首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat (Triticum aestivum L.) and vetch (Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley (Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively).

SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM).

Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain.  相似文献   


2.
Soil organic matter (SOM) and its different pools have key importance in optimizing crop production, minimizing negative environmental impacts, and thus improving soil quality. The objective of this study was to evaluate the soil C and N contents in bulk soil and in different SOM pools (light and heavy fractions) of a clayey Rhodic Ferralsol after 13 years of different tillage and crop rotations in Passo Fundo, State of Rio Grande do Sul, Brazil. Soil samples were collected from no-tillage (no soil disturbance except for sowing; NT) and conventional tillage (disc plough followed by light disc harrowings; CT) applied to wheat/soybean (W/S) and wheat/soybean–vetch/maize (W/S–V/M) rotations. As reference, soil was sampled from a non-cultivated area adjacent to the field experiment. The greatest soil C and N contents were found in non-cultivated soils in the 0–5 cm depth (45 g C kg−1 soil and 3.6 g N kg−1 soil). Crop cultivation led to a decrease in SOM content which was higher for CT soils (approx. 60% decrease in C and N contents) than NT soils (approx. 43% decrease in C and N contents) at 0–5 cm. Tillage had the greatest impact on soil C and N storage. Soils under NT did not contain higher C and N storage than CT soils below 5 cm depth. Significantly, higher amounts of organic carbon of FLF in CT (0.5–0.7 g C kg−1 soil) than in NT soils (0.2 g C kg−1 soil) at 10–20 cm depth were also observed and the differences in C and N storage between CT and NT soils in the 0–30 cm layer were not significant. Silt and clay fractions contained the largest amount of organic carbon (60–95% of total organic carbon), and free light fraction was the most sensitive pool of organic carbon to detect changes in SOM due to soil tillage and crop rotations.  相似文献   

3.
Soil redistribution by erosive processes is a serious problem for the potato growing areas of Prince Edward Island. Studies were conducted to evaluate soil loss for three major soil types under two different cropping systems, at catenary sequences with five slope positions, using the 137Cs tracer method. Adjacent forest catenas were sampled to provide baseline 137Cs levels. Soil loss over time (1960–1990) on a specific mass (kg m−2 yr−1) basis was calculated by comparing the 137Cs at the same slope positions for the cropping system and adjacent forest site. The effects of land clearing and long-term cultivation were to increase both the depth and density of the Ap horizon, and decrease the total 137Cs on an area basis, in comparison to the forested sites. The average 137Cs in the forested sites for all three soil types was 3133 Bq m−2. Catena average soil loss across all soil types and slopes, for the 1960–1990 time period, was 21 and 38 Mg ha−1 yr−1 for the pasture and crop rotation (potato) rotations, respectively. Shoulder slope positions tended to have the highest 137Cs loss, which was suggestive of tillage erosion.  相似文献   

4.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

5.
Field observations have shown that root residues maintain root-adhering soil for several months after harvest. The aim of this work was to compare post-harvest effect of Amaranthus hypochondriacus (amaranth), Phaseolus vulgaris (common bean) and Zea mays (maize) roots on root-adhering soil, aggregation and organic carbon content. The experimental site was located on a volcanic sandy soil (Typic Ustifluvent) in the Valley of Mexico. In 1999 and 2000, maize had the highest root mass (92 and 94 g m−2) and the highest root-adhering soil (9051 and 5876 g m−2) when a root–soil monolith of 0.20 m × 0.20 m × 0.30 m was excavated after harvest. In contrast, bean roots (2 and 5 g m−2) had only 347 and 23 g m−2 of adhering soil per monolith in each year. Amaranth had intermediate values between maize and bean. Dry soil aggregate classes (<0.25, 0.5, 1, 2, 5 and >5 mm) were similarly distributed among the three species. The sum of the three soil macro-aggregates classes >1 mm was 0.1 g g−1 in both years. Neither water stability of the 2–5 mm aggregates (0.05–0.09 g g−1) nor soil organic C (SOC) in three aggregate classes (<0.25, 1–2 and >5 mm; mean 14.6 mg g−1) was affected by species (P < 0.05) in either year. Observations of thin sections (10× and 40×) revealed absence of macro-aggregates under maize. Soil compaction was attributed to high mass of maize roots in the sampled soil volume. Root systems sampled after harvest had the capacity to maintain a well structured soil mass, which was proportional to root mass. Root-adhering soil measured in the field could be used to select species promoting soil adhesion by roots.  相似文献   

