首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 640 毫秒
1.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。  相似文献   

2.
基于改进卷积神经网络的在体青皮核桃检测方法   总被引:1,自引:0,他引:1  
采摘机器人对核桃采摘时,需准确检测到在体核桃目标。为实现自然环境下青皮核桃的精准识别,研究了基于改进卷积神经网络的青皮核桃检测方法。以预训练的VGG16网络结构作为模型的特征提取器,在Faster R-CNN的卷积层加入批归一化处理、利用双线性插值法改进RPN结构和构建混合损失函数等方式改进模型的适应性,分别采用SGD和Adam优化算法训练模型,并与未改进的Faster R-CNN对比。以精度、召回率和F1值作为模型的准确性指标,单幅图像平均检测时间作为速度性能评价指标。结果表明,利用Adam优化器训练得到的模型更稳定,精度高达97.71%,召回率为94.58%,F1值为96.12%,单幅图像检测耗时为0.227s。与未改进的Faster R-CNN模型相比,精度提高了5.04个百分点,召回率提高了4.65个百分点,F1值提升了4.84个百分点,单幅图像检测耗时降低了0.148s。在园林环境下,所提方法的成功率可达91.25%,并且能保持一定的实时性。该方法在核桃识别检测中能够保持较高的精度、较快的速度和较强的鲁棒性,能够为机器人快速长时间在复杂环境下识别并采摘核桃提供技术支撑。  相似文献   

3.
为了实现复杂环境下农业机器人对番茄果实的快速准确识别,提出了一种基于注意力机制与改进YOLO v5s的温室番茄目标快速检测方法。根据YOLO v5s模型小、速度快等特点,在骨干网络中加入卷积注意力模块(CBAM),通过串联空间注意力模块和通道注意力模块,对绿色番茄目标特征给予更多的关注,提高识别精度,解决绿色番茄在相似颜色背景中难识别问题;通过将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高果实目标定位精度。试验结果表明,CB-YOLO网络模型对温室环境下红色番茄检测精度、绿色番茄检测精度、平均精度均值分别为99.88%、99.18%和99.53%,果实检测精度和平均精度均值高于Faster R-CNN模型、YOLO v4-tiny模型和YOLO v5模型。将CB-YOLO模型部署到安卓手机端,通过不同型号手机测试,验证了模型在移动终端设备上运行的稳定性,可为设施环境下基于移动边缘计算的机器人目标识别及采收作业提供技术支持。  相似文献   

4.
为了快速而准确地统计视频监测区域内的水稻穗数,提出了一种基于改进Faster R-CNN的稻穗检测方法。针对稻穗目标较小的问题,在Inception_ResNet-v2的基础上引入空洞卷积进行优化;对于不同生长期稻穗差别大的问题,设计了针对标注框尺度的K-means聚类,为候选区域生成网络提供先验知识,从而提高了检测精度。鉴于小尺寸稻穗目标的特殊性,用ROIAlign替代ROIPooling,提高了感兴趣区域的提取精度。试验测试时,根据水稻不同发育期稻穗的表型特征差异自制了3类数据集,并选取最佳聚类数为10。模型对比试验表明,本文方法的稻穗检测平均精度均值达到80.3%,较Faster R-CNN模型提升了2.4个百分点,且比SSD和YOLO系列模型有较大幅度的提升。  相似文献   

5.
发芽与表面损伤检测是鲜食马铃薯商品化的重要环节。针对鲜食马铃薯高通量分级分选过程中,高像素图像目标识别准确率低的问题,提出一种基于改进Faster R-CNN的商品马铃薯发芽与表面损伤检测方法。以Faster R-CNN为基础网络,将Faster R-CNN中的特征提取网络替换为残差网络ResNet50,设计了一种融合ResNet50的特征图金字塔网络(FPN),增加神经网络深度。采用模型对比试验、消融试验对本文模型与改进策略的有效性进行了试验验证分析,结果表明:改进模型的马铃薯检测平均精确率为98.89%,马铃薯发芽检测平均精确率为97.52%,马铃薯表面损伤检测平均精确率为92.94%,与Faster R-CNN模型相比,改进模型在检测识别时间和内存占用量不增加的前提下,马铃薯检测精确率下降0.04个百分点,马铃薯发芽检测平均精确率提升7.79个百分点,马铃薯表面损伤检测平均精确率提升34.54个百分点。改进后的模型可以实现对在高分辨率工业相机采集高像素图像条件下,商品马铃薯发芽与表面损伤的准确识别,为商品马铃薯快速分级分等工业化生产提供了方法支撑。  相似文献   

