首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
[目的] 十大孔兑是黄河几字湾的重要组成部分,生态环境敏感脆弱,开展其土地利用变化与驱动力分析对黄河流域高质量发展具有重要生态意义。[方法] 对十大孔兑基于1986年、2000年、2010年、2020年4期遥感影像,运用ArcMap 10.8空间分析法和主成分分析法系统分析其土地利用变化情况及驱动因素。[结果] 林地、建设用地、耕地呈逐期扩张趋势,未利用地、草地、水域呈逐期缩减趋势,截至2020年林地成为占地面积最大地类,面积达6 308.43 km2,占总面积的59.99%。2010—2020年综合动态度最高,达1.59 %,表明土地利用变化在2010—2020年变化最为剧烈。平原区地势平坦,耕地和建设用地在此扩张明显;风沙区在生态治理政策与工程作用下,未利用地向林草地转变,在风沙区东部尤为明显,而在风沙区中部则小比例转变为光伏发电建设用地;丘陵区主要由未利用地转变为林地,由于区域工矿业发达,丘陵区东南部极小部分林地转变为城乡工矿建设用地;水域在孔兑内部共减少75.81 km2,而耕地除北部平原区扩张外,在孔兑沿岸增加明显。土地利用变化主要受社会经济、农业生产力、地势、政策驱动变化。[结论] 近35年来,十大孔兑土地利用变化较大,整体生态向好的方向发展较为明显。该研究结果可为决策部门制定黄河流域生态保护政策提供科学参考。  相似文献   

2.
杨欣  肖豪立  王艺霏 《水土保持学报》2024,38(1):300-309,318
[目的] 科学构建长江中游城市群生态网络,为跨区域生态保护和协同治理提供科学依据。[方法] 遵循"源地识别—阻力面构建—廊道提取"框架构建多时点生态网络,基于网络属性和人类活动进行网络评价。[结果] (1)研究区生态源地面积由2000年的2.67×104 km2下降到2020年的2.29×104 km2,主要分布在湖北省西北部山区、江西、湖南交界处的山脉及鄱阳湖流域等地区。生态廊道数量由69条下降为42条,总长度由1.53×104 km下降到1.16×104 km。研究区内生态阻力逐渐上升,网络重心由湖北省转移至湖南省,形态上由"三横两纵"的条带式分布转变为集中组团式分布。生态网络全局集程度、网络连通性均在减弱,总体上呈现结构收缩、功能减弱的变化趋势。网络周围5,15 km范围受人类活动影响最为明显。(2)在网络优化中,基于生态网络与交通网络交汇识别102个断裂点,基于源地间距离设置17个踏脚石。在生态网络5,15 km的范围设立"核心保护带"和"生态控制带",总长1 505 km。[结论] 在协同治理中,省级层面上湖北、江西两省应当完善流域跨省生态补偿机制,湖南、江西两省应当强化协同机制实施中的司法保障;市级层面上针对管理重点实行差别化管控,通过规划潜在生态廊道推进市域层面协同治理。优化后的生态网络集程度由0.22提升至0.30,有效提升区域间生态连通性。  相似文献   

3.
杜梦晴  杨欣 《水土保持学报》2024,38(1):197-206,219
[目的] 碳补偿机制是实现双碳目标和社会环境公平的重要途经。[方法] 在测算2010—2020年碳收支基础上,建立碳补偿模型核算碳补偿空间转移额度。[结果] (1)研究期间全省碳排放总量年平均递增率为2.51%,除佛山、东莞、清远外其余城市的碳排放均不同程度增加,空间上呈现以广州为中心的"核心-外围"的格局。广东省2010—2020年碳吸收总量呈现缓慢下降趋势,空间格局趋于稳定,总体呈现北高南低的特点。(2)研究期间碳补偿支付区范围变大,面积占比由55.22%扩大至60.49 %,支付区主要分布净碳排放较多的惠州及净碳排放少但碳排放效率低的云浮、阳江等,受偿区主要分为2类,一类是净碳排放量少的河源、汕尾等地;另一类是碳排放多但碳排放效率高的深圳、广州、东莞等。(3)惠州需支付碳补偿额度居于首位,深圳获得碳补偿额度最多,各市跨区域碳补偿额度占区域GDP的比例在0.017%~0.095%波动,跨区域碳补偿具有可操作性。[结论] 为实现广东省区域间的低碳协同发展,未来应建立以政府为主导的区域横向碳补偿制度,并实施以低碳为导向的差异化的低碳优化策略,这对区域协调和低碳发展具有重要的现实意义。  相似文献   

