首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal properties are among the most important end‐use characteristics of starch from maize (Zea mays L.). Knowledge of the contribution of genotype and environment to the total variance for starch thermal properties is needed to aid in defining a testing strategy for selecting maize with desirable thermal starch properties. Thus, the objectives of this study were 1) to characterize the thermal properties of starches from a group of recently developed Argentine maize inbred lines, and 2) to assess the variability in starch properties attributable to genetic and crop year effects. Twelve inbred lines developed by the National Institute of Agricultural Technology (INTA) in Argentina derived from a wide array of germplasm sources were evaluated. Gelatinization and retrogradation properties were measured by differential scanning calorimetry. Enthalpy means for gelatinization were below means reported in the literature, suggesting possible energy savings when using these starches. The ratio between change in enthalpy for retrogradation and gelatinization was above the mean reported in the literature, suggesting a starch that may be useful as a dietary fiber. Significant environmental effects caused by crop year were detected. Some inbred lines, with smaller observed ranges and standard deviations across environments, may be more stable for some properties.  相似文献   

2.
In the present study, the relationships of soybean 11S globulin content, thermal properties, and retrogradation properties of nonwaxy maize starch in starch–globulin mixtures were investigated by differential scanning calorimetry. The onset and peak temperatures of maize starch were positively related to soybean 11S globulin content, whereas the thermal enthalpy was negatively related to it. However, the onset temperature, peak temperature, and thermal enthalpy of soybean 11S globulin were negatively related to maize starch content of mixtures. On the other hand, the onset and peak temperatures of retrograded maize starch were positively related to soybean 11S globulin content, whereas the retrogradation enthalpy was negatively related to it during storage. Therefore, adding soybean 11S globulin was an effective method to control maize starch gelatinization and retrogradation properties, which will be helpful for the food industry to produce high‐quality products based on starch and soybean protein.  相似文献   

3.
Starch has many uses and some of these uses would be facilitated by altering its thermal properties. Genetic manipulation of starch thermal properties will be facilitated by a better understanding of the genetic control of starch gelatinization. We used differential scanning calorimetry to characterize the gelatinization parameters of maize (Zea mays L.) kernel starch prepared from two populations of recombinant inbred lines, an intermated B73xMo17 population (IBM) and an F6:7 Mo17xH99 population. The traits examined were the onset and peak temperatures of gelatinization and the enthalpy of gelatinization. These traits were measured for both native starch and for gelatinized starch allowed to recrystallize, a process called retrogradation. Substantial variation in these traits was found in spite of the narrow genetic base of the populations. We identified several quantitative trait loci (QTL) controlling traits of interest in each population. In the IBM population, a significant QTL for the peak temperature of gelatinization of retrograded starch co‐localized to a molecular marker in the Wx1 gene, which encodes a granule bound starch synthase. The major QTL identified in this study explain, on average, ≈15% of the variation for a given trait, underscoring the complexity of the genetic control of starch functional properties.  相似文献   

4.
Starch gelatinization and retrogradation properties of corn were studied to determine the effect of controlled (self) pollination versus noncontrolled pollination on analytical determinations, and the potential to eliminate the expensive and time-consuming step of self-pollinating before research screening of corn genotypes. Twenty-four hybrids were grown in two Iowa locations, Story City and Ames. At Story City, all hybrids received three pollination treatments: self-pollination; small-plot, openpollination (representing corn from small test plots); and large-plot, openpollination (representing corn from a farmer's field). Self-pollinated and small-plot, open-pollinated corn were grown in replicated two-row plots, whereas large-plot, open-pollinated corn was grown in unreplicated plots of 12.8 m × 8 rows. At Ames, the small-plot, open pollination treatment was not done. Starch was extracted from samples of corn harvested from each plot, and gelatinization and retrogradation properties were determined using differential-scanning calorimetry (DSC). Hybrids exhibited different starch gelatinization and retrogradation properties. Significant differences (P ≤ 0.05) in starch gelatinization and retrogradation properties occurred among pollination methods and between locations. Pollination method did not influence gelatinization enthalpy values, but onset temperature values for gelatinization, and range values for retrogradation differed significantly among pollination methods. At Ames, treatments gave different values for retrogradation enthalpy and percentage of retrogradation. Because of differences in some starch characteristics associated with pollination methods, self-pollination is recommended when growing samples in small plots for research purposes.  相似文献   

