首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECe) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = ?0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions.  相似文献   

2.
The electromagnetic induction (EMI) Geonics EM38 (G‐EM38) and Dualem 1S (D‐1S) sensors are used frequently for assessment of soil salinity and other soil characteristics in irrigated agriculture. We compared these two sensors to determine whether they could be used interchangeably for the measurement of apparent soil electrical conductivity (ECa) in horizontal (ECa‐h) and vertical (ECa‐v) coil receiver modes. Readings were taken at 201 locations identified in three irrigation districts in both modes, and statistical comparisons were made on the raw data and from maps of a 2‐ha irrigated field made using 1680 horizontal mode readings. Both sensors gave the same ECa‐v readings (mean G‐EM38 and D‐1S difference = 0), whereas the ECa‐h readings were slightly greater with the Geonics EM38 than with the Dualem D‐1S (mean difference = 0.075 and 0.05 dS/m for the 201 and 1680 observations, respectively). The degree of coincidence between both sensors for soil profile ECa classification was acceptable: 82% for normal profiles (i.e. ECa‐h/ECa‐v < 0.9) and 90% for inverted profiles (i.e. ECa‐h/ECa‐v > 1.1). In practical terms, Geonics EM38 and Dualem 1S sensors could be used interchangeably with similar or very close results.  相似文献   

3.
In the oldest commercial wine district of Australia, the Hunter Valley, there is the threat of soil salinization because marine sediments underlie the area. To understand the risk requires information about the spatial distribution of soil properties. Electromagnetic (EM) induction instruments have been used to identify and map the spatial variation of average soil salinity to a certain depth. However, soils vary with depth dependent on soil forming factors. We collected data from a single‐frequency and multiple‐coil DUALEM‐421 along a toposequence. We inverted this data using EM4Soil software and evaluated the resultant 2‐dimensional model of true electrical conductivity (σ – mS/m) with depth against electrical conductivity of saturated soil pastes (ECp – dS/m). Using a fitted linear regression (LR) model calibration approach and by varying the forward model (cumulative function‐CF and full solution‐FS), inversion algorithm (S1 and S2), damping factor (λ) and number of arrays, we determined a suitable electromagnetic conductivity image (EMCI), which was optimal (R2 = 0.82) when using the full solution, S2, λ = 3.6 and all six coil arrays. We conducted an uncertainty analysis of the LR model used to estimate the electrical conductivity of the saturated soil‐paste extract (ECe – dS/m). Our interpretation based on estimates of ECe suggests the approach can identify differences in salinity, how these vary with parent material and how topography influences salt distribution. The results provide information leading to insights into how soil forming factors and agricultural practices influence salinity down a toposequence and how this can guide soil management practices.  相似文献   

4.
基于多源数据的中原黄泛区土壤盐分空间变异分析   总被引:6,自引:4,他引:6  
为研究中原黄泛区土壤盐分空间变异,以河南省封丘县为研究区,综合考虑引起土壤盐渍化的土壤盐分、地形、地下水位及矿化度、植被情况及其他影响因素,基于遥感影像和磁感式探测获得的土壤表观电导率等多源数据建立了区域土壤盐分综合评估模型,并对研究区分层土壤盐分空间变异进行评估。结果表明:对于0~60 cm土层利用多源数据进行模型构建中土壤表观电导率与光谱指数占主要比例,模型对于各层土壤盐分的评价精度0~60 cm土层优于≥60~120 cm土层。土壤盐分含量随着深度的增加而增大,变异系数在0.22~0.28之间,属中等变异强度。土壤盐分主要集中分布在研究区北部与东南部,尤其是东南角黄河沿线区域,且随着土壤剖面显示出从表现到深层逐渐增加的趋势。利用多源数据建立的分层土壤盐分综合评估模型对于区域土壤盐分解析具有较高精度。该研究为中原黄泛区土壤盐化消减与土壤质量提升提供了可靠新方法。  相似文献   