4.
赵丽娜  李瑞  袁江  敬俊 《水土保持学报》2024,38(1):60-69,78
[目的] 西南喀斯特区土壤侵蚀问题十分突出,严重影响着区域社会经济的可持续发展。而喀斯特流域特征环境因子如何影响土壤侵蚀的直接驱动力—径流侵蚀力,目前尚不十分明晰。[方法] 以西南喀斯特地区的野纪河流域为例,基于流域出口水文站长系列高频实测数据,采用水土评估工具(SWAT)和偏最小二乘模型(PLSR)评估了2005—2020年流域径流侵蚀力的时空演变特征,解析了主要喀斯特环境因子对径流侵蚀力的影响。[结果] 流域多年平均径流侵蚀力为2 326.47 m4/(km2·s),并具有较强的空间异质性,2005年径流侵蚀力高值主要分布北部和中部,而2010—2020年,径流侵蚀力高值区逐步向中南部转移。时间上,受益于岩溶区"十一五"以来坡耕地水土流失综合治理、石漠化综合治理等生态修复工程的实施,野纪河流域径流侵蚀力总体上呈降低趋势。岩性、基岩裸露、坡度是影响野纪河流域径流侵蚀力变化的主导控制因子,对径流侵蚀力时空分异的共同解释度达57.7%。[结论] 研究结果可为喀斯特流域水侵蚀导致的水土流失综合防治提供理论参考,有助于制定更加精准和有效的政策和措施,改善喀斯特区生态环境,促进该地区的可持续发展。  相似文献   

5.
[目的] 融雪侵蚀是东北黑土区主要土壤侵蚀形式之一,是该区土地退化的重要作用力,融雪径流侵蚀力是计算融雪径流侵蚀量的关键因子,因此研究融雪径流侵蚀力具有重要意义。融雪径流侵蚀力主要受积雪深度、辐射强度及升温速率影响,其主要驱动力包括融雪速率和地表径流作用。[方法] 通过计算近31年日均融雪径流侵蚀力,分析东北黑土区融雪径流侵蚀力时空分布特征,并利用地理探测器辨析各区域融雪径流侵蚀力的主要影响因子。[结果] 3个黑土亚区1990—2020年日均融雪径流侵蚀力均呈现先增大后减小态势,近些年逐步趋于稳定,多年日均融雪径流侵蚀力为0.01 (MJ·mm)/(hm2·h·a);空间上多年日均融雪径流侵蚀力在0~0.21 (MJ·mm)/(hm2·h·a)范围内,基本呈现中间小、四周大规律。融雪径流侵蚀力影响因子空间上表现为积雪深度北部大、南部小,太阳辐射强度呈现由西向东递减,升温速率值从北部向南部递减。通过地探测器辨析融雪径流侵蚀力影响因子作用强弱发现,升温速率对蒙东黑土亚区作用最强,而积雪深度对松嫩黑土亚区及三江黑土亚区作用最强。[结论] 通过分析1990—2020年东北黑土区融雪径流侵蚀力时空特征及其影响因子,对于深化研究区融雪径流侵蚀特征及融雪侵蚀防控具有一定的理论和实践意义。  相似文献   

6.
[目的] 为了解青海河湟谷地植被时空变化情况,明晰气候变化、土地开发利用及人类活动等因素对植被变化的影响。[方法] 利用2000—2020年MODIS NDVI数据集表征植被变化,基于Theil-Sen Median趋势检验法、偏相关性分析、地理探测器等方法,探究青海河湟谷地NDVI时空变化情况及其与气温、降水、坡度、土壤类型和人类活动等影响因素的关系。[结果] (1)近20年河湟谷地植被NDVI呈波动增长趋势,显著增长区域面积为2.21×104 km2(p<0.05),占河湟谷地总面积的53.39%;植被NDVI显著下降区域面积为7.04×102 km2(p<0.05),主要分布在湟水谷地中部,占总面积的1.69%;(2)自然因素上,NDVI与气温、降水呈正相关区域分别占总面积的50.32%,80.14%。植被显著上升的区域主要分布在海拔2 800~3 100 m、坡度15°~20°、坡向为北向的区域。在高程小于3 200 m范围内,植被NDVI变化随高程增加呈现上升趋势,其中显著上升区域占总面积的54.37%。人类活动因素上,NDVI与人口密度、夜间灯光呈正相关区域分别占总面积的50.52%,38.53%。植被NDVI在森林、灌木、草地及建设用地上呈显著向好趋势。(3)综合偏相关性分析与地理探测器对植被NDVI变化归因分析可知,不同土壤类型上植被变化差异明显,年降雨量和人类活动是河湟谷地植被NDVI变化主要影响因素,各影响因素间存在交互作用,呈现相互增强和非线性增强关系。[结论] 研究结果揭示了河湟谷地植被NDVI时空变化特征,明确了自然因素与人为因素对植被NDVI变化的驱动机制,可为未来青海省河湟谷地生态保护、建设规划以及生态工程实施提供理论支撑。  相似文献   

