首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southern flounder, Paralichthys lethostigma, is an important commercial and recreational marine flatfish that inhabits estuaries and shelf waters in the south Atlantic, from North Carolina through the Gulf coasts, with the exception of south Florida. Because juvenile and adult fish are highly euryhaline, it is a prime candidate for aquaculture. Methods for captive spawning of southern flounder are well developed; however, information on optimal culture requirements of the early larval stages is required for reliable mass production of juveniles.To determine the optimal photoperiod and salinity conditions for culture from hatching to day 15 post-hatching (d15ph), embryos were stocked into black 15-l tanks (75 l−1) under four photoperiods (24L:0D, 18L:6D, 12L:12D, and 6L:18D) and two salinities (25 and 34 ppt) in a 4×2 factorial design. Temperature was 18 °C, light intensity was 150 lx, and aeration was 50 ml min−1. Significant (P<0.05) effects of photoperiod and salinity on growth (notochord length, wet and dry weights) were obtained. Growth increased with increasing photoperiod and salinity and was significantly greater at 24L and 18L than at 12L or 6L, and at 34 than at 25 ppt. On d11ph and d15ph, significant interactive effects between photoperiod and salinity on growth (wet and dry weights) were also evident. Growth of larvae reared at 25 ppt increased with increasing photoperiod to a maximum at 24L, while growth of larvae at 34 ppt reached a plateau at 18L. While there were no significant photoperiod effects on these parameters, larval survival, body water percentage, and larval osmolality on d15ph were significantly higher at 34 than at 25 ppt (41% vs. 16% survival; 322 vs. 288 mosM kg−1; and 84% vs. 76% water, respectively), suggesting stress and nonadaptation to 25 ppt, a salinity more nearly isoosmotic than full-strength seawater. Since larvae from both salinity treatments were neutrally or positively buoyant at 34 ppt, but negatively buoyant at 25 ppt, larvae reared at 25 ppt probably allocated energy to maintain vertical positioning, compromising growth and survival.The results demonstrate that growth and survival of early-stage southern flounder larvae are maximized under long photoperiods of 18–24L and in full-strength seawater. Longer photoperiods probably extend the time larvae have for feeding, while full-strength seawater salinity optimizes buoyancy and vertical positioning, conserving energy. The results show that early larval stage southern flounder larvae are not entirely euryhaline, which involves not only the ability to osmoregulate, but to conserve energy under reduced buoyancy. This is consistent with suboptimal vs. maximal growth of larvae reared at 25 and 34 ppt, respectively, under 18L (i.e., photoperiod×salinity interaction). This is also consistent with other reports that tolerance to lower salinities in these euryhaline flatfish increases post-metamorphosis when transition from a pelagic to benthic existence alleviates the need to counteract reduced buoyancy.  相似文献   

2.
Four separate studies were done on Southern flounder Paralichthys lethostigma larvae during first feeding and metamorphosis to determine the effects of stocking density, salinity, and light intensity on growth and survival. One study used stocking densities of 10, 20, 40, and 80 fish/L during first feeding; the second study compared the growth and survival of larvae stocked at 20 and 33 ppt; and a third experiment evaluated stocking densities of 1/L and 3/L under two different light intensities (1,600 lux vs 340 lux) during metamorphosis. The fourth experiment tested the effects of different salinities (0, 10, 20 and 30 ppt) on larval growth and survival during metamorphosis. Growth and survival (overall 6.9%) were not significantly different ( P > 0.05) for stocking rates up to 80/L. Larvae placed into 20 ppt salinity had survival through first feeding similar to that of larvae raised at 33 ppt. During metamorphosis, light intensity had no effect ( P > 0.05) on growth or survival, but fish stocked at 3/L had significantly lower ( P < 0.05) survival than fish at 1/L. Complete mortality of larvae occurred at 0 ppt. Growth and survival past metamorphosis were not significantly different ( P > 0.05) at 10, 20 and 30 ppt, but unmetamorphosed fish did not survive to day 60 at 10 ppt. Based on these results, practical larviculture of Southern flounder may require a two-step process with high stocking rates (80 fish/L) through first feeding and lower densities (1/L) through metamorphosis. Fingerling production in fertilized nursery ponds might he possible at salinity as low as 20 ppt.  相似文献   