5.
Soil sodicity is an increasing problem in arid‐land irrigated soils that decreases soil permeability and crop production and increases soil erosion. The first step towards the control of sodic soils is the accurate diagnosis of the severity and spatial extent of the problem. Rapid identification and large‐scale mapping of sodium‐affected land will help to improve sodicity management. We evaluated the effectiveness of electromagnetic induction (EM) measurements in identifying, characterizing and mapping the spatial variability of sodicity in five saline‐sodic agricultural fields in Navarre (Spain). Each field was sampled at three 30‐cm soil depth increments at 10–30 sites for a total of 267 soil samples. The number of Geonics‐EM38 measurements in each field varied between 161 and 558, for a total of 1258 ECa (apparent electrical conductivity) readings. Multiple linear regression models established for each field predicted the average profile ECe (electrical conductivity of the saturation extract) and SAR (sodium adsorption ratio of the saturation extract) from ECa. Despite the lack of a direct causal relationship between ECa and SAR, EM measurements can be satisfactorily used for characterizing the spatial distribution of soil sodicity if ECe and SAR are significantly auto‐correlated. These results provide ancillary support for using EM measurements to indirectly characterize the spatial distribution of saline‐sodic soils. More research is needed to elucidate the usefulness of EM measurements in identifying soil sodicity in a wider range of salt and/or sodium‐affected soils.  相似文献   

6.
Restoration and management of riparian areas have recently become important issues. Soil and salinity surveys are required before planning restoration activities and land‐uses if the riparian area is salt‐affected. In this study, we characterise the soils and salinity conditions of a riparian area that underwent irrigated agriculture with significant soil salinisation, to assess the general site suitability for riparian restoration and potential land‐uses. Throughout the area, 19 profiles were described and classified and 95 soil samples were collected for their chemical and physical characterisation. The salinity of the 35‐ha presumably salt‐affected area was analysed by reading the bulk soil electrical conductivity (ECa) with the hand‐held electromagnetic‐induction sensor Geonics‐EM38 at 558 locations and by measuring the electrical conductivity of the saturation extract (ECe) and sodium adsorption ratio (SAR) of 60 soil samples collected at 30 of those locations. The regression of ECe on EM readings predicted ECe with R2 > 0·92 at the 0–100 cm soil depth. The geo‐referenced soil classification (three soil units were established) and salinity maps identified the soil constraints for the area's restoration potential. The major limiting soil factors were soil salinity, sodicity and waterlogging in the southern half of the soil unit #3, and soil compaction in most of the area. The value of those limiting factors, along with differences in soil texture, as a means of assessing restoration potential of riparian vegetation and for identifying suitable land‐uses for the three soil units was discussed. Agro‐forestry, planned grazing, recreational and educational land‐uses are possible for the site. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

To better understand the adverse impacts of soil salinization and promote rice (Oryza sativa L.) production in crops from the north central coastal region of Vietnam, the spatiotemporal variability of soil salinity and its effects on rice production were investigated. Experiments were conducted at 19 plots widely distributed in the Quang Phuoc commune, in the Quang Dien district of the province of Thua Thien Hue in the north central coastal region of Vietnam. We determined the elevation of the 19 plots to evaluate the influence of elevation on salt accumulation. Soil samples from the 19 plots were collected in January, May and September 2012 and 2013 to study the spatiotemporal variability of salinity. A soil saturation paste was prepared and used to measure electrical conductivity (ECe). The elevation measurements obtained suggest that the research site could be divided into low- and high-elevation plots, with elevation of the low-elevation plots ranging from –0.52 to 0.07 m and the high-elevation plots from 0.26 to 0.86 m (one of the sampling plot was designated with an elevation of 0 m and the elevations of the remaining 18 plots were measured relative to that). ECe was high at low elevations. In conclusion, although the differences in elevation between the 19 plots were very small (centimeters to decimeters), they still led to large differences in soil salinity levels. In the high-elevation plots, soils were irrigated with freshwater, thus maintaining low ECe levels throughout the year (< 1.0 dS m?1). In contrast, in the low-elevation plots, soils were subject to seawater intrusion, resulting in high ECe levels in all seasons (> 1.9 dS m?1). We recommend several solutions to limit the unfavorable effects of salinity and promote rice production. First, a comprehensive dike system should be constructed along the lagoon to prevent seawater intrusion onto land. Second, it will be necessary to construct adequate drainage facilities in the depressed areas to promote rapid water drainage into canals during and after flooding and irrigation. Third, because ECe was high from May to September, adequate fresh irrigation water should be frequently supplied to lower the ECe during this period.  相似文献   