7.
[目的] 针对水力侵蚀对土壤碳循环"源汇"效应争议,综述水力侵蚀对土壤有机碳矿化作用和土壤微生物多样性的影响机制,提出未来定量研究的方向与注意事项。[方法] 在提出水力侵蚀对土壤碳循环"源"汇"效应概念和理论的基础上,分析现阶段研究中水力侵蚀对土壤碳循环"源汇"效应争议的核心问题,进而探讨水力侵蚀导致不同种类土壤微生物多样性变化的差异及其作用机制。[结果] 水力侵蚀过程导致土壤有机碳矿化作用形成碳循环中的"源"效应,而沉积过程导致有机碳迁移至低洼处固存形成碳循环中的"汇"效应,微生物的呼吸和分解作用可能解释土壤碳循环中消失的碳"汇"问题;水力侵蚀过程削弱细菌群落结构复杂性,而沉积过程可增加细菌群落结构的复杂性,但侵蚀和沉积过程都可能降低土壤真菌的α多样性和群落结构复杂性;水力侵蚀过程通过影响土壤有机碳含量、植被覆盖度和土壤pH等因素间接影响土壤微生物多样性。[结论] 未来研究应强化不同尺度水力侵蚀过程对土壤碳循环的影响机制、水力侵蚀过程与土壤微生物多样性的相互作用机制及水力侵蚀过程中土壤微生物对碳循环的影响机制相关量化研究。  相似文献   

8.
[目的] 为揭示流域土壤侵蚀时空变化特征并开展可持续流域治理工作。[方法] 基于妫水河流域1995—2018年降雨、土壤、数字高程模型及土地利用数据,采用GIS技术与RUSLE模型的方法定量分析妫水河流域土壤侵蚀时空特征,并对流域土壤稳定性进行评价。[结果] (1)1995—2018年,流域内林地和草地面积均呈下降的趋势,2018年林地和草地面积分别为4.41×104,0.84×104 hm2,较1995年分别下降13.52%和10.61%。耕地面积由1995年的3.53×104 hm2增加至2018年的4.07×104 hm2。建筑用地面积逐渐增加,由1995年的0.59×104 hm2增加到2018年的1.90×104 hm2。(2)妫水河流域内土壤侵蚀模数呈波动性变化,由1995年的8.71 t/(hm2·a)降至4.56 t/(hm2·a)后,于2018年升至11.07 t/(hm2·a)。(3)妫水河流域土壤侵蚀强度以微度侵蚀和轻度侵蚀为主,1995—2015年,土壤侵蚀强度逐渐降低并保持稳定,中度及以上土壤侵蚀面积比例由4.95%降至3.05%,2018年后升至7.42%。(4)妫水河流域在研究时段内土壤稳定性降低,不稳定土壤面积升高。[结论] 妫水河流域城市化的进程中,林草覆盖度略有降低;土壤侵蚀强度整体下降,但在后期略有提高;不稳定土壤所占面积较少。研究结果可为妫水河流域综合治理及土地利用规划提供依据。  相似文献   