3.
The southern flounder (Paralichthys lethostigma) is a commercially important marine flatfish from the southeastern Atlantic and Gulf Coasts of the USA and an attractive candidate for aquaculture. Hatchery methods are relatively well developed for southern flounder; however, knowledge of the optimum environmental conditions for culturing the larval stages is needed to make these technologies more cost effective. The objectives of this study were to determine the effects of water turbulence (as controlled by varying rates of diffused aeration) on growth, survival, and whole‐body osmolality of larval southern flounder from hatching through day 16 posthatching (d16ph). Embryos were stocked into black 15‐L cylindrical tanks under four turbulence levels (20, 90, 170, and 250 mL/min of diffused aeration) and two salinities (24 and 35 ppt) in a 4 × 2 factorial design. Larvae were provided with enriched s‐type rotifers from d2ph at a density of 10 individuals/mL. Temperature was 19 C, light intensity was 390 lx, and photoperiod was 18 L:6 D. Significant (P < 0.05) effects of turbulence on growth (notochord length [NL], wet weight, and dry weight) were observed. On d16ph, NL (μm) increased with decreasing turbulence level and was significantly greater at 20 mL/min (64.2) and 90 mL/min (58.2) than at 170 mL/min (56.3) and 250 mL/min (57.2). Survival declined primarily during the prefeeding and first‐feeding stages from d0 to d8ph, then stabilized from d8 to d16ph. In contrast to growth trends, survival (%) on d16ph increased with increasing turbulence levels and was significantly greater at 170 mL/min (57.9) and 250 mL/min (54.0) than at 20 and 90 mL/min (21.4 and 26.2, respectively). Mean rotifer concentrations (individuals/mL) at 24 h postfeeding were significantly higher (P < 0.05) in the low‐turbulence treatments of 20 mL/min (4.48) and 90 mL/min (4.23) than in the high‐turbulence treatments of 170 and 250 mL/min (2.28 and 2.45, respectively). Under both salinities, larval whole‐body osmolality (mOsm/kg) increased with increasing turbulence levels and was significantly higher at 250 mL/min (427) than at 20 mL/min (381), indicating osmoregulatory stress at the higher turbulence levels. On d14ph, larvae in all treatments were positively buoyant in 35 ppt and negatively buoyant in 24 ppt. Results showed that growth of southern flounder larvae in 15‐L tanks was maximized under low turbulence levels of 20 and 90 mL/min, while survival was maximized at high turbulence levels of 170 and 250 mL/min. The data suggested that, in prefeeding‐ and early‐feeding‐stage larvae (which have weak swimming ability), higher turbulence levels improved buoyancy and prevented sinking. In feeding‐stage larvae (which are relatively strong swimmers), higher turbulence levels caused excessive swimming, osmoregulatory stress, and slower growth. Based on these results, we recommend that turbulence levels be maintained relatively high during prefeeding (yolk sac) and first‐feeding stages to maintain buoyancy and survival and then decreased for mid‐ to late‐feeding‐ and premetamorphic stage larvae to optimize prey encounters and feeding efficiency.  相似文献   

