首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of forest stands changes through developmental phases. This study is carried out in the unmanaged, oriental beech (Fagus orientalis Lipsky) stands in the north of Iran. The aim of this research was to quantify structural characteristics of stands in the stem exclusion phase using common structural indices, which include mingling, tree–tree distance, stem diameter, and tree height differentiation. According to our measurements from three stands, naturally regenerated stands tend to be mixed in species composition have slightly heterogeneous diameter distributions and uniform tree height. The average distance between trees was 3.3 m. Stocking volume of the stands had an average of 540 m3 ha?1 and 412 stem ha?1. Dead wood volume was 24 m3 ha?1, and as a standing volume, the most frequent species in dead wood pool was oriental beech (F. orientalis) (48 %). The common form of dead trees was snag (41 %). The mean value of mingling and tree-to-tree interval indices revealed that beech was mixed intensively with hornbeam and appears to be a more successful competitor for space and light compared with hornbeam; moreover, we found relatively high evidence of inter-species competition in this phase. A better understanding of stand characteristics in the stem exclusion phase as a critical part of the natural dynamics of forest ecosystems could facilitate predictions about the future changes within the stand.  相似文献   

2.
In most temperate forest, nitrogen (N) is considered a limiting factor. This becomes important in extreme environments, as Nothofagus antarctica forests, where the antecedents are scarce. Thinning practices in N. antarctica forests for silvopastoral uses may modify the soil N dynamics. Therefore, the objective of this work was to evaluate the temporal variation of soil N in these ecosystems. The mineral extractable soil N, net nitrification and net N mineralization were evaluated under different crown cover and two site quality stands. The mineral N extractable (NH4 +–N + NO3 ?–N) was measured periodically. Net nitrification and net N mineralization were estimated through the technique of incubation of intact samples with tubes. The total mineral extractable N concentration varied between crown cover and dates, with no differences among site classes. The lowest and highest values were found in the minimal and intermediate crown cover, respectively. In the higher site quality stand, the annual net N mineralization was lower in the minimal crown cover reaching 11 kg N ha?1 year?1, and higher in the maximal crown cover (54 kg N ha?1 year?1). In the lower site quality stand there was no differences among crown cover. The same pattern was found for net nitrification. Thinning practices for silvopastoral use of these forests, keeping intermediate crown cover values, did not affect both N mineralization and nitrification. However, the results suggest that total trees removal from the ecosystem may decrease N mineralization and nitrification.  相似文献   

3.
Increasingly private landholders in Hawaii are considering native forest restoration for their lands, and some public agencies have already started such work. Initial efforts have focused on reestablishing Acacia koa to recover alien-grass-dominated sites. This study was done in Hakalau Forest National Wildlife Refuge, Island of Hawaii, to determine the efficacy of disk plowing to stimulate natural regeneration of koa from buried seeds. Sites with four different koa parent tree configurations were treated–single live overhead koa canopy, multiple live canopies, downed snags, and no parent koa tree. Tree growth and survival were assessed periodically over 21 years. Average initial stand densities ranged from 100 to 1,500 trees ha?1 of scarified land, although some open areas had as few as 20 trees ha?1. The distributions of seedlings with increasing distance from plot center were variable within and between parent tree configurations. Initial seedling density was significantly greater for the multiple-live-parent than for the no-parent configuration. Densities for the single-live and dead configurations differed from the no-parent configuration only when densities were based on the entire scarified area of each plot. Stand densities declined 10–67 % during the next 20 years. Survival was a negative, non-linear function of initial stand density. Initial stand density exerted strong control over stem diameter and crown size at age 21-years, but had little effect on the proportion of trees with single-stems. The relationships between stand basal area and density at 21 years conformed to the existing koa stocking guidelines. While moderate to high densities of natural regeneration can be expected from scarifying around live and dead koa trees, single trees or low density stands are likely in open areas.  相似文献   

