首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability.  相似文献   

2.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

3.
Effects of two tillage treatments, tillage (T) with chisel plough and no-till (NT), were studied under un-drained and drained soil conditions. Soil physical properties measured were bulk density (ρb), total porosity (ƒt), water stable aggregates (WSA), geometric mean diameter (GMD), mean weight diameter (MWD), organic carbon (OC) and total N concentrations in different aggregate size fractions, and total OC and N pools. The experiment was established in 1994 on a poorly drained Crosby silt loam soil (fine mixed, mesic, Aeric Ochraqualf) near Columbus, Ohio. In 2007, soil samples were collected (0–10, 10–20, and 20–30 cm) from all treatments and separated into six aggregate size classes for assessing proportions of macro (5–8, 2–5, 1–2, 0.5–1, 0.25–0.5) and micro (<0.25 mm) aggregates by wet sieving. Tillage treatments significantly (P ≤ 0.05) influenced WSA, MWD, and GMD. Higher total WSA (78.53 vs. 58.27%), GMD (0.99 vs. 0.68 mm), and MWD (2.23 vs. 0.99 mm) were observed for 0–10 cm depth for NT than T treatments. Relative proportion of macro-aggregates (>0.25-mm) was also more in NT than T treatment for un-drained plots. Conversely, micro-aggregates (<0.25-mm) were more in T plots for both drained and un-drained treatments. The WSA, MWD and GMD decreased with increase in soil depth. The OC concentration was significantly higher (P ≤ 0.05) in NT for un-drained (P ≤ 0.01) treatment for all soil depths. Within macro-aggregates, the maximum OC concentrations of 1.91 and 1.75 g kg−1 in 1–2 mm size fraction were observed in NT for un-drained and drained treatments, respectively. Tillage treatments significantly (P < 0.01) affected bulk density (ρb), and total porosity (ft) for all soil depths, whereas tillage × drainage interaction was significant (P < 0.01) for 10–20 and 20–30 cm depths. Soil ρb was negatively correlated (r = −0.47; n = 12) with OC concentration. Tillage treatments significantly affected (P ≤ 0.05) OC pools at 10–20 cm depth; whereas drainage, and tillage × drainage significantly (P ≤ 0.05) influenced OC pools for 0–10 cm soil layer. The OC pool in 0–10 cm layer was 31.8 Mg ha−1 for NT compared with 25.9 Mg kg−1 for T for un-drained treatment. In comparison, the OC pool was 23.1 Mg ha−1 for NT compared with 25.2 Mg ha−1 for T for the drained plots. In general, the OC pool was higher in NT system, coupled with un-drained treatment than in drained T plots. The data indicate the importance of NT in improving the OC pool.  相似文献   

4.
Conservation tillage has been applied in vast semi‐arid regions of the Guanzhong Plain, Northwest China. The tillage effects on soil aggregation, organic carbon (OC) stabilization and grain yield on this plain have not been fully elucidated. A 9‐year field experiment was established from 2002 on a silty clay loam soil (Eum‐Orthic Anthrosol) growing winter wheat–maize in a double‐cropping system. Six conservation tillage treatments were applied by different combinations of rotary tillage (RT), subsoiling (SS) and no‐till (NT), with or without finely chopped straw retention. Conventional tillage (CT) acted as the control. Results showed that in the surface (0–10 cm) soil, the proportion of water‐stable aggregates (WSA) <0.05 mm was 18% less while that for WSA >2 mm was 98% more under NT treatments compared with CT. Additionally, the oxidizable OC content in WSA 0.25–2 mm was 27% greater under NT treatments compared with CT. The OC stocks increased under SS by 17%, RT by 16% and NT by 15% relative to CT. Grain yield (wheat + maize) showed similar increasing trends in all the tillage treatments compared with CT. Both OC stocks and grain yield were larger in treatments with than without straw retentions. These results indicate that NT is beneficial for OC accumulation in WSA but is limited in its ability to improve soil structure in this region. SS plus straw retention (fine‐chopped or as a mulch) is an effective practice to improve soil structural stability, OC accumulation and soil productivity of Eum‐Orthic Anthrosols in Northwest China.  相似文献   