5.
以垦粘1号、苏玉糯1号和苏玉糯5号为材料,研究了拔节期追氮量(N 01、50和300 kg/hm2)对春播和秋播糯玉米淀粉胶凝和回生特性的影响,试验于扬州大学实验农牧场进行。结果看出,播期、品种和拔节期追氮量单因素及其互作对淀粉胶凝和回生主要特征值存在显著影响。糯玉米淀粉胶凝和回生特征值在拔节期追氮150 kg/hm2时和秋播条件下较优,即原淀粉具有较低的峰值温度、较高的热焓值,回生淀粉具有较低的回生值,且以垦粘1号表现较好。糯玉米淀粉胶凝和回生特征值之间存在一定的相关性。回生值分别与回生淀粉的热焓值、原淀粉的终值温度显著正相关,相关系数分别为0.82(P0.01)和0.47(P0.05);原淀粉的热焓值与峰值指数显著正相关,相关系数为0.53(P0.05),与原淀粉峰值温度、回生淀粉的终值温度显著负相关,相关系数分别为-0.53(P0.05)和-0.52(P0.05);回生淀粉的热焓值分别与回生淀粉起始温度、终值指数显著正相关,相关系数分别为0.46(P0.05)和0.66(P0.01)。综合考虑淀粉胶凝和回生特性在不同处理下的变化趋势,以秋播糯玉米淀粉在拔节期追N 150 kg/hm2处理下较优。  相似文献   

6.
Studies of starch retrogradation have not considered the initial thermal treatment. In this article, we explore the effect of heating to temperatures within and above the gelatinization range on maize starch retrogradation. In the first experiment, 30% suspensions of waxy (wx) starch were initially heated to final temperatures ranging from 54 to 72°C and held for 20 min. On reheating in the differential scanning calorimeter immediately after cooling, the residual gelatinization endotherm peak temperature increased, the endotherm narrowed, and enthalpy decreased. Samples stored for seven days at 4°C showed additional amylopectin retrogradation endotherms. Retrogradation increased dramatically as initial holding temperature increased from 60 to 72°C. In a second experiment, wx starch was initially heated to final temperatures from 54 to 180°C and rapidly cooled, followed by immediate reheating or storage at 4°C. Maximum amylopectin retrogradation enthalpy after storage was observed for initial heating to 82°C. Above 82°C, retrogradation enthalpy decreased as initial heating temperature increased. A similar effect for ae wx starch was observed, except that retrogradation occurred more rapidly than for wx starch. These experiments show that heating to various temperatures above the range of gelatinization may profoundly affect amylopectin retrogradation, perhaps due to varying extents of residual molecular order in starch materials that are commonly presumed to be fully gelatinized. This article shows that studies of starch retrogradation should take into account the thermal history of the samples even for temperatures above the gelatinization temperature range.  相似文献   

7.
Differential scanning calorimetry (DSC) is used routinely to screen for starch thermal properties. In early generations of line development, the established analysis separately evaluates starch extracted from five, single corn kernels. A thermal property trait carried by a recessive gene would appear 25% of the time; thus, if five separate kernels were evaluated, the likelihood of detecting an unusual thermal trait is high. The objective of the current work was to expedite selection by examining five kernels at a time, instead of one, hypothesizing that we would be able to detect different thermal properties in this blend. Corn lines, all from the same genetic background (ExSeed68 or Oh43), with known thermal functions (amylose‐extender, dull, sugary‐1, sugary‐2, and waxy) were blended with normal starch (control) in ratios of 0:5, 1:4, 2:3, 3:2, 4:1, and 5:0, and analyzed with DSC. The values for each ratio within a mutant type were unique (α < 0.01) for most DSC measurements, especially for gelatinization onset temperature, change in enthalpy of gelatinization, and range of gelatinization. These results support the five‐kernel method for rapidly screening large amounts of corn germplasm to identify kernels with unusual starch traits.  相似文献   

