首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation agriculture might have the potential to increase soil organic C content compared to conventional tillage based systems. The present study quantified soil organic carbon (SOC) and soil C derived from C3 (wheat) and C4 (maize) plant species using δ13C stable isotope. Soil with 16 y of continuous application of zero tillage (ZT) or conventional tillage (CT), monoculture (M) or rotation (R) of wheat and maize, and with (+r) and without retention (−r) in the field of crop residues were studied in the central highlands of Mexico. The highest SOC content was found in the 0-5 cm layer under ZTM and ZTR with residues retention. The soil cultivated with maize showed a higher SOC content in the 0-10 cm layer with residue retention than without residue. In the 10-20 cm layer, the highest SOC content was found in the CT treatment with residue retention. The SOC stock expressed as equivalent soil mass was greatest in the 0-20 cm layer of the ZTM (wheat and maize) and ZTR cultivated treatments with residue retention. After 16 y, the highest content of soil δ13C was found in ZTM + r and CTM + r treated soil cultivated with maize; −16.56‰ and −18.08‰ in the 0-5 cm layer, −18.41‰ and −18.02‰ in the 5-10 cm layer and −18.59‰ and −18.72‰ in the 10-20 cm layer respectively. All treatments had a higher percentages of C-C3 (derived from wheat residues or the earlier forest) than C-C4 (derived from maize residues). The highest percentages of C-C4, was found in ZTM + r and CTM + r treated soil cultivated with maize, i.e. 33.0% and 13.0% in 0-5 cm layer, 9.1% and 14.3% in the 5-10 cm layer and 5.0% and 6.8% in 10-20 cm layer, respectively. The gross SOC turnover was lower in soil with residue retention than without residues. It was found that the ZT system with residue retention and rotation with wheat is a practice with a potential to retain organic carbon in soil.  相似文献   

2.
Long‐term no‐tillage management and crop residue amendments to soil were identified as an effective measure to increase soil organic carbon (SOC). The SOC content, SOC stock (SOCs), soil carbon sequestration rate (CSR), and carbon pool management index (CPMI) were measured. A stable isotopic approach was used to evaluate the contributions of wheat and maize residues to SOC at a long‐term experimental site. We hypothesized that under no‐tillage conditions, straw retention quantity would affect soil carbon sequestration differently in surface and deep soil, and the contribution of C3 and C4 crops to soil carbon sequestration would be different. This study involved four maize straw returning treatments, which included no maize straw returning (NT‐0), 0.5 m (from the soil surface) maize straw returning (NT‐0.5), 1 m maize straw returning (NT‐1), and whole maize straw returning (NT‐W). The results showed that in the 0–20 cm soil layer, the SOC content, SOCs, CSR and CPMI of the NT‐W were highest after 14 years of no‐tillage management, and there were obvious differences among the four treatments. However, the SOC, SOCs, and CSR of the NT‐0.5 and NT‐W were the highest and lowest in 20–100 cm, respectively. The value of δ13C showed an obviously vertical variability that ranged from –22.01‰ (NT‐1) in the 0–20 cm layer to –18.27‰ (NT‐0.5) in the 60–80 cm layer, with enriched δ13C in the 60–80 cm (NT‐0.5 and NT‐1) and 80–100 cm (NT‐0 and NT‐W) layers. The contributions of the wheat and maize‐derived SOC of the NT‐0.5, NT‐1 and NT‐W increased by 11.4, 29.5 and 56.3% and by 10.7, 15.1 and 40.1%, relative to those in the NT‐0 treatment in the 0–20 cm soil layer, respectively. In conclusion, there was no apparent difference in total SOC sequestration between the NT‐0.5, NT‐1, and NT‐W treatments in the 0–100 cm soil layer. The contribution of wheat‐derived SOC was higher than that of maize‐derived SOC.  相似文献   

