首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 258 毫秒
1.
棉纤维发育相关酶活性的基因型差异与纤维比强度的关系   总被引:3,自引:3,他引:3  
 【目的】以纤维比强度差异较大的不同基因型棉花为材料,研究它们纤维发育过程中相关酶活性的动态变化与纤维比强度的关系,为探索改善棉纤维比强度的生理调控途径提供理论依据。【方法】选择棉纤维比强度分属高(科棉1号)、中(美棉33B)、低(德夏棉1号和苏棉15号)3种类型,4个不同基因型的品种,在大田栽培条件下,研究棉纤维次生壁加厚过程中相关酶活性的动态变化、纤维素累积和纤维比强度形成的关系。【结果】β-1,3-葡聚糖酶活性在次生壁加厚发育过程中呈下降趋势,蔗糖合成酶、过氧化物酶和IAA氧化酶活性变化均呈单峰曲线,基因型间差异主要表现在酶活性的大小和峰值出现的时间。科棉1号属高强纤维基因型,棉纤维中与纤维发育相关的酶活性在整个次生壁加厚期高于中、低强纤维基因型,前者酶活的动态变化与纤维素累积快速增长期的协调性好,纤维素累积平缓,纤维比强度增强的幅度大;反之,如低强纤维品种德夏棉1号和苏棉15号,其纤维发育相关酶在次生壁加厚期活性低,纤维素累积快速增长期短,纤维比强度增强的幅度小;美棉33B棉纤维发育相关酶活性、纤维素累积和纤维比强度形成特征介于上述两种基因型之间。【结论】不同基因型棉花纤维中与纤维发育相关的酶活性存在显著差异,该差异可能是导致纤维素累积特性及纤维比强度形成基因型间差异的主要生理原因之一。  相似文献   

2.
 笔者结合国内外对于棉纤维发育过程中纤维细胞内部生理生化反应的最新研究成果,依据棉花纤维比强度形成机制,综述了棉纤维比强度形成的关键时期次生壁加厚期,纤维素生物合成的物质变化、参与调控其合成的酶系(纤维素合成酶,蔗糖合成酶,β-1,3-葡聚糖合酶,β-1,3-葡聚糖酶,吲哚乙酸氧化酶和过氧化物酶)及影响合成的主要因素(基因型,温度,激素)等方面的研究进展。为探索改善棉纤维比强度的生理调控途径和培育高纤维强度的棉花品种提供了理论依据。  相似文献   

3.
笔者结合国内外对于棉纤维发育过程中纤维细胞内部生理生化反应的最新研究成果,依据棉花纤维比强度形成机制,综述了棉纤维比强度形成的关键时期次生壁加厚期,纤维素生物合成的物质变化、参与调控其合成的酶系(纤维素合成酶,蔗糖合成酶,β-1,3-葡聚糖合酶,β-1,3-葡聚糖酶,吲哚乙酸氧化酶和过氧化物酶)及影响合成的主要因素(基因型,温度,激素)等方面的研究进展.为探索改善棉纤维比强度的生理调控途径和培育高纤维强度的棉花品种提供了理论依据.  相似文献   

4.
棉纤维发育中激素和相关酶活性与棉花品质形成的研究   总被引:1,自引:1,他引:0  
论述了棉花纤维发育中激素和相关酶活性对棉纤维品质形成的调控作用.在纤维发育前期,生长素(IAA)、赤酶素(GA3)和玉米素(ZR)有利于纤维的伸长和分化,而脱落酸(ABA)起抑制作用;后期ZR含量影响纤维的粗细和成熟度.在棉纤维发育不同时期蔗糖合成酶(SuSy)和过氧化物酶(POD)活性对纤维品质形成的作用不同,在棉纤维初始和伸长发育阶段蔗糖合成酶均有高活性表达,同时在次生壁加厚阶段,其活性变化会影响纤维素的累积,进而影响纤维强度;而POD活性在纤维发育前期含量低,次生壁阶段升高对品质的形成有利.同时阐述了温度对激素和相关酶活性变化及对纤维品质形成的影响.  相似文献   

5.
彩色棉纤维的超微结构观察   总被引:10,自引:0,他引:10       下载免费PDF全文
对白色棉、棕色棉和绿色棉纤维进行了电镜观察,结果表明:3种颜色纤维的结构由外到内依次为初生壁、次生壁和中腔.在白色纤维的超微结构中未发现染色较深的物质; 在绿色棉纤维中,纤维的次生壁内层存在大量染色深的条纹,这些条纹可能是色素沉积的结果,类似沉积的日轮;在棕色棉纤维的中腔内,存在大量染色深的物质,而且这些物质主要沉积在中腔壁上,这些染色较深的物质可能是棕色棉纤维的色素物质,同时发现棕色棉纤维具有分叉结构. 与白色纤维比较,彩色纤维表现出的品质较差,可能与纤维素含量低及色素物质的沉积有关.  相似文献   