9.
[目的] 探究水电开发对局地气候的影响,是预防和减轻水电开发可能带来的负面效应,实现能源的可持续发展与环境保护的重要保障。[方法] 选取金沙江中游的龙开口、观音岩及下游的溪洛渡、向家坝4个典型水电站,运用气候倾向率、M-K趋势检验和小波分析等方法,定量分析了中下游水电局地气温、降水在蓄水前后的月、季、年变化及在水电开发中的突变情况和周期性特征。[结果] (1)蓄水后,水电站对河谷内最高温起抑制作用,最低温起抬升作用;夏季和秋季,下游水电站发挥了降温作用,月平均气温2,6,7,9,10,11月下降显著,而中游水电站调温作用不明显,仅7月平均气温略有下降。(2)蓄水后,各季节降水量均有增加,在4,8,9月增加显著,增幅为0.71~27.95 mm。(3)气温、降水与水电开发相关,中下游水电站的气温、降水在开发中和蓄水后发生不同时间的突变。(4)气温和降水在小波变化周期上呈现相似的特征,蓄水后,局地降水呈现出更显著的周期性,并且具有一定稳定性。[结论] 不同时间尺度上,水电开发在不同河段上影响局地气温和降水的程度不同,受到地理位置、周边环境及蓄水时长的多重因素制约。  相似文献   

10.
[目的] 为探明磷素对含沙水流流体变异特性的影响。[方法] 采用自制双竖管流变仪,研究了磷素对不同浓度含沙水流流体类型、流变参数及流体发生变异的临界阈值的影响。[结果] (1)磷素浓度、泥沙浓度及泥沙理化性质是影响含沙水流发生流体变异的主要因素。在25 ℃下,过磷酸钙浓度每增加0.1 g/cm3,黏滞系数和宾汉极限剪切力分别增加0.48~1.47 mPa·s和3.49~6.84 N/m2。(2)随着磷素和泥沙含量的增大,含磷素的含沙水流由牛顿流体变异为宾汉流体。构建并验证了磷-泥沙水流黏滞系数和宾汉极限剪切力等流变参数的计算模型。(3)给出了磷-泥沙水流流体变异的临界浓度阈值。当磷素浓度从0增加至0.45 g/cm3时,含沙水流的流体变异临界浓度阈值降低49%,说明磷素的存在加速了含沙水流的流体变异。[结论] 磷素的增加使得侵蚀水流更容易由牛顿流体变异为宾汉流体,从而影响侵蚀流内部的能量耗散过程,研究结果为深入认识侵蚀污染水流的输移机制提供了新的科学基础。  相似文献   

11.
[目的]从社会、经济、生态环境3个方面评价区域土地利用效益及其耦合关系有利于实现土地资源的合理配置及优化用地结构。[方法]以四川省21个地市州为研究对象,利用熵权TOPSIS法和耦合协调度模型,构建了2010—2020年四川省土地利用效益的综合评价体系,并基于GIS技术,分析了土地利用的社会、经济、生态环境效益及其耦合协调关系的时空演变特征。[结果](1)四川省各地市州的土地利用综合效益整体上呈上升趋势,空间上具有“西北高东南低”的空间格局;土地利用的经济、生态环境效益整体上具有上升趋势,分别表现为“西高东低”和“中东部高西部低”的空间格局;土地利用社会效益整体上呈下降趋势,具有“中部高两翼低”的空间格局;三大效益在空间均具有较显著的聚集特征。(2)四川省各地市州的土地利用耦合协调等级为4个,总体协调水平不高,以勉强协调为主,其次是濒临失调,具有“中间高两翼低”的空间格局,且耦合等级相同的城市聚集度较高,土地利用效益耦合协调等级在空间分布上需进一步改善。(3)影响四川省地利用效益大小的因子依次为社会>经济>社会经济>社会生态>生态环境效益系统;土地利用效益耦合协...  相似文献   

12.
[目的]生态用地在维持生态平衡和支撑经济发展方面发挥着重要作用。研究滇中城市群生态用地的时空演变特征和驱动机制对优化生态安全格局、推进云南生态文明建设、筑牢国家西南生态安全屏障具有重要现实意义。[方法]利用Google Earth Engine(GEE)云平台对滇中城市群1990—2020年生态用地进行识别的基础上,采用变化轨迹分析、热点分析和地理探测器对滇中城市群生态用地时空变化轨迹和驱动机制进行了探索。[结果](1)滇中城市群生态用地变化以非生态用地与林地互换为主,并集中发生在林地和非生态用地的过渡地带,而生态用地内部之间(林地和草地)的转换主要发生在研究区北部和南部的山地区域。(2)生态用地变化以低频次变化为主,高频次较少,频次变化在元江干热河谷、金沙江干热河谷区域、滇东滇东南喀斯特地带表现出明显的聚集效应。(3)耕地面积变化是影响滇中城市群生态用地变化的主要驱动力,社会经济因素对生态用地的影响力显著高于自然因素,在自然环境、耕地扩张、生态修复政策等多重驱动下,多因子交互作用对生态用地变化更具解释力。[结论]滇中城市群生态用地破碎,自然环境的改变和人类活动的日益增强极易导致生态用...  相似文献   