5.
Identifying ‘functional' pools of soil organic matter and understanding their response to tillage remains elusive. We have studied the effect of tillage on the enriched labile fraction, thought to derive from microbes and having an intermediate turnover time. Four soils, each under three regimes, long‐term arable use without tillage (NT), long‐term arable under conventional tillage (CT), and native vegetation (NV), were separated into four aggregate size classes. Particle size fractions of macro‐ (250–2000 μm) and microaggregates (53–250 μm) were isolated by sonication and sieving. Subsequently, densiometric and chemical analyses were made on fine‐silt‐sized (2–20 μm) particles to isolate and identify the enriched labile fraction. Across soils, the amounts of C and N in the particle size fractions were highly variable and were strongly influenced by mineralogy, specifically by the contents of Fe and Al oxides. This evidence indicates that the fractionation procedure cannot be standardized across soils. In one soil, C associated with fine‐silt‐sized particles derived from macroaggregates was 567 g C m?2 under NV, 541 g C m?2 under NT, and 135 g C m?2 under CT, whereas C associated with fine‐silt‐sized particles derived from microaggregates was 552, 1018, 1302 g C m?2 in NV, NT and CT, respectively. These and other data indicate that carbon associated with fine‐silt‐sized particles is not significantly affected by tillage. Its location is simply shifted from macroaggregates to microaggregates with increasing tillage intensity. Natural abundance 13C analyses indicated that the enriched labile fraction was the oldest fraction isolated from both macro‐ and microaggregates. We conclude that the enriched labile fraction is a ‘passive' pool of soil organic matter in the soil and is not derived from microbes nor sensitive to cultivation.  相似文献   

6.
Nitrous oxide (N2O) emissions, soil microbial community structure, bulk density, total pore volume, total C and N, aggregate mean weight diameter and stability index were determined in arable soils under three different types of tillage: reduced tillage (RT), no tillage (NT) and conventional tillage (CT). Thirty intact soil cores, each in a 25 × 25-m2 grid, were collected to a depth of 10 cm at the seedling stage of winter wheat in February 2008 from Maulde (50°3′ N, 3°43′ W), Belgium. Two additional soil samples adjacent to each soil core were taken to measure the spatial variance in biotic and physicochemical conditions. The microbial community structure was evaluated by means of phospholipid fatty acids analysis. Soil cores were amended with 15 kg NO3-N ha−1, 15 kg NH4+-N ha−1 and 30 kg ha−1 urea-N ha−1 and then brought to 65% water-filled pore space and incubated for 21 days at 15°C, with regular monitoring of N2O emissions. The N2O fluxes showed a log-normal distribution with mean coefficients of variance (CV) of 122%, 78% and 90% in RT, NT and CT, respectively, indicating a high spatial variation. However, this variability of N2O emissions did not show plot scale spatial dependence. The N2O emissions from RT were higher (p < 0.01) than from CT and NT. Multivariate analysis of soil properties showed that PC1 of principal component analysis had highest loadings for aggregate mean weight diameter, total C and fungi/bacteria ratio. Stepwise multiple regression based on soil properties explained 72% (p < 0.01) of the variance of N2O emissions. Spatial distributions of soil properties controlling N2O emissions were different in three different tillages with CV ranked as RT > CT > NT.  相似文献   