4.
Feeding incidence or number of larvae with preys (FIC) and intensity or number of prey per larvae (FIT) at first feeding of Pacific red snapper ( Lutjanus peru) larvae was investigated under different conditions: prey type (rotifer and copepod nauplius) and density, nauplii size, light intensity, water temperature, salinity and microalgae concentration. Rotifers were not consumed at any prey density and FIC increased significantly when a high nauplii density (10 > 1, 0.1 mL?1) and light intensity (2000 > 1000, 500, 0 lx) were supplied. In a multifactorial experiment where light intensity (2000, 2500, 3000 lx), tank colour (grey and black) and prey type (nauplii and a mixed diet: rotifers and nauplii) were tested, a significant difference was found only for light intensity and prey type with a significant interaction between these factors. FIC was significantly higher with nauplii stage I–III than IV–VI and also at 25 °C than at 28 °C. Green water (0, 0.3 × 106 or 1 × 106 cells mL?1) and salinity (25, 30, 35 gL?1) did not affect FIC. FIT was not affected by any variables tested except in the density experiment where it was significantly higher at 10 nauplii mL?1.  相似文献   

5.
Zebrasoma flavescens (Bennett) aquaculture is limited by high mortality during first feeding. Photoperiod, light intensity, turbidity and prey density are culture parameters that have been shown to affect feed incidence and survival in some food fish species, offering a logical starting point to improve first feeding in Z. flavescens. This study aimed to determine the effect of photoperiod, light intensity, turbidity and prey density on feed incidence and survival in larval yellow tang age 3 DPH to 5 DPH (days post hatch). Larvae were reared in four photoperiods (24L:0D, 16L:8D, 12L:12D, 0L:24D), four light intensities (1,500, 3,000, 4,500 and 6,500 lx), three turbidity ranges (0 cells/ml, 100,000–200,000 cells/ml and 400,000–600,000 cells/ml) and four prey densities (1, 3, 6 and 9 per mL). Photoperiod at 16L:8D and 12L:12D significantly increased feed incidence; 16L:8D significantly increased survival. Light intensities at 3,000 and 4,500 lx significantly increased feed incidence. Larvae reared in 400,000–600,000 cells/ml fed and survived significantly better than those in clear water. Larvae in 1 per mL fed and survived significantly less than those fed at 6 per mL.  相似文献   

6.
The effects of light intensity on feeding incidence and prey consumption at first feeding of spotted sand bass larvae (Paralabrax maculatofasciatus Steindachner), using four light intensity treatments (0, 100, 400, and 700 lx) were evaluated. Specimens were fed the rotifer Brachionus plicatilis at a density of 3 rotifers mL?1. One hour after the addition of prey, 30±3 (mean±SEM) larvae were sampled from each treatment aquarium. Feeding incidence was evaluated as the percentage of larvae with prey in the digestive tract. Feeding intensity was measured as the number of prey in the digestive tract of the larvae. Histological analysis was carried out to describe the eye structure at the time of first feeding. Larvae fed in darkness (0 lx) had a significantly lower (P<0.05) feeding incidence (1.2±2.2%) and intensity (0.4±0.7 rotifers larvae?1) than those larvae fed at 100 (28±11%, 1.8±0.2 rotifers larvae?1), 400 (48±10%, 2.4±0.3 rotifers larvae?1), and 700 lx (52±4%, 2.4±0.1 rotifers larvae?1). Feeding incidence of the spotted sand bass larvae increased with light intensity while the feeding intensity showed no significant difference (P>0.05) between light treatments. Histological analysis of the eye structure showed that first feeding larvae had well‐formed lens along with a retina composed of pure single cones as photoreceptors.  相似文献   