8.
基于EM38和WorldView-2影像的土壤盐渍化建模研究   总被引:1,自引:0,他引:1  
在干旱半干旱地区,土壤盐渍化是常见的土地退化问题之一。本研究选取于田县克里雅河上游边缘典型盐渍化区域作为研究靶区,通过EM38大地电导率仪实测土壤表观电导率,提取不同系数下的土壤调节植被指数(SAVI),分析了SAVI指数与土壤电导率间的相关性,并利用同时期WorldView-2影像的敏感波段建立了基于高分辨率影像数据的土壤盐渍化偏最小二乘回归(PLSR)模型并进行了精度验证。结果表明:①从遥感影像提取SAVI指数时,在系数(L)调节范围内选取固定系数值,系数值(间隔为0.1)从0.1变化到1.0的过程中,相应提取的SAVI指数与土壤电导率的相关性明显提升,相关性系数(r)从0.30提高到0.50,并通过显著性检验(P0.01)。②选取的SAVI1.0、B6、B7、B8四种变量中,以SAVI1.0+B6+B8为变量组合所建立的PLSR模型为最优,该模型较其他变量组合建模的决定系数(R2p)提高了0.11,因此,在研究区该模型具有更好的预测能力,模型精度为RMSEC=0.77dS/m、RC2=0.68、RMSEP=0.79 dS/m、RP2=0.66、RPD=2.2。  相似文献   

9.
In arid and semi-arid regions, effluent from subsurface drainage is often saline and in the absence of a natural outlet, its disposal is a serious environmental threat. A field experiment was conducted for 7 years using drainage water of different salinity levels (ECiw=6, 9, 12 and 18.8 dS/m) for irrigation of wheat during the dry winter season. The objective was to find whether crop production would still be feasible and soil salinity would not be increased unacceptably by this practice. The experimental crop was wheat during the winter season and pearl-millet and sorghum in the rainy season, grown on a sandy loam soil provided with subsurface drainage system. All crops were given a pre-plant irrigation with non-saline canal water and subsequently, saline drainage water of different salinity levels was used for the irrigation of wheat as per the treatment. On an average, the mean yield reduction in wheat yield at different ECiw was 4.2% at 6, 9.7% at 9, 16.3% at 12 and 22.2% at 18.8 dS/m. Pearl-millet and sorghum yields decreased significantly only where 12 dS/m or higher salinity water was applied to previous wheat crop. The high salinity and sodicity of the drainage water increased the soil salinity and sodicity in the soil profile during the winter season, but these hazards were eliminated by the subsurface drainage during the ensuing monsoon periods. The results obtained provide a promising option for the use of poor quality drainage water for the irrigation of winter wheat without undue yield reduction and soil degradation.  相似文献   