4.
Midcanopy layers are essential structures in “old-growth” forests on the Olympic Peninsula. Little is known about which stand and tree factors influence the ability of midcanopy trees in young-growth forests to respond to release; however, this information is important to managers interested in accelerating development of late-successional structural characteristics. We examined basal area growth response of midcanopy trees following variable-density thinning in an effort to determine the effect of thinning and local environment on the release of western hemlock (Tsuga heterophylla (Raf.) Sarg.) and western redcedar (Thuja plicata ex. D. Don) on the Olympic Peninsula in western Washington. Release was measured as the difference between average annual basal area growth over the 5-year prior to thinning and the 3-to-6 year period following thinning. Results indicate that while growth rates were similar prior to thinning (5.4 cm2 year−1in both thinned and unthinned patches) midcanopy trees retained in a uniformly thinned matrix grew significantly more (8.0 cm2 year−1) than those in unthinned patches (5.4 cm2 year−1) for western hemlock and for western redcedar. Crown fullness and crown crowding affected the release of western hemlock in the thinned matrix. Initial tree size, relative age, local crowding and measures of crown size and vigor affected the release of western redcedar in the thinned matrix. Our results indicate that midcanopy western hemlock and western redcedar retain the ability to respond rapidly with increased growth when overstory competition is reduced and the magnitude of response is related to neighborhood variables (intracohort competition, overstory competition, and tree vigor), thus suggest that variable-density thinning can be an effective tool to create variability in the growth of midcanopy trees in young-growth stands. We expect that this rapid response will produce even greater variability over time.  相似文献   

5.
Abstract

This study analysed the effects of young stand characteristics on optimal thinning regime and length of rotation periods for even-aged Norway spruce [Picea abies (L.) Karst.] stands. Stand development was based on a distance-independent, individual-tree growth model. The young stand data were collected from 12 well-stocked Norway spruce stands in southern Finland. Results showed that optimal thinning regimes and rotation period depend on site quality and initial stand characteristics. At the first thinning, optimal thinning type depended on initial density. Thinning from both ends of the diameter distribution turned out to be optimal for initially dense stands. At the second and subsequent thinnings, thinning from above was clearly superior. At a low interest rate, thinning from below was optimal for the first thinning regardless of stocking level. For the study data, optimal rotation periods varied from 61 to 92 years at 3% interest rate. The high variation in length of rotation period was due to the sensitivity of optimal length of rotation period to site qualities, initial stand structure and density.  相似文献   

6.
Stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) originating from natural regeneration can be extremely dense with high mortality, poor growth form and low volume production. Although costly, respacing (pre-commercial thinning) can reduce resource competition for the remaining trees, altering the final crop produced. Three experiments were established to examine the effect of respacing 1–2 m tall trees to different target densities. The impact on stand growth and yield was measured 11–17 years after respacing, and the longer-term impact was modelled to year 50. Unrespaced control treatments self-thinned at a similar and constant rate at two sites. At the third, extremely high initial density resulted in a higher rate of self-thinning and lower density after 11 years. Wider respacing treatments resulted in larger mean tree diameter, but there was no significant effect of respacing on stand volume 11–17 years after respacing; greater diameter growth did not compensate for low tree number. Results indicate a volume penalty associated with delaying respacing until trees were 4 m tall, but this treatment was unreplicated. Modelled stand volume in year 50 was higher for the 2.6 m × 2.6 m respacing treatment than for the 1.8 m × 1.8 m, 2.1 m × 2.1 m or 3.3 m × 3.3 m treatments. However, open-grown conditions may reduce timber quality compared to closer spacing treatments. The results are presented using a stand density management diagram for Sitka spruce growing in Canada and support recent suggestions that British stands have a shallower size–density relationship than Canadian stands.  相似文献   