7.
This study investigated the effect of different light intensities on feeding, growth and survival of early stage leopard coral grouper Plectropomus leopardus larvae. Four different light intensities (0, 500, 1000 and 3000 lx) were used and larvae were kept under constant light conditions from 0 day after hatching (DAH) to 5 DAH. The larvae were fed a small S-type of Thai strain rotifers at a density of 20 individuals/mL from 2 DAH. The number of rotifers in larval digestive organ and total length of larvae were examined at 3 h intervals between 04:00 and 22:00 h on 3 DAH, and thereafter at 6 h intervals until the end of the experiment (5 DAH). Four experimental trials of the larval rearing were repeated using by 60 kL mass-scale rearing tanks. The results indicate that coral grouper larvae are visual feeders and their food intake increases with increasing light intensity. Food intake of larvae reared at 3000 lx was significantly higher than those reared at 0–1000 lx on 3 DAH despite being the first-feeding day (< 0.01). On 4 DAH, total length of larvae reared at 3000 lx was significantly larger than those reared at the lower light intensities (0, 500 and 1000 lx), and thereafter light intensity significantly influenced larval feeding and growth until the end of the experiment. Survival on 5 DAH did not show a significant difference between light intensities, but survival rate at 3000 lx and 1000 lx had a tendency to be higher than those reared at the lower light intensities (0 and 500 lx). In contrast, larvae reared at 0 lx exhibited stagnant and/or negative growth. These results indicate that light intensity is significantly the factor affecting larval feeding, growth, and survival in coral grouper larvae under the rearing conditions.  相似文献   

8.
The southern flounder Paralichthys lethosligma is a high‐valued flatfish found in estuarine and shelf waters of the south Atlantic and Gulf coasts of the United States. Wide temperature and salinity tolerances exhibited by juveniles and adults make it a versatile new candidate for commercial culture, and studies are underway in the southeastern U.S. to develop hatchery methods for this species. The objectives of this study were to establish illumination and salinity conditions that optimize growth and survival of larval southern flounder reared through the yolk‐sac and first feeding stages to 15‐d post‐hatching (15 dph). Early embryos were stocked into black 15‐L tanks under light intensities of 5, 50, 100, and 1,000 Ix and at salinities of 24 and 34 ppt in a 4 ± 2 factorial design. Significant (P 0.05) effects of both light intensity and salinity on growth and survival were obtained, with no interaction between these effects. On 11 dph and 15 dph, growth was generally maximized at the intermediate light intensities (50 and 100 Ix) and minimized at the extremes (5 and 1,000 Ix). By 15 dph, growth was higher at 34 ppt than at 24 ppt. Survival to 15 dph showed trends similar to those of growth. Survival was higher at 100 Ix (avg. = 46%, range = 41–54%) than at 5 Ix (avg. = 11%, range = 6–17%) and higher at 34 ppt (avg. = 43%, range = 3145%) than at 24 ppt (avg. = 17%, range = 8–38%). Whole‐body osmolality (mOsmol/kg) was significantly lower in larvae reared at 24 ppt (avg. = 304, range = 285–325) through 11 dph than in larvae reared at 34 ppt (avg. = 343, range = 296–405). Larvae reared under the extreme light intensity treatments (5 and 1,000 Ix) at 34 ppt appeared to exhibit osmoregulatory stress, particularly on 11 dph, when a marked increase in whole‐body osmolality was observed. The mid‐intensity treatments (50 and 100 Ix) at 34 ppt optimized growth and survival of larval southern flounder in this study; and elicited the most stable osmotic response. These conditions appear to be consistent with those that southern flounder larvae encounter in nature during this early developmental period.  相似文献   

9.
A 44-day rearing trial was conducted to examine the enrichment of Artemia urmiana nauplii with vitamin E and highly unsaturated fatty acid (HUFA) and its effects on the growth performance, survival and stress resistance of great sturgeon, Huso huso , larvae. Cod liver oil (EPA 18% and DHA 12%) and α-tocopherol acetate were used as lipid and vitamin E sources. Beluga larvae at the first exogenous feeding with 69±5.9 mg body weight were randomly distributed into four treatments and three tanks were assigned to each diet. The test treatments were as follows: larvae fed with HUFA+20% and HUFA+50% (w/w) vitamin E-enriched Artemia nauplii (E1 and E2 groups, respectively), HUFA without vitamin E (HUFA group) and non-enriched Artemia (control group). All treatments fed non-enriched Artemia for the initial 5 days after first feeding and then fed enriched Artemia for 7 days. After the period of enrichment, larvae were fed with daphnia from the 13th to the 40th day. At day 40, submersion in salt water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (33 °C for 2 days) was performed to evaluate larvae resistance to salinity and temperature stress. Final weight, daily growth rate, specific growth rate and weight gain were higher in beluga fed with enriched Artemia . The highest growth rates were observed in E1, whereas survival was not significantly different between groups. Use of vitamin E and HUFA significantly increased fish resistance to a salinity of 12 ppt and the lowest stress resistance was observed in the control group. Stress tolerance was not significantly different at 6 ppt and 33 °C between groups. There was no comparable difference in the haematocrit index under stress conditions. These results indicated that the enrichment of Artemia with essential fatty acids and vitamin E can affect some growth and stress tolerance factors in great sturgeon, Huso huso , larvae.  相似文献   