10.
基于电磁感应的典型干旱区土壤盐分空间异质性   总被引:5,自引:1,他引:4  
为研究干旱区土壤盐分空间异质性,指导农业生产实践,运用大地电导率仪(EM38、EM31)对研究区域进行移动式磁感调查,获取表观电导率(ECa)。同时,通过27个校准点的采样和ECa测量,建立土壤盐分的电磁感应解译模型。干旱区土壤盐分质量分数与EM38、EM31水平模式读数(H38、H31)显示出良好的相关性(R=0.935),可以利用ECa结合GIS和地统计学知识研究土壤盐分的空间分布。采用两种方法进行研究:一种是先利用解译模型获取磁感调查点的土壤盐分质量分数,然后进行地统计分析研究其空间分布;另一种是先利用地统计分析研究H38和H31的空间分布,然后利用解译模型通过栅格运算计算盐分质量分数,精度检验显示前者预测值与实测值之间的相关性更好(R2, 0.888>0.873);标准差较低(std. 0.414<0.426),具有更高的预测精度。研究结果表明,基于电磁感应研究干旱区土壤盐分空间异质性是切实可行的,这对于土壤盐渍化的快速诊断,指导农业生产和促进精准农业的发展具有重要的意义。  相似文献   

11.
灌溉水盐度和施氮量对棉花产量和水氮利用的影响   总被引:6,自引:3,他引:3  
淡水资源不足和盐渍化是干旱半干旱地区农业生产的重要限制因素,因此提高水、 肥利用效率和作物产量,减少根区盐分积累和地下水污染风险是这些地区水分养分优化管理的重要目标。通过田间试验研究了滴灌条件下灌溉水盐度和施氮量对棉花产量和水、 氮利用率的影响。试验设置灌溉水盐度和施氮量两个因素,灌溉水盐度(电导率,EC)设3个水平,为0.35(淡水)、 4.61(微咸水)和 8.04(咸水)dS/m,分别用SF、 SM和SH表示;施氮(N)量设4个水平,为0、 240、 360和480 kg/hm2,分别以N0、 N1、 N2和N3表示。研究结果表明,棉花干物质重、 氮素吸收量和氮肥利用率受灌溉水盐度、 施氮量及二者交互作用的影响显著。咸水灌溉处理(SH)棉花干物质重、 氮素吸收量、 产量和氮肥表观利用率均显著降低,而微咸水灌溉(SM)对棉花氮素吸收量和氮肥表观利用率影响不大,但干物质重和产量有所降低。施氮肥可显著促进棉花生长,增加干物质重、 氮素吸收量和产量,但随着灌溉水盐度的增加,其促进效应明显受到抑制。微咸水和咸水灌溉会导致水分渗漏增加、 蒸散量降低,增施氮肥则可显著降低水分渗漏、 增加蒸散量。微咸水灌溉水分利用率最高,其次是淡水灌溉,咸水灌溉最低;增施氮肥则可显著提高水分利用率。因此滴灌条件下,高盐度的咸水不宜用于灌溉。而短期的微咸水灌溉不会对棉花产量和水、 氮利用率产生严重的负面影响;同时,合理的配施氮肥也有助于促进棉花生长,提高棉花产量和水分利用率。  相似文献   

12.
The number of sensor types available for measuring soil water content has increased but investigations to compare their performance in saline soils needs clarification. In this study the performance of commercially available, low-cost soil moisture sensors [time domain reflectometry (TDR), PR1 and WET], all measuring changes in the dielectric constant of the soil water, was evaluated under laboratory conditions in a saline sandy soil. The three sensors were also tested in the same sandy soil growing drip irrigated sorghum ( Sorghum bicolor L. cv. Moench) in a greenhouse. Plants were irrigated daily with either saline water (ECw: 9.4 dS/m) or fresh water (0.11 dS/m). The volume of irrigation was equivalent to 100% of the pan evaporation. The results showed that measurement accuracy was strongly dependent on the salinity of the soil. The PR1 sensor overestimated volumetric water content ( θ ) when the salinity level exceeded 4 dS/m [root mean square of the standard error (RMSE) = 0.009 cm3/cm3]. The WET sensor significantly overestimated θ irrespective of the salinity level (RMSE = 0.014 cm3/cm3). The TDR sensor estimated θ with more accuracy (RMSE = 0.007   cm3/cm3) and thus can be considered as more reliable than the other two sensors. The calibrations were strongly affected by the salinity level of the water, so we recommend that calibration equations are modified to take account of salinity.  相似文献   

