首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of total airborne bacteria, respirable endotoxins, ammonia, and respirable and inhalable particles were monitored in 160 piggery buildings in Australia between autumn 1997 and autumn 1999. The overall mean airborne bacteria, respirable endotoxins, ammonia (NH3), and inhalable and respirable particle concentrations measured were 1.17 x 10(5) cfu m(-3), 33.1 EU m(-3), 3.7 ppm, 1.74 mg m(-3), and 0.26 mg m(-3), respectively. The characteristics of the buildings and management systems used were documented at the time of sampling. A multifactorial general linear model (GLM) statistical procedure was used to analyze the effects of housing and management factors on the concentrations of the airborne pollutants. Both airborne bacteria and respirable endotoxin concentrations were affected by building classification (type), and respirable endotoxin concentrations were positively correlated with increasing humidity. The concentrations of airborne bacteria increased as the level of pen hygiene (cleanliness) decreased. The NH3 concentrations were primarily affected by level of pen hygiene, building volume, pig flow management, and season. Building classification, pig flow management, season, building volume, ventilation rates, and temperature affected inhalable particle concentrations. Respirable particle concentrations were primarily affected by building classification, pen hygiene, pig flow management, season, ventilation rates, temperature, and humidity. These findings suggest that environmental improvement strategies (such as improved cleaning, ventilation, and temperature control) are likely to reduce airborne pollutant concentrations in pig buildings and in the environment, thus improving the health and welfare of both pigs and farm staff.  相似文献   

2.
The internal concentrations and emission rates of ammonia (NH3), total bacteria, respirable endotoxins, and inhalable and respirable particles were monitored in 160 piggery buildings in four states of Australia (Queensland, Victoria, Western Australia, and South Australia) between autumn 1997 and autumn 1999. Emissions were calculated for individual buildings as a product of internal concentration and ventilation rate, which were estimated by a carbon dioxide balance method. Relative humidity and temperature were also measured. The overall mean emission rates of NH3, total bacteria, respirable endotoxins, inhalable particles, and respirable particles per 500 kg live weight from Australian piggery buildings were 1442.5 mg h(-1), 82.2 x 10(6) cfu h(-1), 20.1 x 10(3) EU h(-1), 1306.7 mg h(-1), and 254.7 mg h(-1), respectively. Internal concentrations of key airborne pollutants have been reported in companion articles. Building characteristics and management systems used in the piggeries were documented at the time of sampling and used in the subsequent statistical modeling of variations in pollutant emission rates. The emissions model used all statistically significant factors identified during prior modeling conducted for individual pollutant concentrations and ventilation airflow. The identification of highly significant factors affecting emission rates and internal concentrations should aid the development of strategies for the industry to reduce emission rates from individual buildings, thus improving the environmental performance of piggery operations. In the second part of the article, specific recommendations are made based on the overall study results.  相似文献   

3.
舍内环境因素诸如温、湿、有害气体、风速等很大程度上受通风工艺的影响。横向通风改为纵向通风后,舍内气流速率提高近6倍,且气流分布均匀,舍内氨气浓度和微生物数量分别降低50%和68%,粉尘含量也由34.6mg/m~3下降为11.4mg/m~3,节省电力23.7%  相似文献   

4.
夏季肉牛舍湿帘风机纵向通风系统的环境CFD模拟   总被引:3,自引:2,他引:1  
为了研究湿帘风机纵向通风系统应用于肉牛舍的夏季降温效果,该试验在现场环境指标实测的基础上,采用计算流体力学(computational fluid dynamics,CFD)的方法对湿帘风机纵向通风肉牛舍的气流场与温度场进行模拟,并对系统进行改进与优化.模拟时将牛只按与实物原型等比例引入到模型中,结果表明:舍内温度分布均匀,但受牛体挡风的影响,气流分布不均,高风速区主要集中在屋顶及饲喂走道,可达0.9~1.2 m/s;牛活动区域风速较小,均小于0.6 m/s,不能满足饲养标准.在75个风速测定点剔除异常值后,气流场的相对误差范围为0.16%~94.41%,平均相对误差为34.53%,45个温度测点的相对误差范围为0.09%~10.74%,平均相对误差4.71%.通过温度场吻合性结果确定模拟与实测有较好的吻合度.在不改变牛舍围护结构及舍内构造的前提下,对牛舍进行优化,舍内安装导流板,使得温度与气流场的分布均匀性显著提高,降温效果更为显著.该研究可为湿帘风机牛舍的优化设计和环境调控提供参考.  相似文献   