7.
Abstract

The study aimed at quantifying the rates of soil CO2 efflux under the influence of common tillage systems of moldboard plow (PT), chisel plow (CT), rotary tiller (RT), heavy disc harrow (DT), and no-tillage (NT) for 46 days in October and November in a field left fallow after wheat harvest located in southern Turkey. The NT and DT plots produced the lowest soil CO2 effluxes of 0.3 and 0.7 g m?2 h?1, respectively, relative to the other plots (P < 0.001). Following the highest rainfall amount of 87 mm on the tenth day after the tillage, soil CO2 efflux rates of all the plots peaked on the 12th day, with less influence on soil CO2 efflux in the NT plot than in the conventional tillage plots. Soil evaporation in NT (64 mmol m?2 s?1) was significantly lower than in the PT (85 mmol m?2 s?1) and RT (89 mmol m?2 s?1) tillage treatments (P < 0.01). The best multiple-regression model selected explained 46% of variation in soil respiration rates as a function of the tillage treatments, soil temperature, and soil evaporation (P < 0.001). The tillage systems of RT, PT, and CT led, on average, to 0.23, 0.22, and 0.18 g m?2 h?1 more soil CO2 efflux than the baseline of NT, respectively (P≤0.001).  相似文献   

8.
Soil degradation and associated depletion of soil organic carbon (SOC) have been major concerns in intensive farming systems because of the subsequent decline in crop yields. We assessed temporal changes in SOC and its fractions under different tillage systems for wheat (Triticum aestivum L.) – maize (Zea mays L.) cropping in the North China Plain. Four tillage systems were established in 2001: plow tillage (PT), rotary tillage (RT), no‐till (NT), and plow tillage with residues removed (PT0). Concentrations of SOC, particulate organic carbon (POC), non‐POC (NPOC), labile organic carbon (LOC), non‐LOC (NLOC), heavy fraction carbon (HFC) and light fraction carbon (LFC) were determined to assess tillage‐induced changes in the top 50 cm. Concentrations of SOC and C fractions declined with soil depth and were significantly affected by tillage over time. The results showed that SOC and its fractions were enhanced under NT and RT from 0 to 10 cm depth compared with values for PT and PT0. Significant decreases were observed below 10 cm depths (P < 0.05) regardless of the tillage system. The SOC concentration under NT for 0–5 cm depth was 18%, 8%, and 10% higher than that under PT0 after 7, 9, and 12 yr of NT adoption, respectively. Apparent stratification of SOC occurred under NT compared with PT and PT0 for depths >10 cm. All parameters were positively correlated (P < 0.01); linear regressions exhibited similar patterns (P < 0.01). Therefore, to maintain and improve SOC levels, residue inputs should be complemented by the adoption of suitable tillage systems.  相似文献   

9.
Plant nutrition requires organic nitrogen to be mineralized before roots can absorb it. A 13‐year field study was conducted on typical rain‐fed Mediterranean Vertisol to determine the effects of tillage system, crop rotation and N fertilizer rate on the long‐term NH4+–N content in the soil profile (0–90 cm). The experiment was designed as a randomized complete block with a split–split plot arrangement and three replications. The main plots tested the effects from the tillage system (no‐tillage and conventional tillage); the subplots tested crop rotation with 2‐year rotations (wheat–wheat, wheat–fallow, wheat–chickpea, wheat–faba bean and wheat–sunflower) and the sub‐subplots examined the N fertilizer rate (0, 50, 100 and 150 kg N/ha). Soil NH4+–N content was greatest in the rainiest years and greater under the no‐tillage (NT) system than the conventional tillage (CT) system (57 and 48 kg/ha, respectively). The deepest soil (30–60 and 60–90 cm) contained a greater NH4+–N content (21.0 and 21.4 kg/ha, respectively) than the shallowest soil (19.5 kg/ha in 0–30 cm). This observation may be related to Vertisol characteristics, especially crack formation that allows greater mineralization in the deepest layers by displacing organic matter.  相似文献   