3.
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability.  相似文献   

4.
The effect of conversion of short‐rotation coppices (SRCs) to agricultural land on soil organic carbon (SOC), soil microbial properties and crop yield is largely unknown. The objective of this study was to assess the effects of subsequent land use and tillage depth after conversion of SRCs on (i) total SOC (ii) soil C fractions with differentiation of total harvest residues and woody harvest residues from SRC and maize by 13C analysis and (iii) dry matter and N yield of grassland and maize. For this purpose, field trials were established after conversion of SRCs at three sites in Germany and cultivated with maize and grassland with shallow (5 cm), medium (15 cm) and deep tillage depth (30 cm). Crops were sampled for 5 yrs, and soil samples were collected at a depth of 0–5, 5–15 and 15–30 cm. Amount of total carbon and soil carbon fractions immediately and 4 yrs after conversion of SRC were compared. Tillage depth had no effect on dry matter yield of maize and grassland. The amount of woody harvest residues decreased over time following conversion at all sites irrespective of land use or tillage depth, but SOC decreased only at one site. Microbial biomass was particularly sensitive to land use, but microorganisms reacted differently to tillage depth depending on the soil conditions. Our results reveal that decomposition of woody harvest residues is rapid and that effects of tillage and land use on different soil C‐pools are site specific.  相似文献   

5.
No‐till (NT) farming can restore the soil organic carbon (SOC) pool of agricultural soils, but the SOC pool size and retention rate can vary with soil type and duration of NT. Therefore, the objectives of this study were to determine the effects of NT and soil drainage characteristics on SOC accumulation across a series of NT fields on Alfisols in Ohio, USA. Sites under NT for 9 (NT9), 13 (NT13), 36 (NT36), 48 (NT48) and 49 (NT49) years were selected for the study. Soil was somewhat poorly drained at the NT48 site but moderately well drained at the other sites. The NT48 and NT49 on‐station sites were under continuous corn (Zea mays), while the other sites were farmers' fields in a corn–soybean (Glycine max) rotation. At each location, the SOC pool (0–30 cm) in the NT field was compared to that of an adjacent plough‐till (PT) and woodlot (WL). At the NT36, NT48 and NT49 sites, the retention rate of corn‐derived C was determined using stable C isotope (13C) techniques. In the 0‐ to 10‐cm soil layer, SOC concentration was significantly larger under NT than PT, but a tillage effect was rarely detected below that depth. Across sites, the SOC pool in that layer averaged 36.4, 20 and 40.8 Mg C/ha at the NT, PT and WL sites, respectively. For the 0‐ to 30‐cm layer, the SOC pool for NT (83.4 Mg C/ha) was still 57% greater than under PT. However, there was no consistent trend in the SOC pool with NT duration probably due to the legacy of past management practices and SOC content differences that may have existed among the study sites prior to their conversion to NT. The retention rate of corn‐derived C was 524, 263 and 203 kg C/ha/yr at the NT36, NT48 and NT49 sites. In contrast, the retention rate of corn‐C under PT averaged 25 and 153 kg C/ha/yr at the NT49 (moderately well‐drained) and NT48 (somewhat poorly drained) sites, respectively. The conversion from PT to NT resulted in greater retention of corn‐derived C. Thus, adoption of NT would be beneficial to SOC sequestration in agricultural soils of the region.  相似文献   

6.
The research was carried out to determine the effect of basin‐based conservation agriculture (CA) on selected soil quality parameters. Paired plots (0.01 ha) of CA and conventional tillage based on the animal‐drawn mouldboard plough (CONV) were established between 2004 and 2007 on farm fields on soils with either low (12–18% – sandy loams and sandy clay loams) or high clay levels (>18–46% – sandy clays and clays) as part of an ongoing project promoting CA in six districts in the smallholder farming areas of Zimbabwe. We hypothesized that CA would improve soil organic carbon (SOC), bulk density, aggregate stability, soil moisture retention and infiltration rate. Soil samples for SOC and aggregate stability were taken from 0 to 15 cm depth and for bulk density and soil moisture retention from 0 to 5, 5 to 10 and 10 to 15 cm depths in 2011 from maize plots. Larger SOC contents, SOC stocks and improved aggregate stability, decreased bulk density, increased pore volume and moisture retention were observed in CA treatments. Results were consistent with the hypothesis, and we conclude that CA improves soil quality under smallholder farming. Benefits were, however, greater in high clay soils, which is relevant to the targeting of practices on smallholder farming areas of sub‐Saharan Africa.  相似文献   

