首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective implementation of a finishing strategy (wash‐out) following a grow‐out phase on a vegetable oil‐based diet requires a period of several weeks. However, fish performance during this final stage has received little attention. As such, in the present study the growth performance during both, the initial grow‐out and the final wash‐out phases, were evaluated in Murray cod (Maccullochella peelii peelii). Prior to finishing on a fish oil‐based diet, fish were fed one of three diets that differed in the lipid source: fish oil, a low polyunsaturated fatty acid (PUFA) vegetable oil mix, and a high PUFA vegetable oil mix. At the end of the grow‐out period the fatty acid composition of Murray cod fillets were reflective of the respective diets; whilst, during the finishing period, those differences decreased in degree and occurrence. The restoration of original fatty acid make up was more rapid in fish previously fed with the low PUFA vegetable oil diet. During the final wash‐out period, fish previously fed the vegetable oil‐based diets grew significantly (P < 0.05) faster (1.45 ± 0.03 and 1.43 ± 0.05, specific growth rate, % day−1) than fish continuously fed with the fish oil‐based diet (1.24 ± 0.04). This study suggests that the depauperated levels of highly unsaturated fatty acids in fish previously fed vegetable oil‐based diets can positively stimulate lipid metabolism and general fish metabolism, consequently promoting a growth enhancement in fish when reverted to a fish oil‐based diet. This effect could be termed ‘lipo‐compensatory growth’.  相似文献   

2.
In two independent experiments, the effects of dietary inclusion of canola and linseed oil were evaluated in juvenile Murray cod (Maccullochella peelii peelii, Mitchell) over a 112‐day period. In each experiment, fish received one of five semi‐purified diets in which the dietary fish oil was replaced with canola oil (Experiment A) or linseed oil (Experiment B) in graded increments of 25% (0–100%). Murray cod receiving the graded canola and linseed oil diets ranged in final weight from 112.7 ± 7.6 to 73.8 ± 9.9 g and 93.9 ± 3.6 to 74.6 ± 2.2 g, respectively, and exhibited a negative trend in growth as the inclusion level increased. The fatty acid composition of the fillet and liver were modified extensively to reflect the fatty acid composition of the respective diets. Levels of oleic acid (18:1 n‐9) and linoleic acid (18:2 n‐6) increased with each level of canola oil inclusion while levels of α‐linolenic acid (18:3 n‐3) increased with each level of linseed oil inclusion. The concentration of n‐3 highly unsaturated fatty acids in the fillet and liver decreased as the amount of vegetable oil in the diets increased. It is shown that the replacement of fish oil with vegetable oils in low fish meal diets for Murray cod is possible to a limited extent. Moreover, this study reaffirms the suggestion for the need to conduct ingredient substitution studies for longer periods and where possible to base the conclusions on regression analysis in addition to anova .  相似文献   

3.
Abstract The Australian native freshwater fish Murray cod, Maccullochella peelii pellii (Mitchell), currently supports a fledgling inland aquaculture industry, which is thought to have considerable growth potential. The aim of this study was to evaluate the suitability of two alternate protein sources [blood meal (BM) and defatted soybean meal (SBM)] as substitutes for fish meal at various levels of inclusion in diets for juvenile Murray cod. The growth performance of juvenile Murray cod in response to nine isonitrogenous and isocalorific diets (50% protein, 14% lipid, 20.2 kJ g?1) consisting of a control diet in which protein was supplied from fish meal, and test diets in which the fish meal protein was substituted at levels of 8%, 16%, 24%, and 32% with BM or SBM was evaluated from a 70‐day growth experiment. The per cent apparent dry matter (% ADCdm) and percentage protein digestibility (% ADCp) of the test diets were also determined using Cr2O3 as a marker. Survival in all the SBM dietary treatments was high but that of fish on the BM dietary treatments was significantly (P < 0.05) lower than in all the other dietary treatments. Specific growth rate (% day?1) of Murray cod fed SBM incorporated diets ranged from 1.63 ±  0.06 to 1.78 ±  0.10 and even at the highest level tested (32% of the dietary protein from SBM) was not significantly different (P > 0.05) from the fish fed the control diet (1.65 ±  0.09). Feed conversion ratios of the SBM dietary treatments ranged from 1.36 ±  0.08 to 1.45 ±  0.07. The protein efficiency ratios and protein conversion efficiencies of Murray cod in the soybean meal treatments were also good and for a majority of the SBM diets were better than those for the control diet. Per cent ADCdm and ADCp of the SBM diets tested ranged from 70.6 ±  1.46 to 72.3 ±  1.81% and 88.6 ±  0.57 to 90.3 ±  0.17%, respectively, and was not significantly different (P > 0.05) from the control diet (% ADCdm 74.3 ±  1.63; % ADCp 91.3 ±  0.55). The reasons for significantly poor survival and growth of Murray cod reared on BM incorporated diets, and relatively poor digestibility of these diets are discussed. The study shows that for Murray cod diets in which fish meal protein is substituted up to 32% performance or carcass composition is not compromised.  相似文献   