10.
Aggregation often provides physical protection and stabilisation of soil organic carbon (C). No tillage (NT) coupled with stubble retention (SR) and nitrogen (N) fertiliser application (90 N, 90 kg N ha−1 application) can help improve soil aggregation. However, information is lacking on the effect of long‐term NT, SR and N fertiliser (NT, SR + N) application on soil aggregation and C distribution in different aggregates in vertisols. We analysed the soil samples collected from 0‐ to 30‐cm depth from a long‐term (47 years) experiment for soil aggregation and aggregate‐associated C and N. This long‐term field experiment originally consisted of 12 treatments, having plot size of 61·9 × 6·4 m, and these plots were arranged in a randomised block design with four replications, covering an area of 1·9 ha. Soil organic C concentrations as well as stocks were significantly higher under the treatment of NT, SR + N only in 0–10 cm compared with other treatments such as conventional tillage, stubble burning + 0 N (no N application) and conventional tillage, SR + 0 N. Mineral‐associated organic C (MOC) of <0·053 mm was 5–12 times higher (r  = 0·68, p  < 0·05, n  = 32) compared with particulate organic C (POC) (>0·053 mm) in the 0‐ to 30‐cm layer. We found that NT, SR + N treatment had a positive impact on soil aggregation, as measured by the mean weight diameter (MWD) through wet sieving procedure, but only in the top 0‐ to 10‐cm depth. MWD had significant positive correlation with water stable aggregates (r  = 0·67, p  < 0·05). Unlike MWD, water stable aggregates were not affected by tillage and stubble management. Large macroaggregates (>2 mm) had significantly higher organic C and N concentrations than small macroaggregates (0·25–2 mm) or microaggregates (0·053–0·25 mm). We also found that N application had a significant effect on MWD and soil organic C in vertisols. It is evident that better soil aggregation was recorded under NTSR90N could have a positive influence on soil C sequestration. Our results further highlight the importance of soil aggregation and aggregate‐associated C in relation to C sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Soil tillage has been shown to affect long‐term changes in soil organic carbon (SOC) content in a number of field experiments. This paper presents a simplified approach for including effects of tillage in models of soil C turnover in the tilled‐soil layer. We used an existing soil organic matter (SOM) model (CN‐SIM) with standard SOC data for a homogeneous tilled layer from four long‐term field experiments with conventionally tilled (CT) and no‐till (NT) treatments. The SOM model was tested on data from long‐term (>10 years) field trials differing in climatic conditions, soil properties, residue management and crop rotations in Australia, Brazil, the USA and Switzerland. The C input for the treatments was estimated using data on crop rotation and residue management. The SOM model was applied for both CT and NT trials without recalibration, but incorporated a ‘tillage factor’ (TF) to scale all decomposition and maintenance parameters in the model. An initial value of TF = 0.57 (parameter uncertainty, PU = 0.15) for NT (with TF set to 1.0 for CT) was used on the basis of a previous study with observations of soil CO2 respiration. The simulated and observed changes in SOC were then compared using slopes of linear regressions of SOC changes over time. Results showed that the SOM model captured observed changes in SOC content from differences in rotations, N application and crop residue management for conventional tillage. On the basis of SOC change data a mean TF of 0.48 (standard deviation, SD = 0.12) was estimated for NT. The results indicate that (i) the estimated uncertainty of tillage effects on SOC turnover may be smaller than previously thought and (ii) simple scaling of SOM model parameters may be sufficient to capture the effects of soil tillage on SOM turnover in the tilled layer. Scenario analyses showed that the average extra C input needed to compensate for soil tillage was 762 (SD = 351) kg C ha−1 year−1. Climatic conditions (temperature and precipitation) also affected how much extra C was needed, with substantially larger inputs being required for wetter and warmer climates.  相似文献   

12.
A 3‐year field tillage and residue management experiment established in North China was used to analyse topsoil (0–15 cm) aggregation, and microbial functional diversity, enzyme activity and glomalin‐related soil protein (GRSP) content within aggregates. Compared with conventional tillage (CT), no‐tillage (NT) alone significantly (< 0.05) increased organic C contents in 50–250 and <2 μm aggregates and decreased the proportion of C accumulated by 2–50 μm aggregates and microbial functional diversity indices in <2 μm aggregates. Regardless of tillage practice, both half‐amount (C50) and full (C100) residue retention tended to increase organic C and GRSP contents, or dehydrogenase and invertase activities, in certain aggregates. Under CT, a poorer performance of C50 than C100 was observed in maintaining Shannon index (H′) and Simpson index (D) in >250 and <2 μm aggregates, and also McIntosh index (U) in <2 μm aggregates, owing to insufficient residue and possible decreases in the distribution of decomposer micro‐organisms. Under NT, however, C50 was more effective than C100 in maintaining/elevating H′, D and U in all soil aggregates except for 50–250 μm, suggesting that surplus residue may induce worse soil conditions, decreasing heterotrophic microbial activities. Thus, NT with half‐amount residue retention improved soil physical–chemical–biological properties and could be a useful management practice in North China.  相似文献   