5.
估算必要通风量是温室通风设计确定通风机风量和数量、通风口尺寸和位置等硬件设施的前提,但实践中,通过比较满足排热、除湿和增加二氧化碳(carbon dioxide)CO_-2三方面需求而确定必要通风量的方法繁琐,缺少气象数据,温室受热面积修正系数、蒸腾蒸发热量损失系数、室外水平面太阳总辐射照度、室外计算温度、室内设计温度等参数难以确定。为解决这些问题和使农业行业标准《温室通风设计规范》修订版中推荐的必要通风量计算方法更具有操作性,该文分析了3种必要通风量计算方法与通风能力设计时最大必要通风量的关系;借鉴美国空气调节室外计算参数获得方法并采用中国可获得的气象数据,统计得出中国各地12个月份的室外水平面太阳总辐射照度和室外计算干球温度,解决了温室通风设计中无法针对不同使用期估算必要通风量的问题;另外通过分析中国温室主要结构形式、温室受热面积修正系数、蒸腾蒸发热量损失系数、当地气象以及作物叶面积指数等参数之间的关系,明确了温室受热面积修正系数等参数的取值方法。研究表明:通风能力设计时必要通风量应采用排除热量满足温度要求的方法计算。温室受热面积修正系数取值:连栋温室可在1.0~1.3范围内取值,夏季可取1.0~1.1,春秋季可取1.2~1.3,温室规模小、所在地纬度高的地区取较大值;日光温室可在1.0~1.5范围内取值,夏季可取1.0~1.2,春秋季可取1.3~1.5,其中所在地纬度高的地区可取较大值。蒸腾蒸发热量损失系数取值:可根据当地室外含湿量,育苗期在0.65~0.90之间选取,栽培期在0.80~1.15之间选取。  相似文献   

6.
密闭式猪舍多环境因子调控系统设计及调控策略   总被引:2,自引:6,他引:2  
大多数猪舍环境调控是建立在传统控制方法基础上的单一环境变量控制系统,难以对具有多个变量的系统建立精确的数值模型。该文基于模糊控制理论,以温度偏差和温度偏差变化率作为输入量,以通风模式和加热模式为输出控制量建立温度控制器;以相对湿度偏差和氨气浓度偏差为输入量,以通风模式为输出控制量建立通风控制器;并对不同季节多环境因子进行模糊化及逻辑推理,生成不同季节的调控策略及规则,建立2个具有双输入变量的非线性控制系统,加入动态补偿控制,优化猪舍环境调控系统。该文以在美国普渡大学环境研究猪舍监测所得的数据对建立的方法进行了模拟验证。结果表明,舍内温度与设定值最大相对误差为5%,实现了舍内温度稳定控制;舍内相对湿度与设定值最大相对误差为6.3%,充分满足湿度控制要求;猪舍氨气浓度变化范围为2.0~3.7 mg/m~3,远远小于设定值9.1 mg/m~3。因此,该文提出的猪舍多环境因子模糊控制系统及策略,能够很好地满足猪舍环境控制要求,为解决寒冷冬季猪舍温度与通风调控提供可行的思路。  相似文献   