13.
用SahysMod模型研究不同灌排管理情景土壤水盐动态   总被引:1,自引:1,他引:0  
银北灌区是宁夏土地整治和高标准灌溉绿洲农田建设的重点区域。该区域耕荒地交错分布、土壤盐渍化严重。通过模型分区模拟,在土地整治过程中建立完整、配套的灌排系统是解决区域土壤盐渍化的有效措施。该研究以银北灌区典型区域-西大滩为例,综合考虑荒地与耕地土壤属性的空间变异性,以2015—2016年土壤盐分数据进行率定,2017年盐分数据作为验证,利用SahysMod探索在土地整治过程中不同灌排管理下未来10 a内土壤水盐动态变化。结果表明,现有灌排管理下(即灌水量为670 mm,灌溉水电导率为1.05 dS/m,排水沟深1.5 m),荒地土壤盐分在预测初期(2017—2022年)逐年升高,预测后期(2023—2027年)变化平缓;耕地土壤盐分在预测初期变化缓慢,预测后期逐年增加。加大灌水量是解决土壤盐渍化的一个重要途径,可以有效延迟耕地盐分累积到障碍水平的时间;在灌溉水电导率为0.6 dS/m情况下,未来10 a内耕地都不会受到盐害胁迫;现有灌排管理下,在2024年以后作物生长就会受到盐害胁迫,当灌溉水电导率继续增加时,作物生长受到胁迫的时间相应提前。通过土地整治,加深排水沟深度可以延迟土壤盐分达到障碍水平的时间。在整治过程中深为2.2 m的排水沟,可保证未来10 a内耕地盐分小于1.7 dS/m,区域内玉米可正常生长。研究可为在土地整治过程中的灌排管理及土壤盐渍化防治提供建议。  相似文献   

14.
The volumetric soil water content (θ) is fundamental to agriculture because its spatiotemporal variation in soil affects the growth of plants. Unfortunately, the universally accepted thermogravimetric method for estimating volumetric soil water content is very labour intensive and time‐consuming for use in field‐scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatiotemporal variation of θ. However, depth‐specific variation in θ, which is important for irrigation management, has been little explored. The objective of this study was to develop a relationship between θ and estimates of true electrical conductivity (σ) and to use this relationship to develop time‐lapse images of soil θ beneath a centre‐pivot irrigated alfalfa (Medicago sativa L.) crop in San Jacinto, California, USA. We first measured the bulk apparent electrical conductivity (ECa – mS/m) using a DUALEM‐421 over a period of 12 days after an irrigation event (i.e. days 1, 2, 3, 4, 6, 8 and 12). We used EM4Soil to generate EM conductivity images (EMCIs). We used a physical model to estimate θ from σ, accounting for soil tortuosity and pore water salinity, with a cross‐validation RMSE of 0.04 cm3/cm3. Testing the scenario where no soil information is available, we used a three‐parameter exponential model to relate θ to σ and then to map θ along the transect on different days. The results allowed us to monitor the spatiotemporal variations of θ across the surveyed area, over the 12‐day period. In this regard, we were able to map the soil close to field capacity (0.27 cm3/cm3) and approaching permanent wilting point (0.03 cm3/cm3). The time‐lapse θ monitoring approach, developed using EMCI, has implications for soil and water use and management and will potentially allow farmers and consultants to identify inefficiencies in water application rates and use. It can also be used as a research tool to potentially assist precision irrigation practices and to test the efficacy of different methods of irrigation in terms of water delivery and efficiency in water use in near real time.  相似文献   