13.
Continuous conventional tillage can cause serious soil degradation in rain‐fed agriculture, which reduces crop productivity. Adopting suitable tillage practices is very important for improving the soil and increasing crop productivity. Between 2007 and 2010, a 3‐year field study was conducted in semi‐arid areas of southern Ningxia, China, to determine the effects of rotational tillage practices on bulk density, soil aggregate, organic carbon concentration and crop yields. Three tillage treatments were tested: no‐tillage the first and third year and subsoiling the second year (NT/ST/NT); subsoiling the first and third year and no‐tillage the second year (ST/NT/ST); and conventional tillage each year (CT). A conventional tillage treatment was used as the control. Under the rotational tillage treatments, the mean soil bulk density at a depth of 0–60 cm was significantly (P < 0.05) decreased by 4.9% compared with CT, and with the best effect under ST/NT/ST. The soil organic carbon (SOC) concentration and aggregate size fractions and stability at 0–40 cm depth were significantly (P < 0.05) increased in rotational tillage treatments when compared with the conventional tillage, and the ST/NT/ST treatment produced the highest increases. Significant differences were detected in the SOC concentration in 2 to 0.25–mm size fractions at 0–30 cm depth between rotational tillage treatments and conventional tillage. Biomass and grain yield with the rotational tillage practices were significantly positively influenced over 3 years, and ST/NT/ST produced the highest average crop yields among the three treatments. Therefore, it was concluded that the application of rotational tillage with subsoiling every 2 years and no‐tillage every other year (ST/NT/ST) should be of benefit in promoting the development of dryland farming in semi‐arid areas of northwest China.  相似文献   

14.
Organic matter accumulation and increased microbial activity under no-till can affect the dynamics of some essential micronutrients for plants. The main purpose of this work was to study the long-term effect of tillage on the availability of Fe, Mn, Cu, and Zn in a calcareous soil from Southern Spain. To this end, nutrient availability in surface soil (0–5-cm depth) subjected to a long-term tillage experiment (21 years) was evaluated via pot experiments and chemical tests involving DTPA extraction (as availability index) and sequential chemical fractionation of Mn and Fe.Soil organic matter (SOM) content and microbial activity (estimated by the β-glucosidase method) were found to be significantly higher under no-till (NT) than under conventional (CT) or minimum tillage (MT). Also, DTPA extractable Mn, Cu, and Zn, and citrate–bicarbonate extractable Mn (Mncb), were all higher under NT than under CT and MT, the differences being related to the increase in SOM as revealed by the correlation of Mn, Cu, and Zn extractable with DTPA and SOM (r = 0.87, P < 0.001; r = 0.8, P < 0.01, and r = 0.86, P < 0.001, respectively), and that between Mncb and SOM (r = 0.87, P < 0.001). However, the increased extractability resulted in no increased concentrations of these nutrients in plants. Moreover, the Mn concentration in the last expanded leaf was significantly lower with NT than with CT, which can be ascribed at least partly to an increased microbial activity under NT as revealed by the negative correlation between Mn in plants and β-glucosidase activity in soil (r = −0.71, P < 0.01). The Fe concentration in plants was not affected by soil tillage; also, it was only related to citrate–ascorbate extractable Fe (r = 0.69, P < 0.05), which exposes the contribution of poorly crystalline Fe oxides in soil to Fe nutrition in plants.  相似文献   