6.
鸭梨果实石细胞分化特性研究   总被引:1,自引:0,他引:1  
以鸭梨为试材,利用透射电镜显微技术和组织化学技术对梨果实石细胞分化及次生壁形成过程进行研究。结果表明,石细胞分化始于开花第7天,原生质体收缩于细胞一侧,随后胞内出现颗粒状凝聚物,次生壁逐渐增厚,之后胞质继续收缩消失,早期形成的石细胞多以群体形式同时出现。石细胞次生壁形成是逐步进行的,即先形成纤维素或半纤维素网架结构,再进行木质化填充。透射电镜下石细胞分化过程中依次呈现出细胞核染色质凝聚、细胞核变形、核膜界限不清晰的现象;胞内出现同心层次的自噬泡,形成大量囊泡;细胞核消失,内质网断裂并大量增生,质膜向内突起形成泡状结构;次生壁增厚,胞内细胞器仅有线粒体和内质网,最终细胞质收缩消失。  相似文献   

7.
棉株生理年龄对纤维加厚发育及纤维比强度形成的影响   总被引:13,自引:7,他引:13  
 【目的】研究棉株生理年龄对棉纤维加厚发育及纤维比强度形成的影响。【方法】通过设置播期试验使位于棉株不同部位的棉花"三桃"(伏桃、早秋桃和晚秋桃)的棉纤维加厚发育期(铃龄25~50 d)处于相同的温度条件下(统计伏桃、早秋桃和晚秋桃棉纤维加厚发育期日均温分别为22.0、19.4和15.3℃)。【结果】棉花"三桃"的棉纤维加厚发育及纤维比强度受温度和棉株生理年龄的双重影响,棉株生理年龄是影响伏桃、早秋桃棉纤维加厚发育的主要因子,对棉株上部果枝的伏桃和下部果枝的早秋桃棉纤维加厚发育具有显著影响,铃重、衣分和纤维比强度均明显低于其他部位;棉纤维加厚发育期低温则是影响晚秋桃棉纤维加厚发育及纤维比强度的首要因子。在本试验15.3℃的温度条件下,棉纤维蔗糖合成酶活性显著降低,β-1,3-葡聚糖酶活性显著升高,同时纤维素累积量和累积速率均显著降低,棉花铃重低于2 g,纤维比强度低于20 CN·tex-1。【结论】棉株生理年龄对伏桃、早秋桃和晚秋桃纤维比强度的影响作用依次增强。  相似文献   

8.
以3种棉纤维长度和衣分存在差异的农大HL1、农大HL2和新陆早49号棉花为试验材料,于花后10,20,30,40 d分别测定铃壳、棉籽和棉纤维中的可溶性蛋白含量和纤维长度,分析可溶性蛋白含量与纤维发育的相关性。结果表明,可溶性蛋白含量与棉纤维生长发育密切相关;在棉纤维伸长关键期,较低的可溶性蛋白含量利于棉纤维伸长发育,而较高的可溶性蛋白含量可促进次生壁加厚,利于棉花衣分的提高,进而提高棉花产量;在棉纤维发育进程中,棉铃各器官发育有着密切的联系,铃壳和棉籽中较强的生理代谢能力直接影响棉纤维的发育。  相似文献   

9.
棉花纤维品质改良相关基因研究进展   总被引:4,自引:0,他引:4  
杨君  马峙英  王省芬 《中国农业科学》2016,49(22):4310-4322
棉纤维是优良的、使用最为广泛的天然纤维。随着人们生活水平的提高,对天然纯棉织物的需求不断增加,同时对品质的要求也愈来愈高。因此,提高棉纤维产量和品质成为当前棉花遗传育种的重要目标,对棉纤维发育相关基因的克隆与功能研究是实现这一目标的重要基础。棉纤维发育由4个明显但又重叠的时期组成,包括纤维细胞的起始、伸长(初生壁合成)、次生壁合成和脱水成熟。起始是影响纤维细胞数量的重要时期,而纤维长度和强度的决定发生在次生壁合成期和脱水成熟期。棉纤维发育是一个复杂而有序的过程,由大量的基因参与调控。目前,已经有一些在棉纤维发育过程中发挥重要作用的基因被报道,包括各种转录因子、参与激素代谢基因、编码细胞壁蛋白和细胞骨架蛋白基因、活性氧代谢相关基因、以及参与糖和脂类代谢的基因等。文中对已报道的这些与棉花纤维发育相关基因的克隆和功能分析进行了系统总结,以期为棉花纤维发育及品质改良研究提供参考。  相似文献   