15.
微咸水滴灌对黄瓜产量及灌溉水利用效率的影响   总被引:7,自引:8,他引:7  
试验主要研究了华北半湿润地区微咸水滴灌条件下,滴头正下方0.2 m深度土壤基质势分别控制在-10~-50 kPa时,不同盐分浓度微咸水(2.2~4.9 dS/m)对黄瓜产量、灌水量及灌溉水利用效率(IWUE)的影响。研究发现当灌溉水电导率(EC)大于1.1 dS/m时,黄瓜的产量随着EC的增大而降低。当滴头下0.2 m深度土壤基质势控制在-25~-35 kPa时,黄瓜表现出来的耐盐性最强,EC每升高1 dS/m产量大约降低3%。总的趋势是土壤基质势控制越高(-10 kPa)处理的灌溉量越多,IWUE越低,而土壤基质势控制越低(-50 kPa)处理的灌溉量越少,IWUE越高。通过研究,在年降雨量大约为600 mm的半湿润地区,当没有足够的淡水用于作物灌溉时,可以在采用一系列灌溉与栽培管理措施条件下,利用2.2~4.9 dS/m的微咸水来灌溉黄瓜等对盐分中等敏感的作物。  相似文献   

16.
积分方法用于校定逆转型土壤盐渍剖面的磁感式电导   总被引:3,自引:0,他引:3  
Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water extract (EC1:5) using an electromagnetic induction instrument (EM38). The modeled coefficients, one of the successful and classical methods hitherto, were chosen to calibrate the EM38 measurements of the inverted salinity profiles of characteristic coastal saline soils at selected sites of Xincao Farm, Jiangsu Province, China. However, this method required three parameters for each depth layer. An integration approach, based on an exponential decay profile model, was proposed and the model was fitted to all the calibration sites. The obtained model can then be used to predict EC1:5 at a certain depth from electromagnetic measurements made using the EM38 device positioned in horizontal and vertical positions at the soil surface. This exponential decay model predicted the EC1:5 well according to the results of a one-way analysis of variance, and the further comparison indicated that the modeled coefficients appeared to be slightly superior to, but not statistically different from, this exponential decay model. Nevertheless, this exponential decay model was more significant and practical because it depended on less empirical parameters and could be used to perform point predictions of EC1:5 continuously with depth.  相似文献   

17.
滨海盐碱地是滨海地区重要的土地资源,随着滨海地区城镇化进程及生态文明建设的发展,迫切需要低成本、快速、可持续的滨海盐碱地原土植被构建技术。针对滨海盐碱地原土建植与咸水/微咸水资源的利用,该研究以月季(Rosa chinensis)为例,采用微咸水滴灌技术进行滨海盐碱地水盐调控植被构建。试验在渤海湾曹妃甸区吹沙造田形成的典型沙质滨海盐渍土上进行,设计了灌溉水电导率(ECiw)为0.8、3.1、4.7、6.3、7.8 dS/m的5个处理,研究滴灌水盐调控对土壤盐分淋洗及月季根系生长和分布特征的影响。结果表明:在渤海湾滨海地区气候条件下,先进行淡水滴灌盐分强化淋洗和缓苗灌溉,随后采用7.8 dS/m的微咸水滴灌,0~100 cm土层土壤盐分得到了有效的淋洗,尤其是根层0~40 cm土壤盐分经过一个月左右,由初始28.33 dS/m降低到均小于4 dS/m,一个低盐适生的土壤环境得到快速营造;随着ECiw的增加,0~40 cm土层土壤最终趋于稳定的盐分呈增加趋势,土壤脱盐过程可以被logistic方程描述,脱盐过程可划分为快速脱盐、缓慢脱盐和盐分趋于稳定3个阶段;94%以上的月季根系主要分布在0~20cm的表层土壤中,随着ECiw的增加,根系生物量显著降低,根系受盐分胁迫生理干旱影响向土壤深处生长以扩大水分空间。研究认为,采用短期淡水滴灌盐分强化淋洗和缓苗淡水滴灌、随后进行微咸水滴灌的方法,可以实现土壤盐分的快速淋洗并维持在较低水平,但受盐分对根系生长的影响会作用于植物地上部分生长及植物存活,因此需要结合植物耐盐性及生产目标(产量、景观)确定适宜灌溉水矿化度阈值。  相似文献   