4.
The efficacy of trout oil (TO), extracted from trout offal from the aquaculture industry, was evaluated in juvenile Murray cod Maccullochella peelii peelii (25.4±0.81 g) diets in an experiment conducted over 60 days at 23.7±0.8 °C. Five isonitrogenous (48% protein), isolipidic (16%) and isoenergetic (21.8 kJ g?1) diets, in which the fish oil fraction was replaced in increments of 25% (0–100%), were used. The best growth and feed efficiency was observed in fish fed diets containing 50–75% TO. The relationship of specific growth rate (SGR), food conversion ratio (FCR) and protein efficiency ratio (PER) to the amount of TO in the diets was described in each case by second‐order polynomial equations (P<0.05), which were: SGR=–0.44TO2+0.52TO+1.23 (r2=0.90, P<0.05); FCR=0.53TO2–0.64TO+1.21 (r2=0.95, P<0.05); and PER=–0.73TO2+0.90TO+1.54 (r2=0.90, P<0.05). Significant differences in carcass and muscle proximate compositions were noted among the different dietary treatments. Less lipid was found in muscle than in carcass. The fatty acids found in highest amounts in Murray cod, irrespective of the dietary treatment, were palmitic acid (16:0), oleic acid (18:1n‐9), linoleic acid (18:2n‐6) and eicosapentaenoic acid (20:5n‐3). The fatty acid composition of the muscle reflected that of the diets. Both the n‐6 fatty acid content and the n‐3 to n‐6 ratio were significantly (P<0.05) related to growth parameters, the relationships being as follows. Percentage of n‐6 in diet (X) to SGR and FCR: SGR=–0.12X2+3.96X–32.51 (r2=0.96) and FCR=0.13X2–4.47X+39.39 (r2=0.98); and n‐3:n‐6 ratio (Z) to SGR, FCR, PER: SGR=–2.02Z2+5.01Z–1.74 (r2=0.88), FCR=2.31Z2–5.70Z+4.54 (r2=0.93) and PER=–3.12Z2–7.56Z+2.80 (r2=0.88) respectively. It is evident from this study that TO could be used effectively in Murray cod diets, and that an n‐3:n‐6 ratio of 1.2 results in the best growth performance in Murray cod.  相似文献   