7.
Over the past 20 years, conservation tillage has been used on the loess plateau of north‐west China to improve the sustainability of local agriculture. There had been particular concern about loss of soil organic matter associated with traditional tillage. We examined the influence of four tillage treatments: conventional tillage (CT), subsoiling tillage (SST), rotary tillage (RT) and no‐tillage (NT), with two straw residue management treatments (return and removal) on the distribution with soil depth (0–20 cm, 20–40 cm) of total organic carbon, labile organic carbon (KMnO4‐C) and bound organic carbon. The study was carried out on a Loutu soil (Earth‐cumuli‐Orthic Anthrosol) over seven consecutive years of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) crop rotation. By the end of this period, conservation tillage (SST, RT and NT) led to greater storage of soil organic carbon (SOC) (22.7, 14.9 and 16.3% with straw return in contrast to 21.4, 15.8 and 12.3% with no straw return, respectively) compared with CT in the surface soil (0–20 cm). The reduced tillage treatments (SST and RT) both increased significantly the highly labile organic carbon (HLOC) content of the surface soil (50% in both SST and RT) and mildly labile organic matter (MLOC) (49.4 in SST and 53.5% in RT) when straw was removed. The largest pool of bound carbon was observed in the Humin‐C pool, and the smallest in the free humic acids C (FHA‐C) in each tillage treatment. Conservation tillage led to an increased content of FHA‐C and CHA‐C. Results from correlation analyses indicate that SOC enrichment might have resulted from the increase in HLOC, MLOC, FHA‐C and CHA‐C over a short period. Labile organic carbon was associated with the organic carbon that was more loosely combined with clay (FHA‐C and CHA‐C). We conclude that both SST and RT are effective in maintaining or restoring organic matter in Loutu soils in this region, and the effect is greater when they are used in combination with straw return.  相似文献   

8.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   

9.
Soil degradation and associated depletion of soil organic carbon (SOC) have been major concerns in intensive farming systems because of the subsequent decline in crop yields. We assessed temporal changes in SOC and its fractions under different tillage systems for wheat (Triticum aestivum L.) – maize (Zea mays L.) cropping in the North China Plain. Four tillage systems were established in 2001: plow tillage (PT), rotary tillage (RT), no‐till (NT), and plow tillage with residues removed (PT0). Concentrations of SOC, particulate organic carbon (POC), non‐POC (NPOC), labile organic carbon (LOC), non‐LOC (NLOC), heavy fraction carbon (HFC) and light fraction carbon (LFC) were determined to assess tillage‐induced changes in the top 50 cm. Concentrations of SOC and C fractions declined with soil depth and were significantly affected by tillage over time. The results showed that SOC and its fractions were enhanced under NT and RT from 0 to 10 cm depth compared with values for PT and PT0. Significant decreases were observed below 10 cm depths (P < 0.05) regardless of the tillage system. The SOC concentration under NT for 0–5 cm depth was 18%, 8%, and 10% higher than that under PT0 after 7, 9, and 12 yr of NT adoption, respectively. Apparent stratification of SOC occurred under NT compared with PT and PT0 for depths >10 cm. All parameters were positively correlated (P < 0.01); linear regressions exhibited similar patterns (P < 0.01). Therefore, to maintain and improve SOC levels, residue inputs should be complemented by the adoption of suitable tillage systems.  相似文献   