7.
European beech (Fagus sylvatica L.) is one of the economically most important broadleaved tree species in Central Europe. However, beech shows high drought sensitivity and calls for profound research to test its ability to cope with limited water resources. Here, we investigated the drought tolerance of beech to the 2003 drought as influenced by Kraft class, aspect and thinning intensity. Annual basal area increment data of 126 sample trees from southwest Germany were used to assess the variability of drought tolerance indices, by comparing three social classes (predominant, dominant and co-dominant), two contrasting sites [a dry southwest (SW) aspect and a moist northeast (NE) aspect], and three treatments [control, strong thinning (stand basal area 15 m2 ha?1) and very strong thinning (stand basal area 10 m2 ha?1)] in mature beech stands. Our results show that the co-dominant and dominant trees had lower growth recovery and lower growth resilience after the drought, compared to the predominant trees. The differences between aspects pointed to a growth–drought tolerance trade-off, in which trees on the SW aspect displayed lower growth rates but higher resilience indices than trees on the moist NE aspect. Furthermore, our results suggest that the resistance to and resilience after the 2003 drought significantly increased for the thinned trees. Our results provide novel insights into the linkage between the forest stand management and drought tolerance of beech under contrasting sites. We conclude that thinning can partially alleviate effects of severe drought on European beech forests in southwest Germany and can be applied as an adaptive measure to increase the mitigation potential of beech stands.  相似文献   

8.
Harvester operators that decide about tree removal during thinnings have currently no instruments to measure stand density continuously before and after the operation. We tested whether basal area can be measured rapidly for this purpose with a 2D terrestrial laser scanner. An algorithm was developed, which automatically detects trees from laser scanner point clouds, measures their position and diameter, and calculates basal area. A field test included 18 laser scans in two Norway spruce stands with a wide range of stand densities, representing situations before and after thinning. Occlusion is a problem of single laser scans, and about one-third of the trees within the scanning range were not detected. Occlusion varies with stem density and branchiness. We therefore applied a flexible scanning range, which is detected automatically based on the laser hit density distribution for each scan. Scanning ranges were between 5.5 and 8.4 m (mean = 7.3 m) in the test scans, which is below the reach of the harvester crane, but still large enough to estimate local stand density. Basal area measured with the laser scanner was unbiased only in one of the two stands. Trees not detected or trees falsely detected caused only small bias of the basal area measurement in one of the two stands. Measurement errors for individual scans were, however, often around 10 m2 ha?1.  相似文献   

9.

Context

Avoidance or control of epicormic shoots is among the major silvicultural challenges for the production of high-quality oak timber. In northern Europe, contemporary oak silviculture aims to produce valuable timber on a relatively short rotation, applying early, heavy thinning combined with artificial pruning.

Aims

The aim of this study was to analyse the effects of pruning and stand density on the production of new epicormic shoots on young trees of pedunculate oak (Quercus robur L.).

Methods

The study was based on two field experiments in even-aged stands of pedunculate oak subjected to different thinning practices and early selection of potential future crop trees. From ages 13 to 15 years, stem density was reduced to 300 trees ha?1, 1,000 ha?1 or stands remained unthinned. Pruning was conducted on selected trees at ages 22–24 years. At that age, the stem density in unthinned control plots ranged from 2,500 to 3,100 ha?1. All treatments were replicated twice within each experiment.

Results

Pruning led to an overall increase in the total production of new epicormic shoots. More epicormic shoots were produced in the lower part of the stem (0–3 m in height) than in the upper part (3–6 m). The number of new epicormic shoots increased with increasing stand density.

Conclusion

Early, heavy thinning combined with high pruning at regular intervals may help shorten the rotation length for pedunculate oak without further reduction in wood quality than that which is caused by wider annual growth rings.  相似文献   

10.
The mixture of beech (Fagus sylvatica L.) and oak (sessile oak, Quercus petraea (Matt.) Liebl., and pedunculate oak, Q. robur L.) is of considerable importance in Europe and will probably become even more important under climate change. Therefore, the performance of oak and beech in mixture was compared with the species’ growth in pure stands. Data from 37 long-term mixing experiments in Poland, Germany and Switzerland were pooled for analysis of mixing effects on stand productivity and possible interrelationships with mixing portions or site conditions. We found that on average, mixed stands of oak and beech exceeded biomass productivity in pure stands by 30 % or 1.7 t ha?1 year?1, as the growth of both species was benefitted by the mixture. However, that the interaction actually ranged from facilitation and overyielding on poor sites to underyielding on fertile sites triggered by competition. An empirically derived interaction model showed volume and dry mass growth changing in mixed stands from gains of 50 % to losses of 10 % depending on site conditions. It is concluded that the analysed mixture grows in accordance with the stress-gradient hypothesis and that our results suggest a site-specific relationship between species mixture and biomass productivity. As a consequence, an adequate species mix should result in increased productivity under steady state as well as climate change.  相似文献   