8.
Ten parent corn lines, including four mutants (dull sugary2, amylose‐extender sugary2, amylose‐extender dull, and an amylose‐extender with introgressed Guatemalen germplasm [GUAT ae]) and six lines with introgressed exotic germplasm backgrounds, were crossed with each other to create 20 progeny crosses to increase resistant starch (RS) as a dietary fiber in corn starch and to provide materials for thermal evaluation. The resistant starch 2 (RS2) values from the 10 parent lines were 18.3–52.2% and the values from the 20 progeny crosses were 16.6–34.0%. The %RS2 of parents was not additive in the offspring but greater RS2 in parents was correlated to greater RS2 in the progeny crosses (r = 0.63). Differential scanning calorimetry (DSC) measured starch thermal characteristics, revealing positive correlations of peak gelatinization temperature and change in enthalpy with %RS2 (r = 0.65 and r = 0.67, P ≤ 0.05); however, % retrogradation (a measure of RS3) and retrogradation parameters did not correlate with %RS2. The %RS2 and onset temperature increased with the addition of the ae gene, likely because RS delays gelatinization.  相似文献   

9.
Effects of heat-moisture treatment (HMT) and lipids on the structure and gelatinization of maize and potato starches were studied, and the retrogradation process of 20% HMT starch gels was also investigated. Maize starch was physically modified by HMT or by defatting. Potato starch was physically modified by HMT or by adding monoglycerides. The X-ray pattern of the HMT maize starch was assigned to a combination of A and V patterns, which indicated that HMT formed crystallized amylose complexes and recrystallized amylose in maize starch granules. However, the X-ray pattern of defatted maize starch did not change for HMT, so the lipids originally existing in starch granules were important to the formation of new crystallites during this treatment. Differential scanning calorimetry (DSC) results suggested that weaker structures in amylopectin crystallites were more susceptible to degradation after HMT, while crystallized amylose complexes developed thermal stability after treatment. The amylose contents increased with increasing degree of HMT, which suggested that the newly created amylose arose from exterior linear chains of amylopectin degraded by the treatment. Investigation of retrogradation process showed that HMT significantly promoted retrogradation of starch gels, especially the initiation of recrystallization.  相似文献   

10.
Thermal properties of corn starch extraction intermediates from four types of corn were studied using differential scanning calorimetry. Starch at four different stages of extraction, including a standard single-kernel starch isolation procedure and three starch extraction intermediates, was isolated from mature corn kernels of B73 and Oh43 inbreds and the mutants of waxy (wx) and amylose extender (ae) in an Oh43 background. Differences in thermal properties and moisture and protein contents of starch from the extraction stages were statistically analyzed. Most thermal properties (gelatinization and retrogradation onset temperatures, gelatinization and retrogradation ranges, gelatinization and retrogradation peak temperatures, gelatinization and retrogradation enthalpies, peak height index, and percentage of retrogradation) of starches extracted at stage 3 intermediate (a procedure that did not include a final washing step) were similar to those of starch extracted by the standard single-kernel isolation procedure. Values for gelatinization peak temperature, gelatinization enthalpy, and peak height index were different between the standard and the stage 3 intermediate. The values obtained from starches extracted at stage 3, however, were consistent and predictable, suggesting that this extraction intermediate might be used in screening programs in which many starch samples are evaluated. By using the stage 3 extraction, samples could be evaluated in three rather than four days and the procedure saved ≈0.5 hr of labor time. The other two starch extraction intermediates, which excluded filtering and washing or filtering, washing, and steeping, produced starch with thermal properties generally significantly different from starch extracted by the standard single-kernel isolation procedure.  相似文献   

11.
Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introgressed exotic germplasm backgrounds, selected for high yield, were grown in three tropical and temperate locations and analyzed for starch thermal characteristics and RS levels. Although actual values for all starch characteristics were within normal levels, most characteristics had significant genotypic effects, and all had significant location effects. Thermal properties of retrograded starch were more influenced by the environment than the thermal properties of raw starch, making retrograded starch traits more heritable than raw starch traits. This suggests that a breeding strategy based on retrograded starch traits will have a better chance of success than a breeding strategy based on raw starch traits. A significant genotype effect for RS levels indicates that genotypic selection to raise the level of RS and increase the healthful aspects of corn food should be successful. Significant location effects indicate that breeders using winter nurseries to accelerate their breeding progress need to be careful when making selections using RS data collected on seed grown in the tropics. A small but highly significant correlation between RS and some thermal characteristics, especially percentage of retrogradation, indicates that we may be able to select promising genotypes for RS selection based on our extensive database of thermal characteristics collected on a wide number of diverse corn lines.  相似文献   