10.
彩色棉抗氧化酶活性与棉纤维发育相关性研究   总被引:1,自引:1,他引:0  
以1对纤维颜色不同的棉花近等基因系为试材,研究其棉纤维发育过程中棉铃抗氧化酶活性的动态变化,为棉纤维品质的改良提供理论依据。选择白色棉和绿色棉2个棉花品系,于花铃期和吐絮期分别测定铃壳、棉籽、棉纤维中SOD活性、POD活性、CAT活性以及MDA含量、可溶性蛋白含量,并对其纤维产量及长度进行考察。结果表明,在花铃期,白色棉纤维中SOD和POD活性均低于绿色棉,CAT活性显著高于绿色棉;而吐絮期,白色棉纤维中的抗氧化酶活性均高于绿色棉;绿色棉铃壳和棉籽中的MDA含量在整个生育期均高于白色棉;棉纤维的发育与抗氧化酶活性密切相关;棉纤维发育前期,较高的SOD,POD活性可以促进纤维的伸长,发育后期则有利于次生壁的加厚;绿色棉铃壳和棉籽中相对较差的抗氧化酶系统会促进色素的积累,从而影响棉纤维初生壁和次生壁的发育。  相似文献   

11.
2个彩色棉材料的农艺性状和纤维发育特点研究   总被引:11,自引:0,他引:11  
以常规白色棉 3 3B为对照 ,于 2 0 0 0~ 2 0 0 1年在山东棉花研究中心试验站 (临清 )对大田种植的 2个彩色棉绿色棉和棕色棉材料的农艺性状与纤维发育特点进行了研究。结果显示 ,2个彩色棉材料的营养生长旺盛 ,具有早发早熟的特点 ,但铃重小 ,衣分低 ,皮棉单产仅为对照 3 3B的 5 0 %~ 60 %。彩色棉的纤维品质比对照品种差 ,其中绿色棉的纤维品质最差 ,基本无纺织利用价值。彩色棉的纤维发育过程与对照相比有很多不同之处 ,表现在 2个彩色棉材料的棉纤维在开花后 3 0~ 40天出现颜色 ,纤维伸长期短 ,伸长速率低 ,次生壁加厚慢 ,纤维伸长与次生壁加厚重叠的时间短 ,这可能是彩色棉纤维品质差的主要原因。  相似文献   

12.
植物GH9基因在细胞壁的生物合成和重塑中起着重要作用,对海岛棉GH9基因进行全基因组鉴定与分析,挖掘其在棉纤维发育中的作用。从海岛棉全基因组中鉴定到53个GH9基因,分析其理化性质、基因结构、染色体分布、进化历程、棉纤维发育过程中表达模式及转录调控。结果表明,53个GbGH9s分为A、B、C三组,定位在22条染色体上;多倍化事件是海岛棉GH9基因家族扩张的主要驱动力,基因复制后经历严格的选择约束;A组多个成员在棉纤维发育整个时期尤其是次生壁加厚期高表达,C组多个成员在棉纤维起始和伸长期优势表达,B组具有相对复杂的表达模式,生长素和乙烯可能在GbGH9s的转录调控中发挥重要作用。此外,通过回交将GbGH9B6导入陆地棉可提高棉纤维强度。海岛棉GH9基因家族成员的鉴定及分析有助于明确其进化和功能,为后续研究提供重要参考。  相似文献   

13.
【目的】探明棉铃对位叶氮浓度对棉纤维比强度形成的影响。【方法】以纤维比强度差异较大的3个棉花品种为材料,设置不同施氮量处理以形成不同的棉铃对位叶氮浓度,研究棉纤维加厚发育过程中棉铃对位叶氮浓度的动态变化及其与纤维中糖类物质及纤维比强度间的关系。【结果】棉铃对位叶氮浓度随铃龄的变化符合幂函数曲线YN=αt-β;在棉纤维加厚发育过程中,纤维中蔗糖、β-1,3-葡聚糖和纤维素含量随棉铃对位叶氮浓度的增加呈抛物线型变化,蔗糖、纤维素累积与纤维比强度形成的最佳棉铃对位叶氮浓度变化曲线相吻合,β-1,3-葡聚糖累积与纤维比强度形成的最佳对位叶氮浓度差异较大。【结论】棉铃对位叶氮浓度反映了棉铃发育的氮营养状况,在棉纤维加厚发育过程中,均存在一个有利于蔗糖、β-1,3-葡聚糖、纤维素累积及高强纤维形成的最佳对位叶氮浓度。棉纤维中较高的蔗糖和纤维素含量有利于纤维比强度的形成;棉纤维加厚发育前期较高的β-1,3-葡聚糖含量有利于纤维比强度的形成,后期则对纤维比强度形成的作用降低。不同品种纤维比强度形成的对位叶适宜氮浓度差异较大,进一步说明对位叶氮浓度影响棉花纤维加厚发育和比强度的形成。  相似文献   