5.
The results of a 56‐day experiment on juvenile Murray cod, Maccullochella peelii peelii, an Australian native fish with a high aquaculture potential, of mean weight 14.9 ± 0.04 g, fed with five experimental diets, one a series of 40% protein content and lipid levels of 10, 17 and 24% (P40L10, P40L17 and P40L24), and another of 50% protein and 17 and 24% (P50L17 and P50L24) lipid are presented. The specific growth rate (SGR) (% day?1) of fish maintained on different diets ranged from 1.18 to 1.41, and was not significantly different between dietary treatments, except P40L10 and the rest. However, there was a general tendency for SGR to increase with increasing dietary lipid content at both protein levels. The food conversion ratio (FCR) for the 40% protein series diets were poorer compared with those of the 50% protein diets, and the best FCR of 1.14 was observed with the P50L17 diet. The protein efficiency ratio (PER), however, was better in fish reared on low protein diets. The net protein utilization (NPU) also did not differ significantly (P > 0.05) in relation to dietary treatment. As in the case of PER the highest NPU was observed in Murray cod reared on diet P40L24 and the lowest in fish fed with diet P50L24. The carcass lipid content reflected that of the diets, when significant increases in the lipid content was observed in relation to dietary lipid content at both protein levels. However, body muscle lipid content did not increase with increasing dietary lipid content, and was significantly lower than in the whole body. The fatty acids found in highest concentration amongst the saturates, monoenes and polyunsaturates (PUFAs) were 16 : 0, 18 : 1n‐9 and 22 : 6n‐3, respectively, and each of these accounted for more than 60% of each of the group's total. The muscle fatty acid content was affected by the dietary lipid content; for example the total amount (in μg mg?1 lipid) of monoenes ranged from 72 ± 5.1 (P40L10) to 112 ± 10 (P40L24) and 112 ± 2.8 (P50L17) to 132 ± 11.8 (P50L24) and the n‐6 series fatty acids increased with increasing dietary lipid content, although not always significant. Most notably, 18 : 2n‐6 increased with the dietary lipid level in both series of diets.  相似文献   

6.
The Australian freshwater fish Murray cod, Maccullochella peelii peelii (Mitchell) is gaining popularity as a suitable species for intensive culture, particularly in closed systems. The aim of this study was to evaluate the performance of Murray cod in response to different feeding schedules. Growth, survival, food conversion and a range of other related parameters including carcass proximate composition were evaluated for fish in five feed management regimes. The feeding regimes used in the experiment were hand fed to satiation twice daily (SAT), a pre‐determined ration of 1.2% of the body weight day?1 which was hand fed twice daily (HFR), and belt fed through the day only (B/D), belt fed through the night only (B/N) and belt fed for 24 h (B/DN). Each of the five feeding regimes was randomly allocated to three tanks (triplicates). All of the feeding regimes used a commercially prepared diet formulated specifically for Murray cod, containing ≈50% protein and ≈16% lipid. The experiment was conducted for 84 days. Specific growth rate ranged from 0.89±0.01 to 1.07±0.04% day?1. Food conversion ratio (FCR) ranged from 1.09±0.02 to 0.92±0.03. The fastest growth and greatest final body weight were observed in the SAT treatment; however, the highest FCR, visceral fat index (VFI %) and hepatosomatic index (HSI %) were also observed in this treatment. Significant differences were found in specific growth rate and final mean weight between fish in the B/D and SAT treatments. B/N and B/DN feeding regimes appeared to result in the most favourable fish performance.  相似文献   

7.
Murray cod Maccullochella peelii peelii (Mitchell) is a freshwater Percichthyid fish considered to have high culture potential. Growth and feed utilization were examined in a 56‐day experiment, in which triplicate groups of juvenile Murray cod (initial weight 21.5 ± 0.03 g) were fed isocalorific diets (gross energy content of about 21 kJ g?1) containing 40%, 45%, 50%, 55% or 60% protein (designated P40, P45, etc.). Final mean weight, percentage increase in weight and specific growth rate (SGR; % day?1) were highest in fish fed the P50 diet. Food conversion ratio (FCR; 1.05 ± 0.04) and protein efficiency ratio (PER; 1.98 ± 0.11) were also best in fish on the P50 diet, but the differences in these parameters from the corresponding values on diets P55 and P60 were not always significant. FCR (Y) was related to dietary protein content (X), the relationship being a second‐order polynomial, in which Y = 0.004X2?0.431X + 12.305 (r= 0.95; P < 0.01). The proportions of carcass moisture, protein, lipid and ash did not differ among the different dietary treatments. The protein conversion efficiency (y) was negatively correlated to percentage dietary protein (X) content, the relationship being: y = 62.76–0.62X (r= 0.99; P < 0.01).  相似文献   