10.
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Carbon accumulation is an important research topic for grassland restoration. It is requisite to determine the dynamics of the soil carbon pools [soil organic carbon (SOC) and soil inorganic carbon (SIC)] for understanding regional carbon budgets. In this study, we chose a grassland restoration chronosequence (cropland, 0 years; grasslands restored for 5, 15 and 30 years, i.e. RG5, RG15 and RG30, respectively) to compare the SOC and SIC pools in different soil profiles. Our results showed that SOC stock in the 0‐ to 100‐cm soil layer showed an initial decrease in RG5 and then an increase to net C gains in RG15 and RG30. Because of a decrease in the SIC stock, the percentage of SOC stock in the total soil C pool increased across the chronosequence. The SIC stock decreased at a rate of 0·75 Mg hm−2 y−1. The change of SOC was higher in the surface (0–10 cm, 0·40 Mg hm−2 y−1) than in the deeper soil (10–100 cm, 0·33 Mg hm−2 y−1) in RG5. The accumulation of C commenced >5 years after cropland conversion. Although the SIC content decreased, the SIC stock still represented a larger percentage of the soil C pool. Moreover, the soil total carbon showed an increasing trend during grassland restoration. Our results indicated that the soil C sequestration featured an increase in SOC, offsetting the decrease in SIC at the depth of 0–100 cm in the restored grasslands. Therefore, we suggest that both SOC and SIC should be considered during grassland restoration in semi‐arid regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Soil organic‐carbon (SOC) stocks are expected to increase after conversion of cropland into grassland. Two adjacent cropland and grassland sites—one with a Vertisol with 23 y after conversion and one with an Arenosol 29 y after conversion—were sampled down to 60 cm depth. Concentrations of SOC and total nitrogen (Ntot) were measured before and after density fractionation in two light fractions and a mineral‐associated fraction with C adsorbed on mineral surfaces. For the soil profiles, SOC stocks and radiocarbon (14C) concentrations of mineral associated C were determined. Carbon stocks and mineral‐associated SOC concentrations were increased in the upper 10 cm of the grassland soil compared to the cropland. This corresponded to the root‐biomass distribution, with 59% and 86% of the total root biomass at 0–5 cm soil depth of the grasslands. However, at the Arenosol site, at 10–20 cm depth, C in the mineral‐associated fraction was lost 29 y after the conversion into grassland. Over all, SOC stocks were not significantly different between grassland and cropland at both sites when the whole profile was taken into account. At the Arenosol site, the impact of land‐use conversion on SOC accumulation was limited by low total clay surface area available for C stabilization. Subsoil C (30–50 cm) at cropland of the Vertisol site comprised 32% of the total SOC stocks with high 14C concentrations below the plowing horizon. We concluded that fresh C was effectively translocated into the subsoil. Thus, subsoil C has to be taken into account when land‐use change effects on SOC are assessed.  相似文献   

13.
Biochar amendments offer promising potential to improve soil fertility, soil organic carbon (SOC) and crop yields; however, a limited research has explored these benefits of biochar in the arid and semi‐arid regions. This two‐year field study investigated the effects of Acacia tree biomass‐derived biochar, applied at 0 and 10 t ha?1 rates with farmyard manure (FYM) or poultry manure (PM) and mineral phosphorus (P) fertilizer combinations (100 kg P ha‐1), on maize (Zea mays L.) productivity, P use efficiency (PUE) and farm profitability. The application of biochar with organic–inorganic P fertilizers significantly increased soil P and SOC contents than the sole organic or inorganic P fertilizers. Addition of biochar and PM as 100% P source resulted in the highest soil P (104% increase over control) and SOC contents (203% higher than control). However, maize productivity and PUE were significantly higher under balanced P fertilizer (50% organic + 50% mineral fertilizer) with biochar and the increase was 110%, 94% and 170% than 100%‐FYM, 100%‐PM and 100% mineral fertilizer, respectively. Maize productivity and yield correlated significantly positively with soil P and SOC contents These positive effects were possibly due to the ability of biochar to improve soil properties, P availability from organic–inorganic fertilizers and SOC which resulted in higher PUE and maize productivity. Despite the significant positive relationship of PUE with net economic returns, biochar incorporation with PM and mineral fertilizer combination was economically profitable, whereas FYM along biochar was not profitable due to short duration of the field experiments.  相似文献   