13.
[目的]水土资源是城市发展的重要生产要素,是探索黄河中游城市群水土资源利用过程中的关键因素,对科学促进黄河中游城市群经济快速发展具有重要意义。[方法]以黄河中游三大城市群为例,通过运用LMDI加法模型对2010—2019年黄河中游三大城市群分别构建影响水资源消耗量变化及城市建设用地数量变化的因素分解模型,计算并比较不同驱动因素的效应值。[结果](1)水资源利用效率提高和产业结构的优化能够抑制水资源消耗量的增加,而经济规模和人口规模扩大则促进其增加。(2)产业规模、经济规模及人口规模扩大对建设用地扩张存在推动作用,而城市建设用地消耗强度对建设用地扩张具有抑制作用。(3)对于水资源利用量变化,黄河中游不同城市之间产业结构优化水平存在较大差距;对于城市建设用地变化,三大城市群总效应值比较结果为关中平原城市群>中原城市群>晋中城市群。[结论]基于区域差异和时间差异角度探讨黄河中游城市群水土资源利用的影响因素,有助于丰富水土资源可持续利用的相关研究,为黄河中游城市群的可持续发展提供理论指导。  相似文献   

14.
[目的]区域碳储量与土地利用密切相关。在“双碳”目标下,从碳储量视角开展重点区域土地利用变化预测研究,对协调与优化区域土地利用格局、提高区域生态系统未来固碳潜力具有重要参考价值。[方法]以川西高原为研究区,以2000年、2010年和2020年土地利用为数据源,预测不同情景下2030年土地利用,结合修正的土地利用碳密度数据和InVEST模型估算区域碳储量变化。[结果](1)从各地类相对研究区的面积占比变化看,2000—2020年草地从65.20%逐步缩减到63.65%,林地从31.73%不断扩张到32.92%,未利用地先减后增且净增0.57%,水域和耕地先增后减均净减0.11%,湿地持续增加,共净增0.07%;研究区2000年、2010年、2020年碳储量分别为24.26×108,24.29×108,24.27×108 t,呈先增后减趋势。(2)与2020年相比,2030年自然发展情景下碳储量减少3.19×105 t,在耕地保护情景、生态保护情景、耕地生态联合保护情景下将分别固碳4.29×10  相似文献   

15.
[目的]黄河流域是我国重要的生态保护屏障,但其生态环境脆弱,研究黄河流域植被变化与产水服务之间的关系,为其生态建设和高质量发展提供保障。[方法]基于NDVI数据和InVEST模型,采用趋势分析和相关分析方法,将植被变化与水源供给服务相结合,对2001—2020年黄河流域NDVI与产水服务的时序变化和空间特征进行分析,研究NDVI与产水服务的趋势变化和相互关系。[结果](1)黄河流域NDVI与产水深度均呈现增加趋势,增速分别为0.05/10,18.215 mm/10 a, NDVI以明显增长为主,产水深度则以不明显增长为主,此外,流域产水量也不断增长。(2)NDVI与产水深度联系紧密,二者在时间上呈显著正相关,相关系数为0.75(p<0.01),空间上表现出东北正相关-西南负相关的空间分化。(3)较高植被覆盖度下产水深度增加速率最高,不同植被覆盖度下NDVI与产水深度均以正相关为主,但随着植被覆盖度增多,NDVI与产水深度的负相关比例不断增加,表明目前各类植被覆盖度下NDVI对产水的影响均是积极的,但随着植被覆盖度增加,其对产水深度的消极影响也不断增加。[结论]黄河流域NDVI与产...  相似文献   