15.
Abstract

Peanut (Arachis hypogaea L.) is susceptible to iron (Fe) chlorosis, however, plant analysis diagnostic criteria are lacking for determining the intensity of chlorosis in this crop. As total Fe content is a misleading index of Fe nutritional status of plants, determination of physiologically active Fe fraction (Fe2+) is suggested for the purpose. In a nutrient indexing survey of the chlorosis‐affected peanut crop grown in the rainfed Potohar plateau of Pakistan, o‐phenanthroline extractable Fe2+ concentration in plants decreased with increasing severity of chlorosis and thus proved an effective technique for determining the intensity of Fe chlorosis. Green plants contained 40.1 to 67.3 mg Fe2+/kg, mildly chlorotic 32.1 to 40.0 mg Fe2+/kg, moderately chlorotic 28.0 to 32.0 mg Fe2+/kg, and severely chlorotic <28.0 mg Fe2+/kg. The minimum Fe2+ requirement in green plants was estimated to be 40 mg/kg on dry weight basis. In rainfed field experiments on a calcareous Typic Hapludalfs soil, foliar sprays of 1% solution of sequestrene (NaFeEDDHA) proved superior to the foliar sprays of 0.5% FeSO4.7H2O in correcting Fe chlorosis in two cultivars of peanut. Maximum increase in pod yield with sequestrene was 42% in cv. BARD‐92 and 27% in cv. BARD‐699 over the respective control yields. Ferrous concentration in plants increased with both the Fe sources, however, a substantial increase was recorded only with sequestrene. As peanut is a low‐input high‐risk rainfed crop, correction of Fe chlorosis by using sequestrene may not be economically feasible. Thus, development and/or screening of peanut varieties tolerant to Fe chlorosis is suggested by employing Fe2+ analysis technique.  相似文献   

16.
The literature shows a great number of soil quality indices (SQI) based on organic matter and its fractions. Our objectives were to determine the changes in soil organic carbon (SOC), carbon fractions and SQI in three production systems based on winter wheat (Triticum aestivum L.). The three production systems involved wheat monoculture under conventional tillage and no-tillage (WWCT and WWNT, respectively) and traditional management, wheat under conventional tillage and grazing of natural grasses, alternated one year each (WGCT). In turn, each treatment was divided into N-P-fertilized (f) and non-fertilized (nf). We analysed SOC, labile fractions and their ratios (SQI) at 0–5, 5–10 and 10–20 cm soil depths. SOC was significantly higher in WWNT-f than in WWCT-f and WGCT-f at 0–5 and 0–20 cm range. Conversely, the lowest concentration was found in WWNT and WWCT in non-fertilized plots. Particulate organic C (POC, 105–2,000 μm) was significantly affected by tillage at 0–5 cm with the greatest concentrations found in WWNT (mean = 3.2 g kg−1) followed by WGCT and WWCT (mean = 2.0 g kg−1). Soils under CT showed the lowest lability index (LI) values, whereas the conversion to NT increased it (0.74–1.28). Carbon management index (CMI) increased significantly at the 0–20 cm seven years after NT establishment compared to WWCT. SQI such as LI, CMI and SOC/silt+clay were more sensitive for differentiating production systems, whereas C pool index and C/N were more sensitive for differentiating the fertilizer application effect. Considering improvement in SQI and carbon fractions as indicators of better soil quality, adoption of NT improved the soil quality in the semiarid rainfed conditions in the short term.  相似文献   

17.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

18.
Abstract

Crop response to fertilizer nitrogen (N) is dependent upon tillage management. This study was conducted to determine how tillage rotation influences non‐irrigated crop growth, N uptake and yield. The effects of tillage rotation, N rate and N timing schedule on early season dry matter production and N uptake, ear leaf N concentration at silking, and yield of corn [Zea mays (L.) Pioneer 3378] were investigated at Painter, VA, on an Altavista loam (fine‐loamy, mixed, thermic Aquic Hapludult). In 1986, maximum yields achieved in the 6‐year continuous no till (NT) [5.82 Mg/ha] and first year no till (AT) [5.64 Mg/ha] were significantly greater than that of the 6‐year continuous conventional till (CT) [3.67 Mg/ha], but no yield differences were obtained in the drier 1987 season. A higher rate of N fertilizer was required to obtain maximum yield in the first year no till (168 kg N/ha) than in the NT (112 kg N/ha) during 1986. Early 1986 N uptake and growth response with and without N at planting increased in the order CT < AT = NT and AT < CT < NT, respectively, indicating greatest immobilization of soil N occurred in the newly established no till soil. Lack of differences in critical ear leaf N values developed for NT and CT in each year imply that plant norms developed for one tillage system may accurately assess N status of corn grown under different tillage practices.  相似文献   