8.
Fish oil (FO)- and canola oil (CO)-based diets were regularly alternated in a daily cycle (amCO: alternation of CO in the morning and FO in the afternoon, and pmCO: alternation of FO in the morning and CO in the afternoon) or in a series of weekly cycles (2W: alternation of 2 weeks on CO and 2 weeks on FO, 4W: alternation of 4 weeks on CO and 4 weeks on FO), over a 16-week period in juvenile Murray cod ( Maccullochella peelii peelii ). No significant differences were observed between any of the treatments in relation to the final weight. However, fish subjected to the 2W schedule were larger ( P >0.05) than all other treatments (37.2 ± 0.30 vs. 34.3 ± 0.58 in the control treatment). Fish receiving the 2W treatment had a significantly lower total net disappearance of eicosapentaenoic acid 20:5n-3 (EPA) and docosahexaenoic acid 22:6n-3 (62.1% and 24.0% respectively) compared with the control treatment (fish continuously fed a blend of 50% FO and 50% CO). Likewise, Murray cod receiving the amCO daily schedule had a significantly lower total net disappearance of EPA in comparison with the CD and pmCO treatments. These data point towards the existence of cyclical mechanisms relative to fatty acid utilization/retention.  相似文献   

9.
The dynamics of fatty acid composition modifications were examined in tissues of Murray cod fed diets containing fish oil (FO), canola oil (CO) and linseed oil (LO) for a 25‐week period and subsequently transferred to a FO (finishing/wash‐out) diet for a further 16 weeks. At the commencement of the wash‐out period, following 25 weeks of vegetable oil substitution diets, the fatty acid compositions of Murray cod fillets were reflective of the respective diets. After transfer to the FO diet, differences decreased in quantity and in numerousness, resulting in a revert to the FO fatty acid composition. Changes in percentages of the fatty acids and total accumulation in the fillet could be described by exponential equations and demonstrated that major modifications occurred in the first days of the finishing period. A dilution model was tested to predict fatty acid composition. In spite of a general reliability of the model (Y=0.9234X+0.4260, R2=0.957, P<0.001, where X is the predicted percentage of fatty acid; Y the observed percentage of fatty acid), in some instances the regression comparing observed and predicted values was markedly different from the line of equity, indicating that the rate of change was higher than predicted (i.e. Y=0.4205X+1.191, R2=0.974, P<0.001, where X is the predicted percentage of α‐linolenic acid; Y the observed percentage of α‐linolenic acid). Ultimately, using the coefficient of distance (D), it was shown that the fatty acid composition of fish previously fed the vegetable oil diets returned to the average variability of the fillet fatty acid composition of Murray cod after 70 or 97 days (LO and CO respectively).  相似文献   

10.
Abstract – Native Murray cod (Maccullochella peelii peelii) are listed as a nationally vulnerable species, whereas non‐native common carp (Cyprinus carpio) are widespread and abundant. Understanding key aspects of life history, such as movement patterns and habitat selection by juvenile Murray cod and common carp, might be useful for conserving Murray cod populations and controlling common carp numbers. We used radio‐telemetry to track eight juvenile Murray cod and seven juvenile common carp in the Murray River, Australia, between March and July 2001. Common carp occupied a significantly greater total linear range (mean ± SD: 1721 ± 1118 m) than Murray cod (mean ± SD: 318 ± 345 m) and the average daily movement was significantly greater for common carp (mean ± SD: 147 ± 238 m) than for Murray cod (mean ± SD: 15 ± 55 m). All Murray cod and five of the seven common carp displayed site fidelity or residency to one, two or three locations. Murray cod were found only in the mainstream Murray River among submerged woody habitats, whereas common carp occurred equally in mainstream and offstream areas, and among submerged wood and aquatic vegetation. Murray cod were found in deeper (mean ± SD: 2.3 ± 0.78 m) and faster waters (mean ± SD: 0.56 ± 0.25 m·s?1) compared with common carp (mean ± SD: 1 ± 0.54 m; 0.08 ± 0.09 m·s?1) respectively. The presence of juvenile Murray cod only amongst submerged wood is an indication that these habitats are important and should be preserved. Conversely, juvenile common carp were equally present among all habitats sampled, suggesting that habitat selection is less specific, possibly contributing to their widespread success.  相似文献   