14.
Particulate organic matter (POM) plays important role in soil organic carbon (SOC) retention and soil aggregation. This paper assesses how quality (chemical composition) of four different‐quality organic residues applied annually to a tropical sandy loam soil for 10 years has affected POM pools and the development of soil aggregates. Water‐stable aggregate size distribution (>2, 0·25–2, 0·106–0·25 mm) was determined through wet sieving. Density fractionation was employed to determine POM (light—LF, and heavy—HF fractions, 0·05–1 mm). Tamarind leaf litter showed the highest SOC (<1 mm) accumulation, while rice straw showed the lowest. LF‐C contents had positive correlations with high contents of C and recalcitrant constituents, (i.e. lignin and polyphenols) of the residues. Dipterocarp, a resistant residue, showed the highest LF‐C, followed by the intermediate residues, tamarind, and groundnut, whereas HF was higher in groundnut and tamarind than dipterocarp residues. Rice straw had the lowest LF‐ and HF‐C contents. Tamarind had the highest quantity (51 per cent) of small macroaggregates (0·25–2 mm), while dipterocarp had the most (2·1 per cent) large macroaggregates (>2 mm). Rice straw had the lowest quantities of both macroaggregates. Similar to small‐sized HF (0·05–0·25 mm), small macroaggregates had positive correlation with N and negative correlation with C/N ratios, while large macroaggregates had positive correlations with C and recalcitrant constituents of the residues. Tamarind, with intermediate contents of N and recalcitrant compounds, appears to best promote small macroaggregate formation. Carbon stabilized in small macroaggregates accounted for the tamarind treatment showing the largest SOC accumulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Tillage and residue retention affect nitrogen (N) dynamics and nutrient losses and therefore nitrogen use efficiency (NUE) and crop fertilizer use, however, there is little information about residual fertilizer effects on the subsequent crop. Micro‐plots with 15N‐labelled urea were established in 2014/2015 on a long‐term experiment on a Vertisol in north‐west Mexico. N fertilizer recovery (NFR) and the effects of residual fertilizer N for summer maize (Zea mays L.) and the subsequent wheat (Triticum durum L.) crop were studied in three tillage–straw management practices (CTB: conventionally tilled beds; PB‐straw: permanent raised beds with residue retention; PB‐burn: permanent raised beds with residue burning). Fertilizer 15N recovery rates for maize grain across all treatments were low with an average of 11%, but after wheat harvest total recovered 15N (15N in maize and wheat straw and grain, residual soil 15N) was over 50% for the PB‐burn treatment. NFR was lowest in CTB after two cropping cycles (32%). Unaccounted N from applied fertilizer for the maize crop averaged 120 kg 15N ha?1 after wheat harvest. However, more than 20% of labelled 15N was found in the 0–90 cm soil profile in both PB treatments after wheat harvest, which highlights the need for long‐term studies and continuous monitoring of the soil nutrient status to avoid over‐application of mineral N fertilizer.  相似文献   