6.
为在自然环境下自动准确地检测樱桃番茄果实的成熟度,实现樱桃番茄果实自动化采摘,根据成熟期樱桃番茄果实表型特征的变化以及国家标准GH/T 1193—2021制定了5级樱桃番茄果实成熟度级别(绿熟期、转色期、初熟期、中熟期和完熟期),并针对樱桃番茄相邻成熟度特征差异不明显以及果实之间相互遮挡问题,提出一种改进的轻量化YOLO v7模型的樱桃番茄果实成熟度检测方法。该方法将MobileNetV3引入YOLO v7模型中作为骨干特征提取网络,以减少网络的参数量,同时在特征融合网络中加入全局注意力机制(Global attention mechanism, GAM)模块以提高网络的特征表达能力。试验结果表明,改进的YOLO v7模型在测试集下的精确率、召回率和平均精度均值分别为98.6%、98.1%和98.2%,单幅图像平均检测时间为82 ms,模型内存占用量为66.5 MB。对比Faster R-CNN、YOLO v3、YOLO v5s和YOLO v7模型,平均精度均值分别提升18.7、0.2、0.3、0.1个百分点,模型内存占用量也最少。研究表明改进的YOLO v7模型能够为樱桃番茄果实的自...  相似文献   

7.
准确识别玉米幼苗是实现自动化精准除草、间苗、补种等苗期作业的重要前提。为此,针对自然环境下农业机器人对玉米幼苗的检测问题,结合深度残差网络强大的特征提取能力和级联网络连接多个检测器不断优化预测结果的特点,对Cascade R-CNN模型进行改进,使之适用于自然环境下玉米幼苗的检测。模型使用残差网络ResNet-50与特征金字塔网络FPN作为特征提取器提取玉米幼苗图像的特征图,利用区域建议网络生成目标候选框,通过感兴趣区域池化将不同大小的特征图转换为统一尺寸的输出;最后,分类回归模块根据特征图对目标进行分类,并使用边框回归修正候选框的位置和大小,从而完成玉米幼苗目标检测。同时,以3~5叶期玉米幼苗为研究对象,采集其田间图像并制作数据集,用所制作的数据集对Cascade R-CNN模型进行训练,选取AlexNet、VGG16、ResNet18、ResNet50与ResNet50+FPN分别作为特征提取网络进行对比试验,确定所提出的ResNet50+FPN为最优特征提取网络,平均精度均值(mAP)为91.76%,平均检测时间为6.5ms。选取双阶段目标检测模型Faster R-CNN、R-F...  相似文献   

8.
基于YOLO v7-ECA模型的苹果幼果检测   总被引:1,自引:0,他引:1  
为实现自然环境下苹果幼果的快速准确检测,针对幼果期苹果果色与叶片颜色高度相似、体积微小、分布密集,识别难度大的问题,提出了一种融合高效通道注意力(Efficient channel attention, ECA)机制的改进YOLO v7模型(YOLO v7-ECA)。在模型的3条重参数化路径中插入ECA机制,可在不降低通道维数的前提下实现相邻通道局部跨通道交互,有效强调苹果幼果重要信息、抑制冗余无用特征,提高模型效率。采集自然环境下苹果幼果图像2 557幅作为训练样本、547幅作为验证样本、550幅作为测试样本,输入模型进行训练测试。结果表明,YOLO v7-ECA网络模型准确率为97.2%、召回率为93.6%、平均精度均值(Mean average precision, mAP)为98.2%、F1值为95.37%。与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比,其mAP分别提高15.5、4.6、1.6、1.8、3.0、1.8个百分点,准确率分别提高49.7、0.9、18.5、1.2、0.9、1.0个百分点,...  相似文献   

9.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y...  相似文献   

10.
为实现香梨自动化采摘,本文以YOLO v7-S为基础模型,针对果园中香梨果实、果叶和枝干之间相互遮挡,不易精准检测的问题,设计了一种轻量化香梨目标检测M-YOLO v7-SCSN+F模型。该模型采用MobileNetv3作为骨干特征提取网络,引入协同注意力机制(Coordinate attention,CA)模块,将YOLO v7-S中的损失函数CIoU替换为SIoU,并联合Normalized Wasserstein distance (NWD)小目标检测机制,以增强网络特征表达能力和检测精度。基于傅里叶变换(Fourier transform,FT)的数据增强方法,通过分析图像频域信息和重建图像振幅分量生成新的图像数据,从而提高模型泛化能力。实验结果表明,改进的M-YOLO v7-SCSN+F模型在验证集上的平均精度均值(mAP)、精确率和召回率分别达到97.23%、97.63%和93.66%,检测速度为69.39f/s,与Faster R-CNN、SSD、YOLO v3、YOLO v4、YOLO v5s、YOLO v7-S、YOLO v8n、RT-DETR-R50模型在验证集上进行性能比较,其平均精度均值(mAP)分别提高14.50、26.58、3.88、2.40、1.58、0.16、0.07、0.86个百分点。此外,改进的M-YOLO v7-SCSN+F模型内存占用量与YOLO v8n和RT-DETR-R50检测模型对比减少16.47、13.30MB。本文提出的检测模型对成熟期香梨具有很好的目标检测效果,为背景颜色相近小目标检测提供参考,可为香梨自动化采摘提供有效的技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号