12.
《Cereal Chemistry》2017,94(6):942-949
Since the discovery of the o2 mutation in maize, many studies have reported the characterization of the protein quality of opaque‐2 genotypes. However, few have reported the properties of their starch. The objective of this study was to characterize flour starch properties of 12 half‐sib families of opaque‐2 maize from Argentina. Chemical composition and thermal and pasting properties of whole grain flour were determined. Nonopaque genotypes were used as a control. Starch content of opaque‐2 genotypes did not show significant differences compared with nonopaque genotypes, yet amylose content was significantly lower. A high variability in pasting and thermal properties was observed in genotypes. Opaque samples showed a significantly higher peak viscosity and a lower pasting temperature compared with nonopaque samples, probably owing to larger and less compact starch granules in the floury endosperm. The higher the gelatinization enthalpy of opaque‐2 genotypes was, the lower the amylose content in relation to nonopaque varieties. Two retrogradation endotherms were observed in DSC analysis: one corresponding to amylopectin crystallization and the other to melting of amylose‐lipid complex. Both enthalpies were considered total starch retrogradation (ΔH RT). A wide range of variation was obtained in ΔH RT in opaque‐2 genotypes, but no significant differences between opaque and nonopaque genotypes were observed. The differences in starch properties found in this study would make it possible to identify opaque‐2 families with particular characteristics for the development of starchy food items adapted to specific processing traits.  相似文献   

13.
The variability in grain and starch characteristics and their relationship with the accumulation of starch granule associated proteins were investigated in five maize landraces of Northwest Mexico (Blando de Sonora, Chapalote, Elotero de Sinaloa, Reventador, and Tabloncillo). Significant differences were observed in grain hardness related traits, starch physicochemical properties, and structural properties. Blando de Sonora showed very soft grains, whereas the hardest grains were observed for Chapalote and Reventador. Starch granules isolated from landraces with hard grains contained more amylose and showed polygonal shapes, lower crystallinity and enthalpy of gelatinization, and greater retrogradation and proportion of long amylopectin chains. Proteomic analysis identified the enzymes granule‐bound starch synthase I (GBSSI), starch synthase I and IIa, starch branching enzyme IIb, sucrose synthase 1, and pyruvate phosphate dikinase 2 as granule‐associated proteins. The abundance of GBSSI correlated significantly with amylose content, consistent with the positive correlation observed between amylose and grain hardness. These results showed that the variability in the characteristics evaluated was mainly related to changes in the proportion of amylose in the starch granules, which were associated with differences in the expression of GBSSI. This information may be useful to define strategies for the exploitation and conservation of the landraces.  相似文献   

14.
为研究马铃薯全粉理化特性的品种间差异,本研究以14种马铃薯全粉为材料,测定了马铃薯全粉的粘度特性、质构特性、糊化特性和回生特性等理化特性指标,并进行相关性分析、主成分分析和聚类分析。结果表明,4个中薯系列品种的淀粉含量较高,均高于70%。不同品种马铃薯全粉的理化特性存在较大差异,威芋5号(PT10)、中薯3号(PT34)和中薯5号(PT35)的粘度较大;PT34的硬度最高,中薯13号(PT38)的粘聚性最低,而红色马铃薯PT14的硬度最低,粘聚性最高;PT34的糊化温度较低,糊化焓最高。相关性分析表明,淀粉含量与多数性状间存在显著的相关性,粘度特性的各指标间均存在正相关性,硬度和粘聚性存在显著负相关性,糊化温度(To、Tp和Tc)与糊化焓值(ΔHg和ΔHr)之间存在显著负相关性。主成分分析表明,马铃薯全粉的理化特性评价可以综合成4个主成分因子。聚类分析表明,14个品种根据理化特性主要可分为两大类。本研究为马铃薯全粉加工和品种遴选提供了一定数据支持,也为马铃薯品质育种中的亲本选择提供了理论依据。  相似文献   