18.
滴灌模式对棉花根系分布和水分利用效率的影响   总被引:7,自引:5,他引:2  
理解膜下滴灌参数对土壤盐分运移和作物生长的影响是制定科学滴灌制度、合理利用水资源的重要环节。毛管布置方式和滴灌水质是膜下滴灌的重要参数,为研究其对土壤盐分变化、棉花根系分布及水分利用效率的影响,设计了2种毛管布置方式(一管四行(Ms)和一管两行(Md))和3个滴灌水质水平(淡水0.24?dS/m、微咸水4.68?dS/m、咸水7.42?dS/m)。结果表明,滴管布置方式对土壤盐分变化和根系分布有显著影响。在相同滴灌水质条件下,Ms处理有利于降低棉花根区土壤含盐量。所有处理根系主要分布于0~40?cm土层内,矿质水滴灌时Md中根系受抑制程度明显高于Ms,但其主要影响根系密度δR>0.5?kg/m3区域的分布范围,对δR>0.2?kg/m3区域范围分布无明显影响。生育期内棉花总耗水量随滴灌水矿化度的上升而降低,与滴管布置无关。相对淡水滴灌而言,矿质水滴灌时Ms处理产量有所降低,但其水分利用效率随灌水矿化度上升而升高;而Md处理产量和水分利用效率均随灌水矿化度上升而下降。  相似文献   

19.
The soil of a greenhouse located in the semiarid Lebanese coast of the Mediterranean sea, and which has been in intensive crop production for the past ten years, was chemically analyzed. Results were: NO3‐N = 225 ppm, NH4‐N = 56 ppm, pH = 7.0 and salinity (ECe) = 2.5 dS/m. Irrigation water salinity (ECw) = 0.4 dS/m. Cucumber (Cucumis sativus L. cv. Lolita), a parthenocarpic beit‐alpha type plant, was grown in this greenhouse, and was treated with nitrogen (N) fertilizer at the rates of 0, 81 and 162 kg N/ha. The N was split into six equal weekly applications, with the first application made on the first week of fruit production. Total fruit yield for the first 8 weeks of harvest was 71.4, 63.4 and 60.2 ton/ha for the plots receiving 0, 81 and 162 kg N/ha, respectively. Leaf petiole NO3‐N concentration was higher than the recommended level in all treatments throughout the experiment. At last harvest, NO3‐N concentration in leaf petiole was 12500, 15500 and 19500 ppm in plants receiving 0, 81 and 162 kg N/ha, respectively. Soil salinity has sufficient to cause yield reduction for many greenhouse crops. In contrast, soil mineral N has sufficient to meet the N requirement for an entire season for many annual crops.  相似文献   

20.
The effects of increased salinity [NaCl + CaCl2] on seedling of three tepary and four common bean cultivars/lines, of known resistance and susceptibility at germination stage, grown for thirty‐eight‐days in salinized hydroponic and sand cultures were assessed at electrical conductivity (EC) of 1.89 (control), 4.00, 8.00, and 12.00 dS/m of half strength Hoagland solution inside a glasshouse at 30/25±2°C day/night temperature. The hydroponic culture screening method was more severe than the sand culture method. Common bean cultivars/lines expressed genetic variability to salinity stress at thirty‐eight‐days old seedlings. ‘Badrieh’ was tolerant to salinity as the tolerant tepary bean T#l line under sand culture. However, this was not evident under hydroponic culture. T#l showed salinity injury symptoms at EC = 4 dS/m, while ‘Badrieh’ showed’ no salinity injury symptoms at EC = 4 dS/m. These results indicate that the mechanisms involved for tolerating salinity in the tepary could be different from that involved in common beans. Inverse and significant correlations between salinity injury symptoms and several root and shoot characters were evident from the data, indicating that variation in whole‐plant foliar injury symptoms to salinity would thus seem to provide the best means of initial selection of salinity tolerant genotypes by plant breeders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号