7.
公猪舍夏季温度和流场数值CFD模拟及验证   总被引:9,自引:5,他引:4  
为研究夏季全漏缝地板公猪舍湿帘风机蒸发降温效果及舍内环境分布规律,该文利用计算流体力学CFD(computational fluid dynamics)对北京养猪育种中心SPF(Specific Pathogen Free Swine)公猪舍进行模拟研究并通过实测数据进行验证。研究中将漏缝地板作为多孔介质简化,基于标准k-?湍流模型对空载及装猪猪舍内的风速场和温度场进行模拟,通过模拟值与实测值的对比验证模型的合理性。结果表明采用该模型模拟空载时猪舍,风速场模拟值与实测值误差较小,相对误差范围在0.25%~30.8%。模拟温度与实测温度最大绝对误差为0.48 K,平均绝对误差为0.11 K,平均相对误差为0.5%。模拟装猪时的猪舍,温度分布结构与装猪前相似,但整体温度略有上升。该研究可对当前常用的含漏缝地板猪舍建模研究提供参考,并为畜禽舍内改造和建筑实践提供理论依据。  相似文献   

8.
环境是影响蛋鸡健康与生产性能的关键因素,为对蛋鸡舍环境进行综合性的舒适度评价,该研究将除湿热环境之外的空气环境质量也纳入评价指标体系中,采用模糊数学方法,研究了重要环境参数在规模化蛋鸡舍环境舒适度综合评价中的权重,对舍内温度、湿度、CO_2浓度、氨气(NH3)浓度、风速等关键环境参数进行归一化处理,建立了基于多元环境参数的鸡舍综合环境舒适度评价指数(Comprehensive Environmental Index, CEI),并基于LabVIEW软件开发了一套评价系统,可将上述环境参数在雷达图中进行可视化展示,以及对单因素环境参数和环境舒适度进行预警。通过实际使用中鸡舍环境监测数据的分析验证,CEI能够体现舍内整体环境舒适度的变化,对各个时段环境因素间的相互作用做出应答,尤其是温度降低导致空气环境质量影响上升的时段。该研究对于综合评价蛋鸡舍环境条件并进行精准控制,提高环境舒适度,提供了方法支撑。  相似文献   

9.
中国规模化养鸡环境控制关键技术与设施设备研究进展   总被引:3,自引:2,他引:1  
近40年来,养鸡业规模化程度越来越高,现代鸡种在遗传性能上大幅提升了高产指标,对养殖环境稳定性要求也愈来愈高,养殖设施环境条件成为影响鸡只遗传潜力和生产性能充分发挥的保证。该研究从规模养鸡环境调控理论、调控技术和设施设备3个方面对目前的研究进行总结,主要阐明鸡舍保温隔热、湿帘蒸发降温系统和气流组织理论体系;围绕不同气候区鸡舍夏季通风湿帘降温系统调控技术,如鸡舍温度的均匀性控制、温风耦合调控及防温度骤降技术等;连栋鸡舍建筑、高密度叠层笼养、鸡舍环境净化设备等设施设备的研发与应用研究进展;并展望了中国畜禽养殖发展的方向,从智能化养殖管理与监控平台、智能化笼内死鸡识别装置、福利化养殖模式及装备研发等角度展望了未来养鸡业的发展与研究内容,该研究为规模化养鸡环境调控研究提供了参考依据,促进现代养鸡产业的绿色高质量转型升级与健康可持续发展。  相似文献   