16.
Fresh organic carbon becomes more accessible to deep soil following losses of surface soil and deep intentional incorporation of crop residues, which can cause the priming effect and influence the quality and quantity of SOC in deep soil. This study determined the priming effect due to addition of water-dissolved 13C-labeled glucose (0.4 g C kg−1 soil) to a soil taken from 1.00 to 1.20 m depth. The changes in chemical compositions of SOC in soils without (G0) and with (G0.4) glucose addition during a 31-d incubation were investigated with solid-state 13C cross polarization/total sideband suppression (13C-CP/TOSS) and CP/TOSS with dipolar dephasing nuclear magnetic resonance (NMR) techniques. No glucose remained in the soil after 21 days of incubation, with 48% being completely mineralized into CO2 emission and 52% being incorporated into SOC. The native SOC was decomposed by 0.23% more in G0.4 than in G0. The NMR spectra demonstrated that both labile and recalcitrant organic compounds in SOC changed during the incubation, but in different manners in G0 and G0.4. During the incubation, the -(CH2)n-abundance in G0 did not change over time, but in G0.4 it decreased from Day 0 to Day 21 and then increased from Day 21 to Day 31, suggesting shifts of soil microbial communities only in G0.4. After the incubation, in G0 the abundances of ketones/aldehydes and nonpolar alkyl C increased, but those of aromatic C–C and protonated O-alkyl C (OCH) decreased; In G0.4, the abundances of NCH and protonated O-alkyl C (OCH) increased, but those of nonpolar alkyl C and nonprotonated aromatic C–O and ketones/aldehydes decreased. Such inconsistent changes in recalcitrant compounds between G0 and G0.4 indicated that glucose addition likely primed the decomposition of aromatic C–O and suppressed the formation of ketones/aldehydes. We have demonstrated for the first time that the priming effect of SOC decomposition in the deep soil was involved with larger notable changes in both labile and recalcitrant structures of native SOC due to glucose addition compared with that without glucose addition.  相似文献   

17.
Annual horticultural systems rely on frequent and intensive tillage to prepare beds, manage weeds and control insects. But this practice reduces soil organic carbon (SOC) through accelerated CO2 emission. Crop residue incorporation could counteract this loss. We investigated whether vegetable systems could be made more resilient by including a high‐residue grain crop such as sweet corn (Zea mays L. var. rugosa), in the rotation through the use of conventional (no residue, no soil sieving) and organic (residue incorporated and soil sieved) soil management scenarios. We evaluated short‐term emission of CO2‐C and soil C content in incubated Chromosol and Vertosol soils (Australian Classification) with and without sieving (simulated tillage) or the incorporation of ground sweet corn residue. Residue treatment emitted 2.3 times more CO2‐C compared to the no‐residue treatment, and furthermore, sieved soil emitted 1.5 times more CO2‐C than the unsieved across the two soil types. The residue incorporation had a greater effect on CO2‐C flux than simulated tillage, suggesting that C availability and form can be more important than physical disturbance in cropping soils. The organic scenario (with residue and sieved) emitted more CO2‐C, but had 13% more SOC compared with the conventional scenario (without residue and unsieved), indicating that organic systems may retain more SOC than a conventional system. The SOC lost by soil disturbance was more than offset by the incorporation of residue in the laboratory conditions. Therefore, the possible SOC loss by tillage for weed control under organic management may be offset by organic residue input.  相似文献   

18.
Experimentation with dynamics of soil carbon pools as affected by elevated CO2 can better define the ability of terrestrial ecosystems to sequester global carbon. In the present study, 6 N HCl hydrolysis and stable-carbon isotopic analysis (δ13C) were used to investigate labile and recalcitrant soil carbon pools and the translocation among these pools of sorghum residues isotopically labeled in the 1998-1999 Arizona Maricopa free air CO2 enrichment (FACE) experiment, in which elevated CO2 (FACE: 560 μmol mol−1) and ambient CO2 (Control: 360 μmol mol−1) interact with water-adequate (wet) and water-deficient (dry) treatments. We found that on average 53% of the final soil organic carbon (SOC) in the FACE plot was in the recalcitrant carbon pool and 47% in the labile pool, whereas in the Control plot 46% and 54% of carbon were in recalcitrant and labile pools, respectively, indicating that elevated CO2 transferred more SOC into the slow-decay carbon pool. Also, isotopic mixing models revealed that increased new sorghum residue input to the recalcitrant pool mainly accounts for this change, especially for the upper soil horizon (0-30 cm) where new carbon in recalcitrant soil pools of FACE wet and dry treatments was 1.7 and 2.8 times as large as that in respective Control recalcitrant pools. Similarly, old C in the recalcitrant pool under elevated CO2 was higher than that under ambient CO2, indicating that elevated CO2 reduces the decay of the old C in recalcitrant pool. Mean residence time (MRT) of bulk soil carbon at the depth of 0-30 cm was significantly longer in FACE plot than Control plot by the averages of 12 and 13 yr under the dry and wet conditions, respectively. The MRT was positively correlated to the ratio of carbon content in the recalcitrant pool to total SOC and negatively correlated to the ratio of carbon content in the labile pool to total SOC. Influence of water alone on the bulk SOC or the labile and recalcitrant pools was not significant. However, water stress interacting with CO2 enhanced the shift of the carbon from labile pool to recalcitrant pool. Our results imply that terrestrial agroecosystems may play a critical role in sequestrating atmospheric CO2 and mitigating harmful CO2 under future atmospheric conditions.  相似文献   