15.
To determine the effect of amylose content on the starch properties, the amylose content, pasting properties, swelling power, enzymatic digestibility, and thermal properties of partial and perfect waxy types along with their wild‐type parent were analyzed. As expected, amylose content decreases differently in response to the loss of each Wx gene, showing the least response to Wx‐A1a. Most of the characteristics, except the thermal properties of the amylose‐lipid complex in differential scanning calorimetry (DSC), differed significantly among the tested types. Furthermore, the breakdown, setback, and pasting temperatures from the Rapid Visco Analyser (RVA) and the enzymatic digestibility, swelling power, peak temperature, and enthalpy of starch gelatinization from DSC showed a correlation with the amylose content. The relationships between the peak viscosity from the RVA and the onset temperature of starch gelatinization determined by DSC with amylose content of the tested materials were not clear. Waxy starch, which has no amylose, showed a contrasting behavior in starch gelatinization compared with nonwaxy starches. Among the nonwaxy starches, lower setback, lower pasting temperature, higher enzyme digestibility, higher peak temperature, higher enthalpy of starch gelatinization, and higher swelling were generally associated with low amylose starches.  相似文献   

16.
缓释肥施用时期对春播鲜食糯玉米产量和籽粒品质的影响   总被引:2,自引:0,他引:2  
为探明缓释肥施用时期对鲜食糯玉米产量和籽粒品质的影响,本研究以苏玉糯11号为材料,在等量施肥条件下,以常规施肥方式(N15CK,基施复合肥+六叶期追施尿素)和不施肥为对照,研究缓释肥于播种期(SN15-0)、三叶期(SN15-3)和六叶期(SN15-6)一次性施用对鲜食糯玉米鲜果穗和鲜籽粒产量,籽粒淀粉和蛋白质含量、碘结合力、热力学特性和糊化特性的影响。结果表明,缓释肥处理的鲜果穗产量和鲜籽粒产量显著高于常规肥处理,且SN15-6和SN15-3的鲜果穗产量分别比SN15-0提高14.0%和7.4%,鲜籽粒产量提高14.6%和2.0%。SN15-6的籽粒中淀粉、可溶性糖和蛋白质含量均显著高于其他处理。缓释肥延后施用使淀粉粒径变小,SN15-6与N15CK的淀粉碘结合力和最大吸收波长显著高于其他处理。与不施肥相比,施肥提高了籽粒淀粉的糊化温度和胶凝温度(起始温度、峰值温度和终值温度),降低了回生热焓值和回生值。其中SN15-3的峰值黏度、谷值黏度、崩解值和终值黏度最高,而SN15-6的回复值、回生热焓值和回生值最低。综上,缓释肥适当延后施用有利于提高鲜食糯玉米产量,增加籽粒中蛋白质、淀粉、可溶性糖含量,降低淀粉平均粒径;另外,三叶期施用可显著提高籽粒糊化黏度,六叶期施用使籽粒回生值显著降低。本研究结果可为春播鲜食糯玉米绿色高产优质轻简栽培提供理论依据与技术支撑。  相似文献   

17.
Retrogradation of du wx and su2 wx starches after different gelatinization heat treatments was studied by differential scanning calorimetry. Suspensions of 30% (w/w) starch were initially heated to final temperatures of 55–180°C. Gelatinized starch was cooled and stored at 4°C. Starch retrogradation in the storage period was influenced by initial heat treatments. Retrogradation of du wx starch was rapid: when initially heated to 80–105°C, retrogradation enthalpy was ≈10 J/g after one day at 4°C. The retrogradation enthalpy was ≈15 J/g after 22 days of storage, and reached a maximum of 16.2 J/g after 40 days of storage. For du wx starch, application of the Avrami equation to increases in retrogradation enthalpy suggests retrogradation kinetics vary with initial heating temperature. Furthermore, starch retrogradation may not fit simple Avrami theory for initial heating ≤140°C. Retrogradation of su2 wx starch was slow. After 30 days of storage at 4°C, the maximum retrogradation enthalpy for all initial heating temperatures tested was 7.0 J/g, for the initial heating to 80°C. This work indicates that gelatinization heat treatment in these starches is an important factor in amylopectin retrogradation, and that the effect of initial heat treatment varies according to the genotype.  相似文献   

