid catabolism occurred to the greatest extent in untreated silages with significant decreases in glutamic acid, lysine and arginine, and increases in gamma amino butyric acid and ornithine. The silages were offered ad libitum without concentrate supplementation to thirty‐six Charolais beef steers for a period of 69 d (mean live weight 401 kg). Silage dry‐matter intakes and liveweight gains were significantly (P < 0·05) higher on the treated silages. Silage dry‐matter intakes were 7·42, 8·41 and 8·23 kg d–1 (s.e.d. 0·27) with liveweight gains of 0·66, 0·94 and 0·89 kg d–1 (s.e.d. 0·058) for untreated, formic acid‐treated and inoculated silage‐fed cattle respectively. In conclusion, additives increased the intake of silage and liveweight gain by the beef steers, and it is suggested that this may be caused in part by the amino acid balance in these silages.  相似文献   

14.
Perennial ryegrass (Lolium perenne L.) evaluation trials are often conducted under simulated grazing to identify the most productive cultivars. It is unclear whether simulated grazing identifies the most productive cultivar for animal‐grazed swards. Ten cultivars were established as plots and managed concurrently under simulated grazing (SG), animal grazing (AG) and conservation (CON). The experiment lasted 3 years with dry‐matter (DM) off‐take, digestibility, tiller density and ground‐cover score recorded in all years. A good relationship existed between DM off‐take under SG and CON (R2 = 0·73). The relationship between SG and AG was strongest in year 2 and 3 (R2 = 0·53 and 0·55 respectively). High DM production was observed in SG swards in year 1; this was weakly related to the DM production of the AG sward. Across the 3 years, the CON treatment had higher yields than either of the other two treatments and was poorly correlated to DM yield under AG, confirming that cultivars should be evaluated under a similar defoliation frequency to their intended use. Tiller density declined quickest under CON and slowest under AG. Some reranking of cultivars occurred between defoliation managements. The results show that simulated grazing is a useful indicator of DM yield performance of animal‐grazed swards.  相似文献   

15.
Lactobacillus buchneri was investigated as a silage inoculant and as a probiotic on feed intake, apparent digestibility, and ruminal fermentation and microbiology in wethers fed low‐dry‐matter (DM) whole‐crop maize silage. Maize forage (279 g/kg DM) was ensiled without inoculant (untreated) and with L. buchneri CNCM I‐4323 at 1 × 10cfu/g fresh forage (inoculated). Six cannulated wethers were arranged in a double 3 × 3 Latin square and assigned to one of three diets: (i) untreated maize silage (untreated), (ii) inoculated maize silage (inoculated), and (iii) untreated maize silage with a daily dose of L. buchneri (1 × 10cfu/g supplied silage) injected directly into the rumen (LB‐probiotic). Wethers fed the inoculated diet had a higher (= .050) DM intake (1.30% body weight [BW]) than wethers fed untreated and LB‐probiotic diets (1.17% and 1.18% BW respectively). The relative proportion of Ruminococcus flavefaciens (proportion of total estimated rumen bacterial 16S rDNA) in the rumen of wethers fed inoculated and LB‐probiotic diets (both 0.42%) tended (= .098) to be lower than in the untreated diet (0.83%). Lactobacillus buchneri as a silage inoculant or as a probiotic had little effect on the variables measured in wethers.  相似文献   

16.
This study was aimed to perform a screening of Lactobacillus buchneri strains from maize silage and use them as inoculant in maize and sugarcane silages. In all, 151 lactic acid bacteria (LAB) strains were isolated from whole‐plant maize silage, and their identification was based on the sequence analysis of 16S rDNA. In total, 15 strains were categorized to the L. buchneri group and eight of these were selected based on growth rate and fermentation pattern. The selected strains were evaluated on fermentation and aerobic stability of maize and sugarcane silages. For maize, the inoculated silages had lower pH and higher LAB population, but lower acetic acid concentration in comparison with the untreated control silage. For sugarcane silage, the strains 56.1, 56.4 and 40788 resulted in highest dry‐matter (DM) content and lowest DM losses. However, only the strain 40788 showed lowest counts of yeasts and moulds. Sugarcane silages inoculated with the strains 56.9, 56.26 and the untreated control silage showed highest concentrations of lactic acid and ethanol, besides the great DM losses. Even so, for both crops, the aerobic stability was not affected by inoculation. After air exposure, all silages increased temperature and had high population of yeast and moulds. Nevertheless, the strains 56.1 and 56.4 are promising for use as a silage inoculant.  相似文献   