14.
棉纤维发育的遗传特性及相关基因的研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
棉纤维是纺织工业的重要原材料,在国民经济发展中具有举足轻重的地位。棉纤维细胞发育进程是一个多基因调控的、有序的系统发生过程,包括纤维起始期、伸长期、次生壁合成与加厚期和脱水成熟期等4个时期。随着遗传学、细胞学和分子生物学等学科的交叉融合,棉纤维生长发育调控分子机制的研究已成为研究热点。目前大多研究集中在运用遗传定位、基因克隆以及近年来兴起的深度测序等技术对棉纤维生长发育的调控机制进行解析。为了更加系统地了解棉纤维的发育过程,详细描述了棉纤维发育各时期的形态结构变化及特征,概述了经典遗传学在棉纤维遗传规律和基因定位方面的工作,以及从转录组学、蛋白组学及表观遗传学领域总结了近年来深度测序技术在棉花纤维组学研究方面的运用和取得的进展,并简述了棉纤维发育各个时期所涉及的相关调控基因。纤维的产量由棉纤维发育起始期决定,长度由伸长期决定,且伸长期的生化反应最为活跃,是影响纤维品质的关键时期。棉纤维遗传规律的研究发现,性状相同而基因型不同的材料,其棉纤维遗传模式也不同。纤维品质和产量相关的数量性状位点(QTL)遍布各个染色体,一些稳定的主效QTL(如FS1,qLI17和qFL-Chr14-3等)值得科研工作者进一步关注并有望在分子辅助选择中进行应用;质量性状基因的最新进展明确了显性基因Li1和N2,分别是肌动蛋白编码基因和转录因子MYB25-like。转录组学、蛋白组学及表观遗传学领域三方位的深度测序有效建立了RNA水平和蛋白质水平、编码区域和非编码序列之间的联系,并发现一系列的转录因子、编码转脂蛋白的基因、钙信号转导相关基因、多糖合成相关蛋白、大量的miRNA以及DNA甲基化作用等共同参与棉纤维发育过程。  相似文献   

15.
 【目的】明确果枝部位、温光复合因子和施氮量对棉纤维比强度形成过程的定量关系及两者的补偿效应,探明棉纤维比强度形成的生态基础。【方法】以杂交棉(科棉1号)和常规棉(美棉33B)为材料,于2005年在江苏南京(118°50′E, 32°02′N,长江流域下游棉区)和江苏徐州(117°11′E, 34°15′N,黄河流域黄淮棉区)设置分期播种(4月25日、5月25日)和施氮量(0、240、480 kg N•hm-2)试验,研究棉株果枝部位、温光复合因子(用纤维加厚发育期的累积辐热积PTP表示)和施氮量对纤维比强度形成的影响。【结果】(1)棉株果枝部位显著影响纤维比强度的形成,并与温光复合因子存在协同效应。棉株中部果枝铃发育期温光条件适宜,其纤维比强度显著大于其它果枝部位铃;随温光条件变差,纤维比强度在果枝部位间的差异不明显。(2)棉纤维比强度随花后天数的增加可分为快速增加和稳定增加两个时期,PTP与纤维比强度快速增加期的日均增长速率(VRG)线性正相关、与快速增加持续期(TRG)线性负相关,与稳定增加期的日均增长速率(VSG)、持续期(TSG)及最终棉纤维比强度(Strobs)呈开口向下的抛物线关系。当PTP达到291 MJ•m-2左右时,纤维比强度Strobs最大(科棉1号、美棉33B分别为34.8、31.9 cN•tex-1),品种间差异主要源于纤维比强度稳定增加期(中科棉1号和美棉33B的VSG、TSG分别为0.32 cN•tex-1•d-1、21 d和0.18 cN•tex-1•d-1、24 d)。(3)纤维比强度达到最大值所需的PTP随施氮量增加而减小,施氮量可通过棉铃对位叶叶氮浓度(NA)影响纤维比强度的形成,棉花氮素营养对温光复合因子存在补偿效应,当PTP高于104 MJ•m-2时,240 kg N•hm-2下的NA更适宜于比强度的形成;PTP低于此值时,增加施氮量可对温光复合因子进行补偿,以利于高强纤维形成。【结论】棉株果枝部位显著影响纤维比强度的形成,且与温光复合因子存在互作效应;温光复合因子、施氮量均显著影响棉纤维比强度的形成,且后者对前者存在补偿效应;棉纤维比强度形成过程可分为快速增加和稳定增加两个阶段,后者是品种间纤维比强度形成差异的主要阶段。  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号