18.
Amylose contents of prime starches from nonwaxy and high-amylose barley, determined by colorimetric method, were 24.6 and 48.7%, respectively, whereas waxy starch contained only a trace (0.04%) of amylose. There was little difference in isoamylase-debranched amylopectin between nonwaxy and high-amylose barley, whereas amylopectin from waxy barley had a significantly higher percentage of fraction with degree of polymerization < 15 (45%). The X-ray diffraction pattern of waxy starch differed from nonwaxy and high-amylose starches. Waxy starch had sharper peaks at 0.58, 0.51, 0.49, and 0.38 nm than nonwaxy and high-amylose starches. The d-spacing at 0.44 nm, characterizing the amylose-lipids complex, was most evident for high-amylose starch and was not observed in waxy starch. Differential scanning calorimetry (DSC) thermograms of prime starch from nonwaxy and high-amylose barley exhibited two prominent transition peaks: the first was >60°C and corresponded to starch gelatinization; the second was >100°C and corresponded to the amylose-lipid complex. Starch from waxy barley had only one endothermic gelatinization peak of amylopectin with an enthalpy value of 16.0 J/g. The retrogradation of gelatinized starch of three types of barley stored at 4°C showed that amylopectin recrystallization rates of nonwaxy and high-amylose barley were comparable when recrystallization enthalpy was calculated based on the percentage of amylopectin. No amylopectin recrystallization peak was observed in waxy barley. Storage time had a strong influence on recrystallization of amylopectin. The enthalpy value for nonwaxy barley increased from 1.93 J/g after 24 hr of storage to 3.74 J/g after 120 hr. When gel was rescanned every 24 hr, a significant decrease in enthalpy was recorded. A highly statistically significant correlation (r = 0.991) between DSC values of retrograded starch of nonwaxy barley and gel hardness was obtained. The correlation between starch enthalpy value and gel hardness of starch concentrate indicates that gel texture is due mainly to its starch structure and functionality. The relationship between the properties of starch and starch concentrate may favor the application of barley starch concentrate without the necessity of using the wet fractionation process.  相似文献   

19.
The effects of waterlogging around flowering stage on the grain yield and eating quality of fresh waxy maize were studied using Suyunuo5 and Yunuo7 as materials in 2014 and 2015. Waterlogging around flowering stage decreased the fresh weight, volume, and number of grains, which led to the loss of fresh grain yield. Waterlogging before pollination reduced grain moisture content and increased grain dry weight. Waterlogging increased starch contents and decreased protein contents, especially after pollination; decreased albumin and glutenin contents; and did not affect globulin content. Zein content was decreased and increased, respectively, by waterlogging before and after pollination. The responses of starch granule size and iodine‐binding capacity to waterlogging were dependent on planting year, variety, and waterlogging stage. Pasting and gelatinization temperatures were only slightly affected by waterlogging. Waterlogging increased peak viscosity at both stages in Suyunuo5, but this parameter decreased and increased, respectively, before and after pollination in Yunuo7. Waterlogging did not affect gelatinization enthalpy but increased retrogradation enthalpy and percentage. In conclusion, waterlogging around flowering stage suppressed grain yield and shortened grain filling duration. Eating quality (viscosity and retrogradation) was also altered by waterlogging because grain proximate content and starch granule structure were changed.  相似文献   

20.
莲子热风干燥过程对其淀粉热特性及凝胶化的影响   总被引:1,自引:1,他引:0  
为解决莲子干燥过程中淀粉形态结构变化造成莲子结壳、硬化,不利于干燥以及复水难、易返生问题,该文利用差示扫描量热技术(differential scanning calorimetry,DSC)对新鲜莲子以及不同热风干燥(70、80、90℃)莲子的淀粉热特性与凝胶化过程进行了研究.研究发现,莲子淀粉在低水分环境(42.2%,以质量比计)时存在2个明显的吸热峰,高水分环境(71.1%,以质量比计)时存在1个明显的吸热峰;莲子在干燥过程中不断失水,并伴随着淀粉凝胶化.方差分析(analysis of variance,ANOVA)表明,高温干燥显著影响莲子淀粉的热特性,其淀粉凝胶化温度(峰起温度To、峰顶温度Tp以及峰止温度Te)部分显著升高.相同干燥条件下,莲子淀粉糊化焓ΔH受水分显著影响,但干燥温度、升温速率对其影响不显著(P>0.01).采用Kissinger、Crane方程获得了淀粉凝胶化动力学参数(活化能Ea、指前因子Z以及反应级数n).莲子淀粉的非等温凝胶化反应可近似为一级反应,高温干燥后其Ea值出现增加,并随着水分增加呈现降低趋势.研究结果可为确定莲子高品质干燥工艺以及干莲子、莲子淀粉后续加工过程提供技术支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号