10.
[目的]探讨近地面和高空相对湿度的时空变化特征及其与气温和降水的关系,为研究山东省气候波动过程提供依据.[方法]基于山东省1960-2012年探空和地面观测资料,采用回归分析、IDW空间插值、Mann-Kendall单调趋势检验法以及敏感性分析等方法研究了相对湿度变化特征.[结果]1960-2012年,山东省近地面年均相对湿度呈下降趋势,变化速率为-0.23%/10 a(p>0.05).其中,春季、秋季和夏季相对湿度下降速率大小依次为-0.45%/10 a,-0.42%/10 a和-0.18%/10 a,而冬季相对湿度却呈增加趋势(0.10%/10 a).空间上,近地面相对湿度从东部沿海向西部内陆递减,而下降趋势呈现“东快西慢”的特点.高空相对湿度也呈下降趋势,而且对流层中下层的变化趋势比上层明显.近地面相对湿度季节变化对年变化的贡献率由大到小依次为:秋季>春季>冬季>夏季,对流层中下层各季的贡献率大小依次为:秋季>冬季>春季>夏季,而对流层上层各季贡献率由大到小为:夏季>秋季>冬季>春季.[结论]敏感性分析表明,干旱指数变化1%,将引起近地面和高空相对湿度分别变化-1.55%和-1.95%,而气温或降水变化1%,将导致相对湿度变化在-0.15%~0.09%.  相似文献   

11.
舍内环境因素诸如温、湿、有害气体、风速等很大程度上受通风工艺的影响。横向通风改为纵向通风后,舍内气流速率提高近6倍,且气流分布均匀,舍内氨气浓度和微生物数量分别降低50%和68%,粉尘含量也由34.6mg/m3下降为11.4mg/m3,节省电力23.7%  相似文献   

12.
该研究通过纤维风管4种开孔方案设置,结合湿帘冷风机,满足到达1.3 m高度时,1号、2号、3号及4号风管射流风速分别为1.5、2.3、3.1、3.9 m/s;测量牛舍的环境指标和试验牛的生理指标,比较缓解热应激效果,探索较优化的开孔方案。结果表明:测定期间,4个风管区域之间温度差异不显著(P>0.05),平均比舍外低2.1℃(P<0.05);相对湿度均低于85%。试验牛所在3号风管区域平均风速最高,为1.32 m/s;1号风管区域最低,为0.62 m/s。二氧化碳浓度3号风管区域最低,1号风管区域最高(P<0.05)。牛只呼吸频率3号风管区域最低,为42次/min,1号风管区域最高,为52次/min,肉牛呼吸频率与试验区风速显著负相关。该研究表明,湿帘冷风机-纤维风管系统可有效缓解肉牛热应激,开孔方案设置满足到达1.3 m高度时射流风速为3.1 m/s的风管效果最优。  相似文献   

13.
黑河流域森林生态系统湿热特征分析   总被引:3,自引:0,他引:3  
利用2008年黑河流域典型森林生态系统土壤和空气温湿度观测资料,分析了不同层次土壤和大气温度和湿度的变化特征。结果表明:(1)各层土壤温度在2—3月达到一年中的最小值,在7—9月达到一年中最高值,土壤温度周年变化幅度以及年最低温度随土壤深度的增加而递减。(2)表层土壤含水量受春季融雪和降雨影响较大,在8月中、上旬达到最高值;20—40cm土壤含水量对春季融雪响应较弱,80—120cm土壤含水量较为稳定,不受冻融交替影响。(3)从当年7月中旬至次年1月下旬,林地各层气温呈下降趋势,2月上旬至7月上旬呈上升趋势;距离地表近2m高度全年各月份气温略高于10m和24m高度,气温最高值和最低值分别出现在14:30和6:30左右。(4)4—6月林内湿度相对较低,7—10月相对较高,空气相对湿度最高值和最低值分别出现在22:00和11:30左右;10m和24m处空气相对湿度变化规律与2m处基本一致。  相似文献   

14.
上海地区荷兰玻璃温室内温、湿控制分析   总被引:2,自引:0,他引:2  
采用线性回归分析方法分析冬、春、秋季温室内温、湿度与界温、湿度,管道温度,通风窗开窗幅度之间的关系,得出冬、春、秋季温,湿控制的基本规律。  相似文献   