10.
光照对黄盖鲽仔鱼生长_发育及摄食的影响   总被引:13,自引:1,他引:12  
王迎春 《水产学报》1999,23(1):6-12
光照对黄盖鲽仔鱼的生长、发育及摄食有显著影响,各组仔鱼的体长与体高在20日时均产生极显著的差异;Duncan多范围检验表明:40-60lx光照度下仔鱼生长最好;在40-7000lx范围内随光照度的增强,生长则变差,存活率下降,畸形个体增加,暗条件下及3-6lx条件下的仔鱼在12日龄时全部因饥饰物而死亡。在卵黄囊期的各组仔鱼不受外界环境影响,生长情况近似。40-7000lx光照度之间的5且在4日龄至  相似文献   

11.
The aim of this study was to evaluate the growth and survival of pacu, Piaractus mesopotamicus, larvae reared in different salinities and to determine the Artemia nauplii life span in freshwater and in saline water. First feeding 5‐d‐old pacu larvae were reared in freshwater or at 2, 4, 6, 8, 10, 12, and 14 ppt salinities. The larvae were reared in 1.5‐L aquaria at a density of 10 larvae/L with three replicates per treatment. After 10 d of rearing, significant differences (P < 0.05) were observed for growth and survival. Larval growth was higher at 2 and 4 ppt, and survival at 2 ppt was 100%. In freshwater and at 4, 6 and 8 ppt, the survival was 91.1, 93.3, 73.3, and 39.9%, respectively. At higher salinities, there was 100% mortality after 2 h (12 and 14 ppt) and 8 h (10 ppt) of exposure. The slightly saline water of at least 2 ppt increased the Artemia nauplii life span compared to the life span in freshwater. Later, in a second trial, 5‐d‐old pacu larvae were reared in freshwater and at 2 and 4 ppt salinities during the first 5 or 10 d of active feeding, and then the fish were transferred to freshwater. At the end of 15 d, larval growth was lower in freshwater (42 mg) than in treatments 2 and 4 ppt (59–63 mg). The abrupt transfer of fish from freshwater to slightly saline water and the return to freshwater did not affect the survival rates (89–97%). The larvae were able to adapt to these saline environments and handle abrupt changes in salt concentration. We concluded that salinity concentration of 2 ppt can be used for pacu larval rearing, allowing the Artemia nauplii lifetime to last longer and cause faster fish growth.  相似文献   

12.
The effects of four light intensities (1000 lx, 500 lx, 50 lx, 3 lx) on growth, survival and feeding activity in common sole (Solea solea L.) larvae were studied from 4 to 51 days post hatching (dph). During the pelagic larval stage (4–12 dph), larvae reared at 3 lx showed a lower growth. From 19 onwards, the larvae reared under 3 lx displayed a significant ( 0.05) higher SGR than the other treatments and a higher final weight compared to 1000 lx and 500 lx. Survival rate was higher under intermediate light intensities (500 and 50 lx). Larvae reared at 3 lx displayed a significant delay in the degree of metamorphosis compared to the other treatments, while at 33 dph metamorphosis was completed under all treatments. Histological examination revealed the importance of vision and light in the first feeding of this species, while after metamorphosis, the full development of other sensory organs indicated that feeding activity is also mediated by chemosensory perception. Results indicate that high light intensity seems to be more suitable during the pelagic larvae, while the opposite would ensure better growth from the onset of metamorphosis to the benthic phase.  相似文献   