6.
Cultivation machinery applies large amounts of mechanical energy to the soil and often brings about a decrease in soil organic carbon (SOC). New experiments on the effects of mechanical energy inputs on soil respiration are reported and the results discussed. In the laboratory, a specific energy, K, of 150 J kg−1, similar to that experienced during typical cultivation operations, was applied to soil aggregates using a falling weight. Respiration (carbon dioxide, CO2 emission) of the samples was then measured by an electrical conductimetric method. Basal respiration (when K=0) measured on Chromic Luvisol aggregates, was found to increase with increasing SOC, from 1.88 μg CO2 g−1 h−1 for a permanent fallow soil (SOC=11 g kg−1) to 8.25 μg CO2 g−1 h−1 for a permanent grassland soil (SOC=32 g kg−1). Basal respiration of a Calcic Cambisol, more than doubled (2.0–5.2 μg CO2 g−1 h−1) with increasing gravimetric soil water contents. Mechanical energy inputs caused an initial burst of increased respiration, which lasted up to 4 h. Over the following 4–24 h period, arable soils with lower SOC contents, (11–21 g kg−1), respiration rates dropped back to a level, approximately 1.14 times higher than the basal value. However, grassland soils with higher SOC contents (28–32 g kg−1), increases in this longer-term respiration rate following 150 J kg−1 of energy, were negligible. A field experiment, in which CO2 was measured by infra-red absorption, also showed that tillage stimulated increased levels of soil respiration for periods ranging from 12 h to more than one week. The highest respiration rates, 80 mg CO2 m−2 h−1 were associated with high energy, powered tillage on clay soils. On the same soil, low energy draught tillage resulted in a respiration rate of approximately half this value. The results of these experiments are discussed in relation to equilibrium levels of soil organic matter. The application of known quantities of mechanical energy to soil aggregates under laboratory conditions, in order to simulate the effect of different cultivation practices, when combined with the subsequent measurement of soil respiration, can provide useful indication of the likely consequences of soil management on SOC.  相似文献   

7.
The fertile, but naturally poorly drained soils of the western Fraser Valley in British Columbia, Canada are located in an area subject to about 1200 mm of rainfall annually. These soils were under intensive conventional tillage practices for years, which contributed to their poor infiltrability, low organic matter, and overall poor structure. Development of tillage practices that incorporate winter cover crops and reduce traffic in spring is required to reduce local soil degradation problems. The objective of this study was to determine short-term responses of soil physical properties to fall and spring tillage (ST) and fall and no spring tillage (NST) systems, both using spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) as winter cover crops. Field experiments were conducted for 3 years following seeding of the winter cover crops in fall 1992 on a silty clay loam Humic Gleysol (Mollic Gleysol in FAO soil classification). Average aeration porosity was 0.15 m3 m−3 on NST and 0.22 m3 m−3 on ST, while bulk density was 1.22 Mg m−3 on NST and 1.07 Mg m−3 on ST at the 0–7.5 cm depth. Neither of these two soil properties should limit seedling and root growth. After ST, mechanical resistance was consistently greater for 500–1000 kPa in NST than in ST, but never reached value of 2500 kPa considered limiting for root growth. The NST system did not increase soil water content relative to ST, with soil water contents being similar at 10 and 40 cm depth in all years. In 2 out of 3 years NST soil was drier at the 20 cm depth than was ST soil. Three years of NST did not result in a significant changes of aggregate stability relative to ST. This experiment showed that limiting tillage operations to the fall did not adversely affect soil physical conditions for plant growth in a humid maritime climate.  相似文献   