15.
新疆艾比湖绿洲潜在蒸散量年代际变化特征   总被引:6,自引:4,他引:2  
潜在蒸散量在研究气候变化、监测农业旱情、提高农业水资源利用率等方面得到广泛应用。为研究新疆艾比湖绿洲潜在蒸散量年代际变化特征,该文使用1960—2013年艾比湖绿洲地区4个气象站点的数据,通过Penman-Monteith公式计算年和季节潜在蒸散量,利用Cramer突变检验分析和相关性分析与贡献率计算其特征变化。结果表明:1)20世纪90年代的潜在蒸散量在研究时间尺度中达到最低,自2000年后开始增加。春季、夏季、秋季的潜在蒸散量与年潜在蒸散量变化趋势一致,冬季无明显变化;2)通过Cramer法检验表明,春、夏、秋潜在蒸散量3季突变时间分别为1999年、1996年、1999年,冬季不存在突变,总体而言,潜在蒸散量突变均出现在20世纪90年代;3)风速是全年及季节潜在蒸散量的主导因素。研究可为艾比湖绿洲区域的水资源科学配置、农业灌溉管理以及脆弱生态环境恢复提供依据。  相似文献   

16.
半阶梯式笼养蛋种鸡舍冬季日间空气污染物排放特征   总被引:2,自引:0,他引:2  
蛋鸡舍空气颗粒物、空气微生物和氨气等污染物的排放不但影响场区生物安全,更会造成环境污染问题。该文采用直线多点均匀采样新型系统,对北京地区某半阶梯式笼养蛋种鸡舍冬季空气颗粒物、微生物和氨气3种污染物的日间排放进行监测和分析,研究半阶梯式笼养蛋种鸡舍冬季日间空气污染物排放特征。结果表明,该蛋种鸡舍试验期间舍内温度保持在18.0~20.0℃;间歇性通风条件下,风机的开启时长和舍外温度具有正相关关系(P0.05,R2=0.883 7);在冬季8:00-18:00期间,空气颗粒物的排放质量浓度为0.5~0.8 mg/m~3,每只鸡排放量为1.0~1.5 mg/h;空气微生物的排放浓度为4.0~4.5 log10CFU/m~3,每只鸡排放量为4.3~4.8 log10 CFU/h;氨气排放浓度为7.6~14.3 mg/m~3,每只鸡排放量为8.1~13.7 mg/h。试验期间,舍外温度低于舍内温度,试验鸡舍通风量及波动范围小,空气颗粒物、空气微生物和氨气的排放浓度、排放量与舍外温度、通风量、舍内相对湿度之间均未发现相关关系(P0.05)。该研究结果可为中国蛋鸡舍空气污染物排放特征提供参考。  相似文献   

17.
Human health hazards can exist in swine confinement buildings due to poor indoor air quality (IAQ). During this study, airborne dust and ammonia concentrations were monitored within a working farrowing facility as indicators of IAQ. The purposes of this study were to assess the temporal variability of the airborne dust and ammonia levels over both a daily and seasonal basis, and to determine the accuracy of real-time sensors relative to actively sampled data. An ammonia sensor, aerosol photometer, indoor relative humidity sensor, and datalogger containing an indoor temperature sensor were mounted on a board 180 cm above the floor in the center of a room in the facility. Sensor readings were taken once every 4 minutes during animal occupancy (3-week intervals). Measurements of total and respirable dust concentrations by standard method, aerosol size distribution, and ammonia concentrations were taken once per week, in addition to temperature and relative humidity measurements using a thermometer and sling psychrometer, respectively. Samples were taken between September 1999 and August 2000. Diurnal variations in airborne dust revealed an inverse relationship with changes in indoor temperature and, by association, changes in airflow rate. Ammonia levels changed despite relatively stable internal temperatures. This change may be related to both changes in flow rates and in volatility rates. As expected, contaminant concentrations increased during the cold weather months, but these differences were not significantly different from other seasons. However, total dust concentrations were very low (geometric mean = 0.8 mg/m3) throughout the year. Likewise, ammonia concentrations averaged only 3.6 ppm in the well-maintained study site.  相似文献   