13.
Abstract  The short-term tolerances of northern pike, Esox lucius L., fry reared in a freshwater hatchery, to salinity were examined in the laboratory. Survival of two size groups of pike fry (mean length 21 ± 2 mm SD and 37 ± 4 mm SD) was examined over 72- to 96-h periods at 9–14 ppt salinity in combination with temperatures of 10, 14 and 18 °C. A parametric survival model found a significant correlation between survival of pike fry and temperature and salinity, respectively. L C50 values after 72 h were between 11.2 and 12.2 ppt, being lowest at 10 °C. Pike fry did not survive more than 13 ppt. Mortality at 12 ppt was significantly faster at 18 °C than 10 or 14 °C. Moreover, mortality was higher and faster for large than for small pike fry at 12 ppt and 14 °C. These results imply that pike raised in fresh water can survive stocking into brackish waters below 11 ppt at least for a short time.  相似文献   

14.
A series of experiments were conducted to evaluate the effects of diet, stocking density and environmental factors on the growth, survival and metamorphosis of short neck clam Paphia malabarica larvae. These experiments examined the following factors: diet [ Isochrysis galbana , Nannochloropsis salina and a mixture of I. galbana and N. salina (1:1 w/w)], stocking density (1, 3, 5 and 7 larvae mL−1), light intensity (unshaded, partially shaded and fully shaded) and water filtration (unfiltered and sand filtered). Results indicated that N. salina could replace 50% of I. galbana as a food source for the clam larvae with an increase in growth, survival (47.2%), metamorphosis (33.5%) and early settlement. Larval growth decreased significantly with increasing stocking density. A density of 1–3 larvae mL−1 appeared to be optimal for normal growth of clam larvae. Neither diet nor stocking density used in the study had a significant effect on larval survival. Under partially shaded (light intensity=1000–5000 lx) and fully shaded (light intensity <1000 lx) conditions, larval growth was significantly faster than under direct sunlight (unshaded). Larvae grew significantly faster in the unfiltered water than in the filtered water.  相似文献   

15.
The effects of four light intensities on growth and survival of first‐feeding stage black sea bass larvae Centropristis striata were investigated in a controlled‐environment laboratory. Fertilized eggs, obtained from LHRHa‐induced spawning of captive broodstock, were stocked (72 eggs L?1) into twenty 15 L black tanks under light intensities of 100, 500, 1000 and 1500 lx, with five replicate tanks per treatment. The photoperiod was 12L:12D, the temperature was 20°C and the salinity was 35 g L?1. Larvae were fed rotifers Brachionus rotundiformis from day 2 post‐hatching (d 2ph) at 5–10 rotifers mL?1. Microalgae Nannochloropis oculata and Isochrysis sp. were added (1:1) daily to maintain a density of 300 000 cells mL?1. Hatching success and larval growth and survival from d 2ph through d 15ph were monitored. Hatching success was 28–38% under all light intensities, and notochord length at hatching ranged from 2.8 to 3.0 mm, with no significant differences among treatments. By d 15ph, growth (mg wet weight) was significantly higher in the 1000 lx (0.914) and 1500 lx treatments (0.892) than in 100 lx (0.483), and a highly significant trend (P<0.01) towards increased survival with increasing light intensities was observed, from 1.3% at 100 lx to 13.9% at 1500 lx. Higher light intensities within the range of 100–1500 lx improved growth and survival of early larval black sea bass, suggesting that even higher light intensities may improve culture performance. This is consistent with conditions in shallow, near‐shore locations where eggs and larvae are distributed in nature.  相似文献   