11.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

12.
Efficacy of sunflower oil (diet SF) and soybean oil (diet SB) alone and in combination with cod liver oil (diets M1‐2.80:1.40:1.40, M2‐2.80:2.24:0.56 and M3‐2.80:0.56:2.24; cod liver oil:sunflower oil:soybean oil) as lipid supplements (5.6%) in formulated diets (crude fat ~9.79%) for juvenile Scylla serrata (weight=0.28±0.07 g, carapace width=9.7±0.1 mm) were compared with diet CL, containing cod liver oil alone as the lipid supplement (6 diets × 24 crabs stocked individually, randomized block design). Growth performance, nutrient (protein and lipid) intake and gain of crabs fed M1, M2 and M3 were higher (P≤0.05) than the crabs fed SF and SB, but were not significantly different (P≥0.05) from crabs fed CL. Dietary fatty acids (FAs) are found to influence the FA profile of test crabs. Higher tissue levels of 16:1n‐7, 18:1n‐9 and 18:1n‐7 reflected the essential FA deficiency in crabs fed diets supplemented only with vegetable oils. Results confirmed that S. serrata could utilize vegetable oil supplements in the formulated diets as a partial replacement (50%) of cod liver oil without compromising growth and survival. Partial substitution of marine fish oil with suitable vegetable oils can reduce the feed cost considerably, in the context of rising fish oil prices.  相似文献   

13.
The replacement of dietary marine fish oil with vegetable oils was examined in fingerling humpback grouper, Cromileptes altivelis, over the course of an 8‐week growth trial. Five isolipidic (10%) and isoproteic (50%) fish meal‐based practical diets were formulated to contain iso‐ingredients but with different sources of lipids [crude palm oil (CPO), refined, bleached and deodorized, palm olein (RBDPO), soybean oil (SBO) or canola oil (CNO)], and their performance was compared with the control diet, which contained cod liver oil (CLO) as the added lipid source. The experimental diets were fed close to apparent satiation twice a day to triplicate groups of fish (10.6 ± 2.2 g). The grouper fingerlings were randomly distributed into groups of 12 fish in cylindrical cages (61 cm depth and 43 cm diameter) that were placed in a 150 tonne polyethylene seawater tank. There were no significant differences (P>0.05) in terms of growth, survival, feed conversion ratio, protein efficiency ratio, net protein utilization, hepatosomatic index and condition factor among fish fed the various dietary treatments. Similarly, the dietary lipid source did not significantly affect the whole body proximate composition of the fish. Muscle and liver fatty acid composition of fish was influenced by the experimental diets. Replacement of dietary CLO with CPO, RBDPO, SBO or CNO produced fish with lower n‐3 highly unsaturated fatty acids and increased levels of 18:2n‐6 in the muscle and liver. The n‐3:n‐6 fatty acid ratio in the muscle of fish fed the CLO‐based diet was 3.0 compared with 0.5–0.8 in the muscle of fish fed the various vegetable oil‐based diets. The present study demonstrated that various vegetable oils can be used in fish meal‐based dietary formulations for humpback grouper without compromising growth or feed utilization efficiency.  相似文献   