16.
[目的]构建适应渭北黄土高原人工林资源与生态服务功能特点的人工林生态效益评价方法,阐明不同类型人工林建设对该地区东部、中部、西部生态环境的影响,为准确量化与科学评估不同类型、不同区域人工林的生态服务功能,优化林分结构、制定人工林生态补偿强度标准及准确计量评估人工林碳汇,将“绿色颜值”转化为“生态价值”提供理论依据。[方法]在构建渭北黄土高原生态林、生态经济林、经济林有效面积计算模型的基础上,采用典型区域调查、测定与森林二类调查资料和计量参数等收集相结合的方法,计算分析了3种不同类型,东部、中部、西部不同区域人工林涵养水源、固碳释氧、保育土壤和净化大气的生态效益。[结果](1)渭北黄土高原不同类型人工林的生态效益为生态林>经济林>生态经济林;生态效益中涵养水源价值量最高,保育土壤与固碳释氧效益次之,净化大气的价值量最低。(2)人工林单位面积生态效益为经济林>生态林>生态经济林。(3)不同区域人工林生态效益为中部>东部>西部。[结论]生态林和经济林在生态效益中发挥着重要作用,提高它们所占比重能显著提高人工林的生态效益。为提高西部人工林生态效益,生态林应加...  相似文献   

17.
[目的]为揭示窟野河流域径流对土地利用变化的响应,并预测未来径流变化。[方法]以窟野河流域为研究区,基于SWAT和PLUS模型,通过2000年、2005年、2010年、2015年、2020年和预测得到的自然发展情景下2025年、2030年7期土地利用数据,定量分析径流在不同土地利用情景下的变化。[结果](1)SWAT模型率定期和验证期的R2和NS均>0.7;PLUS模型总体精度为0.877 4,Kappa系数为0.802 1,2个模型在窟野河流域适用性较好;(2)2000—2020年,窟野河流域林地、建设用地面积分别增加102.92,600.90 km2,耕地、草地、水域和未利用地分别减少277.15,366.25,40.44,19.98 km2;(3)窟野河流域年平均径流深整体呈现“上游低,下游高,西部低,东部高”的空间分布格局;(4)在保证其他输入数据不变的情况下,改变土地利用数据,情景分析结果表明,林地、草地面积减少会促进径流,建设用地面积增加同样会促进径流;(5)自然发展情景下,2025年和2030年窟野河...  相似文献   

18.
[目的]研究宁夏沿黄生态经济带2009—2017年土地利用变化特点,并模拟2025年土地利用空间格局,为宁夏沿黄生态经济带土地开发、利用与保护提供引导,为国土空间规划编制提供参考。[方法]基于时间尺度和空间尺度,对宁夏沿黄生态经济带2009—2017年各类用地变化情况进行了分析,计算得出了各类用地转移概率矩阵,并基于CA-Markov模型,对自然发展情景、土地规划情景、耕地和生态保护情景下宁夏沿黄生态经济带2025年土地利用格局进行了模拟研究。[结果] 2009—2017年,宁夏沿黄生态经济带土地利用整体呈现出耕地、其他农用地及各类建设用地不断增加,园地、林地、草地、水域及自然保留地均有所减少的特点;除水域、其他建设用地外,其他各类用地转为城乡建设用地概率普遍较高,特别是耕地转为城乡建设用地概率最高,达到10.65%。[结论]在自然发展、土地规划、耕地和环境保护3种情景下,宁夏沿黄生态经济带2025年土地利用结构仍然以牧草地、耕地、自然保留地为主,但随着城镇化进程加快和基础设施持续完善,城乡建设用地和交通水利用地增加幅度较大。  相似文献   

19.
黄河下游地区土地利用和生态系统服务价值的时空演变   总被引:5,自引:7,他引:5  
基于黄河下游地区1990—2015年土地利用分类数据,运用土地利用变化动态度、土地利用转移矩阵,探究不同土地利用类型的变化程度及转移情况,运用当量因子法、热点分析、重心模型、地理探测器探究黄河下游地区县域尺度生态系统服务价值的时空演变及其空间分异。结果表明:1)耕地、草地、未利用地面积逐渐减少,建设用地面积增加,耕地是建设用地面积增加的主要贡献者,建设用地扩张存在侵占耕地的现象。2)从时间尺度看,地区生态系统服务价值逐年减少;从空间尺度看,县域尺度的高值区逐渐减少,低值区逐渐增加;从地均生态系统服务价值的变化率来看,大部分县区的地均生态系统服务价值呈现持续降低趋势。3)地均生态系统服务价值的高值区与低值区空间集聚程度明显,但有逐渐弱化的趋势;生态系统服务价值的重心始终分布在山东省郓城县,重心迁移与两地区之间生态系统服务价值变化差值有关。4)黄河下游地区县域尺度地均生态系统服务价值空间分异受自然因素和社会经济因素共同作用的影响,是不同驱动因子共同作用的结果,其中人为综合影响指数对区域生态系统服务空间分异的影响最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号