16.
High larval mortalities during rearing of gilthead bream, Sparus auratus L., led to experiments on the influence of salinity and temperature on eggs and yolk-sac larvae. Test salinities ranged from 5 to 70 ppt for eggs and from 15 to 45 ppt for larvae; experimental temperatures were 18–20°C for eggs and 18, 23 and 26°C for larvae. Spawning conditions were 18–20°C and 33–35 ppt salinity; the yolk-sac larvae were chosen from hatches obtained under similar conditions (18°C and 35 ppt salinity). For eggs the optimum survival range was found to be 30–50 ppt at 18°C and 15–60 ppt at 23°C, while that for yolk-sac larvae was 15–25 ppt at all three temperatures. Choosing normal development (no dorsal curvature) as the decisive criterion, the optimum salinity range for egg incubation was reduced to 30–40 ppt at 18°C and to 35–45 ppt at 23°C, while that for the yolk-sac stage remained 15–25 ppt at all test temperatures. Egg incubation was most successful at salinity-temperature combinations close to those during spawning, whereas salinity had to be reduced by at least 10 ppt for yolk-sac larvae.  相似文献   

17.
Larvae of Metapenaeus monoceros (Fabricius) at protozoea 1 (PZ1) stage were stocked in 2‐L glass flasks to investigate the effects of various salinities (25, 30, 35, 40, 45, 50 and 55 ppt) on growth and survival until the post‐larval (PL) stages. The PZ larvae were not able to tolerate a sudden salinity drop of over 10 ppt. Yet, an abrupt salinity increase of over 10 or even 15 ppt did not cause mortality. The PZ larvae were successfully acclimated to different test salinities at a rate of 4 ppt h?1. The larvae displayed better tolerance to high rather than low salinities. The lowest and highest critical salinities appeared to be 22 and 55 ppt respectively. Taking into account survival, growth and development results, the optimal salinity for the larval culture of M. monoceros inhabiting the Eastern Mediterranean was 40 ppt. At this salinity, the PZ1 larvae were successfully cultured until PL1 stage within 11 days with 68% survival on a feeding regime of Tetraselmis chuii Kylin (Butcher) (20 cells μ L?1), Chaetoceros calcitrans Paulsen (50 cells μ L?1), Isochrysis galbana Parke (30 cells μL?1) and five newly hatched Artemia nauplii mL?1 from M1 onwards at 28 °C.  相似文献   

18.
Along the Atlantic coast black sea bass occur from the Gulf of Maine to Florida and support important commercial and recreational fisheries. Interest in commercial production of black sea bass has increased in recent years due to high demand and limited seasonable availability. Efforts towards large-scale production have been hampered by a high incidence of early larval mortality. Two of the most important environmental variables affecting hatchery production of marine finfish larvae are temperature and salinity. In the wild, larval black sea bass are found in waters with temperatures of 12–24 C and salinity levels of 30–35 ppt. Studies were conducted to define the temperature and salinity ranges that support growth and development of black sea bass during early life stages. Three developmental phases were investigated: 1) fertilization to hatch: 2) hatch through yolk sac absorption: and 3) during the initial exogenous feeding stage (5–14 days post hatch: DPH). Fertilized eggs were obtained by manual spawning of fish following administration of LHRHa. Fertilized eggs were transferred to 300-mL glass Petri dishes or 500-mL beakers to assess the effects of salinity and temperature through hatch and yolk sac absorption, respectively. To determine environmental effects on growth and survival during initial exogenous feeding 400 actively feeding larvae were cultured in green water and fed enriched rotifers for a 9-d period. For investigation of the effect of salinity, sea water (35 ppt) was diluted gradually to 15, 20, 25, and 30 ppt and maintained at 21 C. For examination of the effect of temperature, seawater was adjusted from 21 C to 12, 15, 21, 27, or 30 C at a rate of 3 C/h. No eggs hatched at 12 C or when salinity was maintained at 0 or 5 ppt. Hatching was uniformly high (≥ 85%) at temperatures between 15 and 27 C and at salinities ≥ 15 ppt. Survival through yolk sac absorption was greatest at temperatures between 18 and 27 C and at salinities ≥ 20 ppt. Survival through first feeding stage was highest at temperatures ≥ 18 C and 30 ppt salinity. Larval growth through first feeding was not significantly affected by salinity level but did increase with rearing temperature. The results indicate that survival and development of black sea bass during early life stages are most favorable at temperatures >18 C with salinity levels approaching full strength seawater.  相似文献   