14.
《水生生物资源》1999,12(3):219-227
Changes in the fatty acid profiles of the Percichthyid fish trout cod, Maccullochella macquariensis (Cuvier), and Murray cod, M. peelii peelii (Mitchell), two Australian native freshwater fish species, were investigated during early development from egg to yolk-sac-resorbed larval stage. In the two Percichthyid fishes polyunsaturated fatty acids (PUFA) accounted for more than 50 % of the 19 quantified fatty acids in total lipid. The fatty acids that occurred in the highest abundance in both trout cod and Murray cod, in all developmental stages, in order, were docosahexaenoic acid [DHA 22:6(n-3)], arachidonic acid [AA 20:4(n-6)], oleic acid [18:1(n-9)] and palmitic acid (16:0), all of which exceeded 100 μg per mg total lipid in most instances. The ratio of 22:6(n-3) to eicosapentaenoic acid- 20:5(n-3) in eggs of trout cod and Murray cod was 5.4:1 and 7.3:1, respectively, and remained almost unchanged through development, and was considerably higher than the 2:1 ratio generally reported for fish eggs. In trout cod, 11 of the 19 fatty acids in total lipid decreased during the transformation from egg to yolk-sac-resorbed larva. In Murray cod, only 16:1(n-7) showed a significant decrease whilst 20:4(n-6) increased significantly with development. Overall, there was a tendency in both species to conserve n-3 and n-6 series highly unsaturated fatty acids (HUFA), suggesting their essentiality in first feeding larvae. These observations are discussed in relation to the feeding habits of trout cod and Murray cod, which are top order, freshwater carnivores.  相似文献   

15.
Atlantic salmon were fed extruded diets based on either 100% fish oil (FO) or 100% vegetable oil blend (VO) substitution for 22 months. A total of seven distinct feeding periods were studied that incorporated higher levels of dietary oil inclusion, and larger pellet size as fish size increased. Whole fish levels of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/F) and dioxin‐like PCBs (DLPCB) were analysed at the beginning and end of each of the seven feeding periods. The PCDD/F and DLPCB concentrations in the FO diets increased from 2.43 to 4.74 ng WHO‐TEQ kg?1 (TEQ, toxic equivalents), while VO diets decreased from 1.07 to 0.33 WHO‐TEQ kg?1 as oil inclusion increased. Partial least square regression analyses identified feed concentration, growth rate and feed utilization, but not variations in lipid content, as factors significantly affecting fish PCDD/F and DLPCB levels. Accumulation efficiencies for DLPCB (740 ± 90 g kg?1) were significantly (P < 0.01) higher than for PCDD/F (430 ± 60 g kg?1), explaining the increasing dominance of DLPCB levels over PCDD/F levels in whole fish (DLPCB : PCDD/F ratio of 2.4 ± 0.1 for both VO and FO fed fish) compared with feed (DLPCB : PCDD/F ratio of 1.5 and 0.34 for FO and VO feed respectively). Vegetable oil substitution significantly reduced the level of PCDD/F and DLPCB (eightfold and twelve‐fold, respectively) in the fillet of a 2 kg salmon, but, also negatively affected beneficial health components such as fillet n‐3/n‐6 fatty acid ratio.  相似文献   

16.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

17.
The effect of dietary inclusion of whole grain white lupin (Lupinus albus) on growth performance, histology, muscle fatty acid composition and nutrient digestibility was investigated in an 11‐week growth and a 4‐week digestibility trial with rainbow trout (initial body weight of 54.0 ± 6.2 and 181.9 ± 3.4 g respectively). Four experimental extruded diets were formulated to contain 0%, 30%, 40% and 50% of whole grain lupin and fed to triplicate groups of fish twice a day until apparent satiation. Faeces were collected daily from each digestibility tank by decantation. No significant trends were observed with respect to growth, feed utilization, apparent digestibility coefficients or whole‐body composition (P>0.05). Conversely, increasing levels of dietary lupin led to significant decreases in the Hepatosomatic index (R2=0.75, P<0.05) and slight lipid infiltration into hepatocytes and enterocytes. Muscle fatty acid compositions were slightly affected by the dietary treatment. Polynomial regression of dietary inclusion of lupin and muscle fatty acid concentrations showed an increase in C18:1n‐9, C18:2n‐6 and C18:3n‐3 and a decrease in C20:5n‐3 with increasing dietary lupin level. These results demonstrated that whole grain lupin can be included up to 50% in commercial rainbow trout diets without negative effects.  相似文献   