11.
The relationship between competition and tree growth was studied in four stands of Pinus sylvestris L. occurring in a continental Mediterranean mountain area (in the Guadarrama range, Spain), i.e., an uneven-aged stand, a stand with oak (Quercus pyrenaica Willd.) understorey, a plantation, and a mature even-aged stand. Competition was measured by a simple size-ratio distance-independent index and was negatively associated with tree diameter. This negative association was stronger in the uneven-aged, plantation and mature even-aged stands than in the stand with oak understorey. Competition was also negatively associated with current diameter increment. This relationship was moderately strong in the mature even-aged stand and weak in the uneven-aged stand and the plantation. In the uneven-aged and the mature even-aged stands, a weakly significant relationship was found between diameter growth and tree size, whereas these parameters were not associated in the stand with oak understorey. The competition index provided a better prediction of growth rate than the alternative use of diameter. Both diameter and basal area growth were greater in the uneven-aged than in the even-aged stands.  相似文献   

12.
Forest ecosystems are increasingly expected to produce multiple goods and services, such as timber, biodiversity, water flows, and sequestered carbon. While many of these are not mutually exclusive, they cannot all be simultaneously maximised so that management compromise is inevitable. We used a 42-year dataset from a naturally regenerating floodplain forest of the river red gum (Eucalyptus camaldulensis) to investigate the effects of pre-commercial thinning on long-term patterns in habitat quality, forest structure and rates of carbon storage (i.e. standing aboveground carbon). Estimates of habitat quality were based on the density of hollow-bearing trees because hollows are ecologically important to many species of vertebrates and invertebrates in these forests. Thinning improved habitat value by producing 20 (±8) hollow-bearing trees per ha after 42 years, while the unthinned treatment produced none. Unthinned (highest density) stands were dominated by many slender trees, mostly <25 cm in diameter, whereas thinned stands produced negatively skewed size distributions with higher median and maximum stem diameters. Moderately thinned stands (560 trees ha−1) had the highest aboveground carbon storage rate (4.1 t C year−1) and the highest aboveground carbon stocks (200.2 ± 9.6 t C ha−1) after 42 years, while the unthinned treatment had the lowest carbon storage rate (1.6 t C year−1) and an intermediate level of aboveground standing carbon (165.1 ± 31.1 t C ha−1). Our results highlight the importance of early stand density as a determinant of long-term forest structure, habitat quality and carbon storage rates. We recommend that thinning be considered as one component of a broader strategy for enhancing the structure, habitat value and aboveground carbon storage of developing floodplain forests.  相似文献   

13.
杉木林分密度效应研究   总被引:20,自引:3,他引:20       下载免费PDF全文
该项试验共分2个部分.(1)造林密度试验,小区面积为600 m2,5个处理,即1 667株.hm-2(A)、3 333株.hm-2(B)、4~983株.hm-2(C)、6 633株.hm-2(D)、9967株.hm-2(E);(2)造林密度调控试验,造林设计方法与造林密度试验相同,但在林分生长过程中,按密度管理图的密管线0.5为标准进行间伐,间伐后保留密度要与临近的下一个初植密度较稀植的林分密度基本相同,两者进行比较.试验结果(1)造林密度试验,优势高、平均高、平均胸径均随年龄的增加而递增,随密度的增加而递减,优势高9a、平均高6 a、平均胸径5 a,密度间差异已达显著性水平;林分蓄积量则随年龄增加而递增,5~7 a,密度间差异显著,8~18a,只有A密度与E、D密度差异显著;枝下高随密度、年龄的增加而递增,12~a后,C、D、E密度间的差异很小;冠幅随密度的增加而递减,随年龄的增加而递增,9~10a后,各密度则随年龄增加而缓慢递减.(2)造林密度调控试验,同一指数级,间伐后的林分与其密度基本相同未间伐的林分比较,其优势高、平均高差异不明显;立木蓄积前者小于后者;总蓄积(立木蓄积+间伐蓄积)前者大于后者;同一指数级,初植密度不同的林分,间伐后与密度基本相同未间伐林分的蓄积百分比,初植密度大的大于初植密度小的;指数级不同,而初植密度相同的林分,间伐后与密度基本相同未间伐的林分总蓄积百分比,高指数级的比值大于低指数级的比值.  相似文献   