19.
Failing to initiate first feeding during the transition from endogenous nutrition to exogenous feeding will lead to starvation of fish larvae. However, little is known about the mechanism of first feeding selection of fish. Golden mandarin fish larvae (3 d after hatch, 2.05 ± 0.03 mg) were fed with four different foods for 7 d, including the following: M – Megalobrama amblycephala (prey fish larvae as natural food); S – surimi of M. amblycephala; A – Artemia (zooplankton); and MA –mixed M. amblycephala with Artemia (mixed food). Larvae fed with the mixed food achieved an appropriate balance between high survival and good growth through elevating the expression of growth genes (GH, IGF‐I, and IGF‐II) and fatty acid synthesis genes (FAD and ELO). Growth performance of fish fed with MA reared at different salinities (0, 5, and 10 ppt) was examined. The salinity of 5 ppt produced the best growth performance of the three salinity levels tested. Fish larvae adapted to high‐ or low‐salinity environments through increasing the expression of lipolysis genes (HSL, LPL, and HL). Therefore, both food type and salinity affect the growth, survival, and lipometabolism of golden mandarin fish larvae during initial feeding stage, and mixed food and 5 ppt salinity improved its survival and growth.  相似文献   

20.
The blue swimmer crab, Portunus pelagicus, is an emerging aquaculture species in the Indo-Pacific. Two experiments were performed to determine the effects of salinity on survival, growth and haemolymph osmolality of early juvenile P. pelagicus crabs. The salinities tested for the first experiment were 10, 15, 25 and 40 ppt, and for the second experiment 5, 20, 30, 35 and 45 ppt. Each salinity experiment was triplicated, with each replicate consisting of 10 stage 4 juveniles. Each experiment lasted 45 days. Mortalities and incidence of “molt death syndrome” were recorded daily, while the intermolt period, carapace length, carapace width and wet weight were measured at each molt. At the end of the experiments the haemolymph osmolality and dry weights were measured.

Results demonstrate that salinity significantly affects both the survival and growth of early P. pelagicus juveniles. Mortality was significantly higher (p < 0.01) for juveniles cultured at salinities ≤ 15 ppt and at 45 ppt. At a salinity of 5 ppt a complete mortality occurred on day 20. In all salinity treatments, the majority of mortalities were due to “molt death syndrome”. In experiment 1, immediate effects of salinity on growth and development were seen at 10 ppt as the intermolt period was significantly longer (p < 0.01) and the mean carapace size increase was significantly less (p < 0.01) at the first molt compared to the other treatments. Meanwhile, the specific growth rates (carapace length, width and wet weight) were significantly lower (p < 0.05) at high salinities (≥ 40 ppt) due to longer intermolt periods and significantly lower (p < 0.05) carapace size or wet weight increases.

The haemolymph osmolality exhibited a positive linear relationship with the culture medium with an isosmotic point of 1106 mOsm/kg, equal to a salinity of approximately 38 ppt. Based on the osmolality graph, high metabolic cost for osmoregulation due to increased hyper- and hypo-osmotic stress appeared to cause lower survival and specific growth rates of the crabs. The results demonstrate that a salinity range of 20–35 ppt is suitable for the culture of early juvenile P. pelagicus.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号