19.
The effect of tillage systems and crop rotation on microbial biomass phosphorus (MBP) and acid phosphatase (P‐ase) activity, and the amount of different phosphorus (P) forms measured by 31P‐NMR spectroscopy were studied on a field experiment carried out in a temperate Ultisol from southern Chile. Two tillage systems, no tillage (NT) and conventional tillage (CT) and two crop rotations, oat–wheat (OW) and lupine–wheat (LW) were evaluated 4 yr after the start of the experiment to determine the effects of such management on some soil biological parameters and P forms at three depths (0–5, 0–10 and 10–20 cm). Microbial biomass P ranged from 6.5 to 22.6 mg/kg, whereas the mean total P (PT) was 1995 mg/kg for all treatments (OW and LW). Microbial biomass carbon (MBC) and surface P accumulation (at 0–5 cm depth), including Olsen P, MBP, orthophosphate monoesters (monoester‐P), were larger under NT than CT. Tillage effects were greater than crop rotation effects in enhancing P availability. The LW rotation showed enhanced P‐ase activity and increased monoester‐P forms (57 vs. 30% of the total integral area of the spectra, in average) compared with OW. Nevertheless, OW rotation increased orthophosphate (ortho‐P), especially at 10–20 cm. Microbial biomass carbon ranged from 532 to 2351 mg/kg, which represented 1.2–4.5% of total organic C (Co). Furthermore, MBP correlated positively with MBC (r = 0.80), Olsen P (r = 0.77), Co (r = 0.77), pH (r = 0.65), PT (r = 0.65) and P‐ase activity (r = 0.57), suggesting the importance of the microbial biomass on soil P availability.  相似文献   

20.
Abstract

The effect of four consecutive years of tillage method [conventional tillage (CT) or no‐tillage (NT)] and fertilizer N rate (84, 168, 336 kg N·ha‐1·yr) on soil carbon, nitrogen and and gaseous profiles was examined in a Wharton‐Cookport (Aquic Hapludults‐Aquic Fragiudults) silt loam soil in West Virginia cropped to continuous maize (Zea mays L.). At midseason (July) of the last cropping year, soil mineral N profile differences were generally discernible only at the high N (336 kg·ha‐1) rate in the topsoil (0‐ to 30‐cm layer). Ammonium (NH4 +‐N) levels at this time were significantly (p ≤ 0.05) higher under CT, while NO3 ‐N levels were the same under both tillage methods. However, after silage harvest in September NH4 +‐N levels were the same under both tillage systems, while NO3 ‐N levels were significantly higher under CT. Although no significant (p ≥ 0.05) tillage effects were found for TC, the level was increased by ~16% under NT in the surface soil (0 to 15‐cm) layer at the low N (84 kg·ha‐1) rate treatment. Total N (TN) was significantly (p ≤ 0.05) increased under NT compared to CT only in the soil surface layer at the high N rate treatment. Soils under both tillage methods after cropping appeared to be equally well aerated to the deepest layer (60 cm) as O2 levels were near atmospheric concentrations, and no gases commonly associated with more anaerobic environments (CH4, C2H4) were detected. Carbon dioxide (CO2) levels increased 30‐ to 40‐times atmospheric levels in the deepest layers, and were generally higher under NT. The incidence of detectable N2O (‐0.36 × 10 ‐2μg·ml‐1) was two‐ to seven‐times more numerous at the high N rate, and twice as numerous under NT compared to CT. These results generally corroborate previous results for soil mineral N changes as related to tillage method, but not for organic C, N and microbial activity, as has usually been reported, especially for more arid region soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号