14.
  • ? The effects of thinning and heavy stand density reduction was investigated in Turkey oak (Quercus cerris L.) forests of central Italy, to evaluate the physiological responses and the growth status of trees that survived a past coppice cut and thinning to convert the stand to high-forest.
  • ? The working hypothesis was that a strong decrease in stand density would cause a decreasing in canopy-intrinsic water-use efficiency (measured as the ratio of CO2 assimilation to stomatal conductance, A/g), thus an increase in tree-ring carbon isotopic discrimination (Δ13C).
  • ? The tree-ring Δ13C of the remaining trees (“survivors”) was found to have significantly (P < 0.05) raised between year two and year seven since the coppice stand was thinned (high-forest conversion thinnings). This effect was mostly caused by a large decrease in tree-rings Δ13C at control site which was characterized by high density and competition by trees. An increase in survivors tree-rings Δ13C probably indicates an improved water availability, possibly induced by a decrease in competition and in stand density or a decrease in the precipitation intercepted by the canopy (i.e., a stronger increase in g over A since a decrease in A is highly unlikely). A change in foliar nitrogen, foliar Δ13C and content in chlorophylls was also recorded seven years after thinning.
  • ? Thinnings carried out to convert old abandoned coppices into high-forest stands induce short-term stimulation of Turkey oak growth by increasing light and water availability. We were able to make a detailed reconstruction of the impact of past silvicultural treatment on the stand using a tree-ring wood Δ13C time-series.
  •   相似文献   

    15.
    ABSTRACT

    Oaks (Quercus sp.) account for nearly one-third of the sawtimber harvest in Wisconsin. As trees age, their ability to respond to thinning is reduced; therefore, the objective of this study was to determine whether thinning previously unthinned oak stands of advanced age (≥ 60 yr) would achieve biological, financial, and operational objectives. During 2014, we conducted an inventory of 25 oak stands in northern Wisconsin. Fifteen received their first thinning 8–14 yr ago at ages 60–78 yr and 10 had never been thinned. Stand-level volume growth, logging costs, and net present values were estimated for each site. The age and site index of the thinned and unthinned sites were not significantly different (p > .10). Thinned and unthinned sites grew comparable net volumes per ha (5.09 and 5.90 m3, respectively); however, because this growth was concentrated on fewer trees, the trees on the thinned sites responded vigorously to thinning. As age at first thinning increased, growth response was reduced (p = .067); however, thinning still increased the growth of residual trees. Thinned sites had higher net present values compared to unthinned sites (p < .01) and logging costs were 10.6% lower (p = 0.06). Overall, for stands between 60 and 78 years old, thinning was beneficial financially, operationally, and biologically.  相似文献   