19.
Among factors controlling decomposition and retention of residue C in soil, effect of initial soil organic C (SOC) concentration remains unclear. We evaluated, under controlled conditions, short-term retention of corn residue C and total soil CO2 production in C-rich topsoil and C-poor subsoil samples of heavy clay. Topsoil (0–20 cm deep, 31.3 g SOC kg?1 soil) and subsoil (30–70 cm deep, 4.5 g SOC kg?1 soil) were mixed separately with 13C–15N-labeled corn (Zea mays L.) residue at rates of 0 to 40 g residue C kg?1 soil and incubated for 51 days. We measured soil CO2–C production and the retention of residue C in the whole soil and the fine particle-size fraction (<50 μm). Cumulative C mineralization was always greater in topsoil than subsoil. Whole-soil residue C retention was similar in topsoil and subsoil at rates up to 20 g residue C kg?1. There was more residue C retained in the fine fraction of topsoil than subsoil at low residue input levels (2.5 and 5 g residue C kg?1), but the trend was reversed with high residue inputs (20 and 40 g residue C kg?1). Initial SOC concentration affected residue C retention in the fine fraction but not in the whole soil. At low residue input levels, greater microbial activity in topsoil resulted in greater residue fragmentation and more residue C retained in the fine fraction, compared to the subsoil. At high residue input levels, less residue C accumulated in the fine fraction of topsoil than subsoil likely due to greater C saturation in the topsoil. We conclude that SOC-poor soils receiving high C inputs have greater potential to accumulate C in stable forms than SOC-rich soils.  相似文献   

20.
Differences in the mechanisms of storage and decomposition of organic matter (OM) between minimum tillage (MT) and conventional tillage (CT) are generally attributed to differences in the physical impact through tillage, but less is known about the effects of residue location. We conducted an incubation experiment at a water content of 60% of the maximum water‐holding capacity and 15°C with soils from CT (0–25 cm tillage depth) and MT fields (0–5 cm tillage depth) with 15N‐labeled maize straw incorporated to different depths (CT simulations: 0–15 cm; MT simulations: 0–5 cm) for 28 d in order to determine the effects of the tillage simulation on (1) mineralization of recently added residues, (2) the dynamics of macroaggregate formation and physical protection of OM, and (3) the partitioning of maize‐derived C and N within soil OM fractions. The MT simulations showed lower relative C losses, and the amount of maize‐C mineralized after 28 d of incubation was slightly but significantly lower in the MT simulations with maize added (MTmaize) than in the respective CT (CTmaize) simulations. The formation of new water‐stable macroaggregates occurred during the phase of the highest microbial activity, with a maximum peak 8 d after the start of incubation. The newly formed macroaggregates were an important location for the short‐term stabilization of C and N with a higher importance for MTmaize than for CTmaize simulations. In conclusion, our results suggest that a higher amount of OM in MT surface soils compared with CT surface soils may not only result from decreased macroaggregate destruction under reduced tillage but also from a higher efficiency of C retention due to a more concentrated residue input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号