17.
Sainfoin (Onobrychis viciifolia) is a tanniniferous, leguminous plant that has potentially beneficial effects on protein utilization in ruminants. As ensiling causes protein breakdown and elevated levels of buffer soluble N (BSN), we studied the distribution of N before and after ensiling sainfoin. Three varieties of sainfoin were either direct‐cut and frozen directly or wilted and frozen before later ensiling in mini‐silos with and without acidification with Promyr (PM; an acidifying commercial mixture of propionic and formic acid) and with or without polyethylene glycol (PEG). Extractable tannins (ET) and protein‐bound tannins (PBT) were measured with an HCl/butanol method in an attempt to correlate tannin levels to N fractions. The sainfoin silages showed good ensiling characteristics and had relatively high concentrations of undegraded protein. The effect of wilting on BSN levels (g/kg N) was dependent on sainfoin variety (P < 0·001). PEG increased and PM decreased the level of BSN in the silages (P < 0·001). PM treatment also produced less non‐protein N and ammonia‐N (P < 0·05) as compared with no additive. Addition of PEG to the silage increased the BSN‐proportion 1·8‐ and 2·6‐fold for both DM stages. A strong tannin‐protein binding effect is, therefore, confirmed in sainfoin. However, correlations between tannin levels (ET and PBT) and BSN were poor in the (non‐PEG) silages, indicating either that the HCl/butanol method is unsuitable for measuring tannin in silages or that qualitative attributes of tannins are more relevant than quantitative. The HCl/butanol method seems therefore not to be useful to predict degradation of protein in sainfoin silages.  相似文献   

18.
The aim of this study was to evaluate the possible effect of pre‐fermented juice (PFJ) on the fermentation quality and nutritive value of first‐cut lucerne (Medicago sativa L.) silage. The PFJs were prepared using barley (B), wheat (W) and grass herbages (G). Both fresh (PFJ‐B, PFJ‐W and PFJ‐G) and frozen (PFJ‐BF, PFJ‐WF and PFJ‐GF) PFJs were examined. Frozen PFJs were prepared by freezing fresh PFJs at ?22°C with 20% glycerol (v/v). Treatments of lucerne silage included (1) control; (2) silage treated with PFJ‐B; (3) silage treated with PFJ‐W; (4) silage treated with PFJ‐G; (5) silage treated with PFJ‐BF; (6) silage treated with PFJ‐WF; and (7) silage treated with PFJ‐GF. All the treatments consisted of five replicate silos, and they were prepared in 1·0‐L glass jar silos. Results showed that silages treated with fresh and frozen PFJs, regardless of plant material, had better fermentation quality than the control silage in terms of lower pH, butyric acid (BA) and ammonia nitrogen (NH3‐N) concentrations, as well as higher lactic acid (LA) concentration (P < 0·05) and in vitro organic matter digestibility (IVOMD), metabolizable energy (ME) content, and gas production values (P < 0·05). Results indicated that PFJ treatments enhanced the nutritive value, fermentation quality and IVOMD, ME content and gas production values of first‐cut lucerne silages.  相似文献   

19.
The objective of the study was to determine the effects of maize hybrid and harvest date on the yield, quality and subsequent conservation characteristics of whole‐crop, cob and stover silages. The experiment had a split‐plot design, with three main plots (date of harvest) and six subplots (hybrid) in each of three replicate blocks. Four maize hybrids (Tassilo, Beethoven, Andante and Nescio) were conventional hybrids used in commercial livestock production in Ireland, and two were categorized as high‐biomass hybrids (Atletico and KXA 7211). The three harvest dates – 16 September, 7 October and 28 October – represented early, normal and late harvests respectively. Averaged across hybrids, harvesting on 16 September reduced the DM yield (P < 0·05) and starch concentration (P < 0·01) of whole‐crop and cob, and decreased the neutral detergent fibre (P < 0·05) and acid detergent fibre (P < 0·01) contents of stover. Later harvesting date generally resulted in a more restricted, heterolactic fermentation that was associated with increased dry‐matter (DM) content at ensiling. Whole‐crop and stover from Atletico and KXA 7211 generally had higher DM yields (P < 0·05) and a more extensive fermentation compared to Tassilo, Andante and Nescio. Despite the high‐biomass hybrids having a higher DM yield than conventional hybrids, the high‐biomass hybrids had a lower (P < 0·05) content of cob and a corresponding higher (P < 0·05) content of stover. The changes in proportions of cob and stover in whole‐crop maize with later harvesting significantly influenced its silage digestibility and conservation characteristics.  相似文献   

20.
Whole‐crop field bean (FB), field pea (FP) and common vetch (CV) [155, 213 and 238 g dry matter (DM) kg?1] were ensiled in 1·5 L laboratory silos with whole‐crop wheat as mixtures of 0, 0·25, 0·50, 0·75 and 1·00 of fresh weight (FW). Silages were ensiled (i) without additive, and (ii) with formic acid (FA) (4 L t?1) or (iii) an inoculant (Lactobacillus plantarum, 106 colony‐forming units g?1 FW) as additives. The concentrations of water‐soluble carbohydrates in herbage of whole‐crop FB, FP, CV and wheat were 93, 157, 67 and 114 g kg?1 DM and the buffering capacities were 588, 710, 755 and 429 mEq kg?1 DM respectively. Field bean and FP silages were mainly well preserved with low pH values and moderate fermentation losses, except for FB‐only silage without additive which had a high butyric acid concentration. Common vetch silages had higher pH values and were less well fermented compared to the silages of the other legumes. For all legumes, FA reduced ammonia‐N concentrations more effectively compared to other additive treatments. In conclusion, in FB and FP silages the use of FA or an inoculant, as additives, ensured good preservation up to a proportion of legume in the herbage of 0·75. With all legume silages, and with those containing CV, only FA, as an additive, adequately restricted protein breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号