18.
蛋鸡舍冬季CO2浓度控制标准与最小通风量确定   总被引:3,自引:2,他引:1  
中国现行的蛋鸡舍内CO_2浓度控制的农业行业标准为1 500 mg/m~3,主要适用于传统的刮板式清粪鸡舍。目前新建、改建鸡舍都采用传送带清粪方式,鸡舍内的相对湿度和氨气等有害气体浓度均明显减少,其冬季最小通风量和舍内CO_2浓度参数标准均有待重新研究。该文通过总结分析国内外相关学者对不同清粪方式蛋鸡舍内NH_3、CO_2浓度的测试数据,提出传送带清粪蛋鸡舍内CO_2浓度取值建议,并根据CO_2浓度平衡原理,提出该类蛋鸡舍冬季最小通风量的取值建议。结果表明:传送带清粪蛋鸡舍内CO_2浓度参数控制标准建议可取5 000 mg/m~3;蛋鸡舍冬季连续通风最小通风量为0.40~0.50 m~3/(h·kg)。该研究为中国新建、改建传送带清粪模式蛋鸡舍CO_2浓度参数标准的取值以及调控蛋鸡舍冬季通风与保温矛盾等问题提供了参考依据。  相似文献   

19.
植物工厂是当前可控农业环境的最高形式之一,但植物工厂内温度、气流空间分布不均,不同栽培架之间存在一定温差、气流速度差。为解决气流植物工厂内局部环境因子差异大的问题,该研究对植物工厂进风口设置进行改进,在侧进上出气流循环模式下,借鉴均流板原理设计了一款全网孔通风墙型植物工厂,并通过计算流体力学软件(computational fluid dynamics, CFD)进行模拟,分析该类型工厂下温度、气流速度、CO2浓度、相对湿度、适宜风速占比、空气龄、指定流线速度变化情况,以评价全网孔通风墙对植物工厂内局部环境差异的改进效果。该设计平均空气龄为7.5 s,是无全网孔通风墙条件下的1/9,空气更新效率有效提升。研究表明全网孔通风墙型植物工厂能有效提升植物工厂内环境因子分布均匀性。  相似文献   

20.
密闭式蛋鸡舍外围护结构冬季保温性能分析与试验   总被引:5,自引:4,他引:1  
蛋鸡舍围护结构的保温隔热性能是影响鸡舍温度的稳定性,进而影响蛋鸡健康和生产性能的关键因素。由于蛋鸡舍一般不采暖,依靠蛋鸡的自身显热产热量来维持冬季蛋鸡舍内温度,因此如果蛋鸡舍冬季饲养密度较低、通风过度或围护结构保温性能不足,都难以满足蛋鸡舍温度环境的要求。如何确定不同气候区鸡舍围护结构必要的保温性能和饲养密度要求是解决蛋鸡舍冬季通风和保温矛盾问题的关键。该文通过建立蛋鸡舍动态热平衡理论模型,系统分析了不同气候区鸡舍围护结构的最低热阻需求,得出不同气候区鸡舍围护结构的保温性能要求与蛋鸡饲养方式(密度)的关系。结果表明:冬季舍外计算温度分别为-25℃(东北、内蒙古)、-15℃(华北、西北)、0℃(长江以南)的地区,蛋鸡舍墙体、屋面的最小热阻应分别不小于0.778、0.972;0.573、0.716;0.266、0.333(m~2·℃)/W;对应3层全阶梯笼养、4层半阶梯笼养和4层叠层、6层叠层、8层叠层笼养等饲养模式最大饲养密度下,所能够适应的围护结构冬季室外计算温度应分别不低于-14、-17、-19、-22、-23℃。研究结果为不同气候地区选择适宜饲养模式以及密闭式蛋鸡舍围护结构保温系统的设计提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号