18.
Nile tilapia juveniles (8.35 ± 0.80 g) were fed on four levels (0.0%; 0.5%; 1.0%; 2.0%, 4.0%) of Aurantiochytrium sp. meal (ALL‐G‐RICH?), a source of docosahexaenoic acid (DHA). The 1% Aurantiochytrium sp. meal diet was compared to a control diet, which contained the same amount of DHA as cod liver oil (CLO) at 1.7% diet. Groups of 25 fish were stocked in 100 L tanks and fed twice daily until apparent satiation, for 57 days, at 28°C. Increasing dietary Aurantiochytrium sp. meal reduced the body retention of DHA and n‐3 polyunsaturated fatty acids (n‐3 PUFA) but increased the body retention of alpha‐linolenic (α‐LNA), linoleic (LOA) and n‐6 polyunsaturated fatty acids (n‐6 PUFA). Fatty acid profile in tilapia muscle was affected by increasing dietary inclusions of Aurantiochytrium sp. meal, with an increase in DHA, α‐LNA, n‐3 PUFA and n‐3 long chain‐polyunsaturated fatty acids (n‐3 LC‐PUFA) but a decrease in monounsaturated fatty acids (MUFA), n‐6 PUFA and n‐6 long‐chain polyunsaturated fatty acids (n‐6 LC‐PUFA). There was a larger body retention of DHA, α‐LNA, LOA, n‐3 PUFA and n‐6 PUFA fatty acids and a higher percentage of DHA, n‐3 PUFA and n‐3 LC‐PUFA in muscle fatty acid profile in fish fed on CLO diets than in those fed on 1% Aurantiochytrium sp. Therefore, Aurantiochytrium sp. meal is an alternative source of DHA for Nile tilapia diets.  相似文献   

19.
Three isonitrogenous (520 g protein kg?1 DM) and isoenergetic (25 MJ kg?1 DM) diets containing increasing levels of flaxseed oil (FxO; 0%, 40% and 70% of total added oil) at the expense of fish oil (FO) were tested for 33 weeks in groups of 61 individually PIT‐tagged halibut (initial weight, 849 ± 99 g). Effects on fish growth performance, fillet nutritional and sensory quality were determined. Specific growth rate (0.2% day?1), feed conversion ratio (1.2–1.3) and nitrogen and energy retention were not affected by dietary treatments. Dietary fatty acid composition was reflected in fatty acid profiles of halibut muscle, liver and heart. Muscle of fish fed FxO diets contained higher 18:2n‐6 and 18:3n‐3 concentrations whereas 20:5n‐3 and 22:6n‐3 levels were significantly reduced. However, increasing FO replacement induced preferential retention of 22:6n‐3 especially in heart, and a trend for 20:5n‐3 conservation in heart and muscle was observed. FO replacement did not affect colour, texture and the characteristic fish odour and flavour of cooked fillets. By selectively retaining long‐chain polyunsaturated fatty acids halibut can adapt to a lower dietary supply without adverse effects on growth, feed conversion ratio, survival, and fillet nutritional and sensory quality.  相似文献   

20.
Two groups of fish ( Maccullochella peelii peelii ) were fed for a 90-day conditioning period on a canola oil diet (CO) or a fish oil diet (FO). Canola oil diet fed fish were then shifted to the FO diet for a 90-day finishing period. A variable period of starvation (0, 5, 10 and 15 days) was introduced to reduce the initial lipid level of CO fed fish at the beginning of the finishing period and therefore accelerate the rate of recovery of FO-like fatty acids. During starvation, fish did not show significant reduction in total lipid content, either in the fillet or whole body. At the end of the conditioning period, fatty acid composition of the diet was mirrored in fish tissues. These differences came close to levelling out following re-feeding, with the exception of n  - 6 polyunsaturated fatty acids (PUFA). However, no effects of the starvation periods on the final fatty acid make-up of fish were recorded. The results of this trial show that Murray cod, when subjected to a starvation period of up to 15 days, does not lose an appreciable quantity of lipid and, therefore, the tested starvation approach to reduce the initial level of lipid has to be considered unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号