    16.
    Above- and below-ground C pools were measured in pure even-aged stands of Nothofagusantarctica (Forster f.) Oersted at different ages (5–220 years), crown and site classes in the Patagonian region. Mean tissue C concentration varied from 46.3% in medium sized roots of dominant trees to 56.1% in rotten wood for trees grown in low quality sites. Total C concentration was in the order of: heartwood > rotten wood > sapwood > bark > small branches > coarse roots > leaves > medium roots > fine roots. Sigmoid functions were fitted for total C accumulation and C root/shoot ratio of individual trees against age. Total C accumulated by mature dominant trees was six times greater than suppressed trees in the same stands, and total C accumulated by mature dominant trees grown on the best site quality was doubled that of those on the lowest site quality. Crown classes and site quality also affected the moment of maximum C accumulation, e.g. dominant trees growing on the worse site quality sequestered 0.73 kg C tree−1 year−1 at 139 years compared to the best site where 1.44 kg C tree−1 year−1 at 116 years was sequestered. C root/shoot ratio decreased over time from a maximum value of 1.3–2.2 at 5 years to a steady-state asymptote of 0.3–0.7 beyond 60 years of age depending on site quality. Thus, root C accumulation was greater during the regeneration phase and for trees growing on the poorest sites. The equations developed for individual trees have been used to estimate stand C accumulation from forest inventory data. Total stand C content ranged from 128.0 to 350.9 Mg C ha−1, where the soil C pool represented 52–73% of total ecosystem C depending on age and site quality. Proposed equations can be used for practical purposes such as estimating the impact of silvicultural practices (e.g. thinning or silvopastoral systems) on forest C storage or evaluating the development of both above- and below-ground C over the forest life cycle for different site qualities for accurate quantification of C pools at regional scale.  相似文献   

    17.
    The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

    18.
  • ? The Reineke Stand density rule relating stem numbers to the quadratic mean diameter is generally used as a reference for modelling maximal stand density.
  • ? The linearity of this relationship after double logarithmic transformation is generally assumed, but it must be questioned for untouched stands and stands with a conventional thinning regime. Curvilinearity is demonstrated for some spruce and beech stands in Switzerland and shown to be statistically representative. This relationship is independent of the site index. It can be interpreted as a change in mortality in young stages mainly due to competition and in older stages more to ageing.
  • ? A more accurate estimation of the maximal stand density needs to take into account the important variation around the mean course, known as the yield level. A simple method to assess the yield level of any stand regardless of whether it is thinned or not is presented, based on estimating the effect of a stand opening on the basal area.
  •   相似文献   

    19.
    Abstract

    Structural changes over time in forests of shade-tolerant species are difficult to study because these stands are often broadly uneven-aged and not suitable for traditional chronosequence analysis. Yet because of past disturbances of variable intensity and frequency, there is often substantial structural variation among stands of a given site quality class. In this study, diameter distributions from 70 primary northern hardwood stands were analyzed to determine if certain structural indices might allow placement of stands in a developmental sequence.

    Modal stand diameter and the fraction of total overstory crown area in large trees (> 46 cm dbh) were among the most useful measures for distinguishing stages of development. Modal diameter ranged from 10 cm to 62 cm for stands on good sites. Correlations between diameter and age were highly significant (P < 0.0001) for the three principal species on all three site quality classes, suggesting that stands with a greater proportion of large trees are generally in a later stage of development. Stands with < 45% of the crown area in large trees have predominantly unimodal size distributions. As modal stand diameter increases, the shape of the size distribution changes from positively skewed to nearly symmetric. As the proportion of crown area in large trees exceeds 45% and the ratio of crown area in large to mature (26-45 cm dbh) trees exceeds 1.5, the form of the size distribution changes to multimodal, irregular, or descending monotonic.  相似文献   

    20.
    Crown size is a good indicator of the growth potential of trees and is often used in forest management for outlining thinning guidelines or constructing forest growth models. The aim of this study was to analyse mean crown radius as a function of stem size, stand density and site productivity in even-aged stands of pedunculate oak (Quercus robur L.). Data included measurements of 620 trees from 53 plots in nine thinning experiments and one operational stand in Sweden, Denmark and Great Britain, representing a wide spectrum of thinning practices ranging from the strictly unthinned control to extremely heavy thinning with essentially solitary trees. Three sets of models were constructed based on different predictor variables, including indicators of individual stem size (diameter at breast height, DBH), stand density/thinning grade (quadratic mean diameter and stand basal area) and site productivity (stand top height). Preliminary results indicated a significant effect of DBH and (nominal) thinning grade on crown radius. The response pattern of the final models indicated an increasing crown radius with increasing DBH, with increasing thinning grade (decreasing stand density) and with decreasing site productivity. The models are valid for predicting the crown radius of pedunculate oak in even-aged forest stands.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号