8.
Cover crops may influence soil carbon (C) sequestration and microbial biomass and activities by providing additional residue C to soil. We examined the influence of legume [crimson clover (Trifolium incarnatum L.)], nonlegume [rye (Secale cereale L.)], blend [a mixture of legumes containing balansa clover (Trifolium michelianum Savi), hairy vetch (Vicia villosa Roth), and crimson clover], and rye + blend mixture cover crops on soil C fractions at the 0–150 mm depth from 2001 to 2003. Active fractions of soil C included potential C mineralization (PCM) and microbial biomass C (MBC) and slow fraction as soil organic C (SOC). Experiments were conducted in Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults) under dryland cotton (Gossypium hirsutum L.) in central Georgia and in Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) under irrigated cotton in southern Georgia, USA. Both dryland and irrigated cotton were planted in strip tillage system where planting rows were tilled, thereby leaving the areas between rows untilled. Total aboveground cover crop and cotton C in dryland and irrigated conditions were 0.72–2.90 Mg C ha−1 greater in rye + blend than in other cover crops in 2001 but was 1.15–2.24 Mg C ha−1 greater in rye than in blend and rye + blend in 2002. In dryland cotton, PCM at 50–150 mm was greater in June 2001 and 2002 than in January 2003 but MBC at 0–150 mm was greater in January 2003 than in June 2001. In irrigated cotton, SOC at 0–150 mm was greater with rye + blend than with crimson clover and at 0–50 mm was greater in March than in December 2002. The PCM at 0–50 and 0–150 mm was greater with blend and crimson clover than with rye in April 2001 and was greater with crimson clover than with rye and rye + blend in March 2002. The MBC at 0–50 mm was greater with rye than with blend and crimson clover in April 2001 and was greater with rye, blend, and rye + blend than with crimson clover in March 2002. As a result, PCM decreased by 21–24 g CO2–C ha−1 d−1 but MBC increased by 90–224 g CO2–C ha−1 d−1 from June 2001 to January 2003 in dryland cotton. In irrigated cotton, SOC decreased by 0.1–1.1 kg C ha−1 d−1, and PCM decreased by 10 g CO2–C ha−1 d−1 with rye to 79 g CO2–C ha−1 d−1 with blend, but MBC increased by 13 g CO2–C ha−1 d−1 with blend to 120 g CO2–C ha−1 d−1 with crimson clover from April 2001 to December 2002. Soil active C fractions varied between seasons due to differences in temperature, water content, and substrate availability in dryland cotton, regardless of cover crops. In irrigated cotton, increase in crop C input with legume + nonlegume treatment increased soil C storage and microbial biomass but lower C/N ratio of legume cover crops increased C mineralization and microbial activities in the spring.  相似文献   

9.
Determining temporal changes in field-saturated hydraulic conductivity (Kfs) is important for understanding and modeling hydrological phenomena at the field scale. Little is known about temporal variability of Kfs values measured at permanent sampling points. In this investigation, the simplified falling head (SFH) technique was used for an approximately 2-year period to determine temporal changes in Kfs at 11 permanent sampling points established at the surface of a sandy loam soil. Additional Kfs measurements were obtained by the single-ring pressure infiltrometer (PI) technique to also compare the SFH and PI techniques. The lowest mean values of Kfs, M(Kfs), were detected in December and January (20.5 ≤ M(Kfs) ≤ 146.2 mm h−1), whereas higher results (190.5 ≤ M(Kfs) ≤ 951.9 mm h−1) were obtained in the other months of the year. The Kfs values were higher and less variable in the dry soil (θi ≤ 0.21 m3 m−3, M(Kfs) = 340.6 mm h−1, CV(Kfs) = 106%) than in the wet one (θi > 0.21 m3 m−3, M(Kfs) = 78.4 mm h−1, CV(Kfs) = 185%). Both wet and dry soil were less conductive at the end of the study period than at the beginning one but a more appreciable change was detected for the dry soil (Kfs decreasing by 83.4%) than for the wet one (Kfs decreasing by 63.0%). The simple SFH technique yielded Kfs results similar to the more laborious and time-consuming PI technique (i.e., mean values differing at the most by a factor of two). It was concluded that (i) the soil water content was an important factor affecting the Kfs results obtained in a relatively coarse-textured soil, (ii) the impact of time from the beginning of the experiment on the saturated hydraulic conductivity was larger for a repeated sampling of dry soil than of wet soil and (iii) the SFH technique yielded reliable Kfs results in a relatively short period of time without the need for extensive instrumentation or analytical methodology.  相似文献   

10.
The potential benefits of conservation tillage practices depend mainly on the soil and climatic conditions of the site. A study was conducted to determine the effects of three tillage systems (conventional, CT; reduced, RT; zero, ZT) on spring wheat (Triticum aestivum L.) and weed growth on a clay soil in temperate continental climate, northern Alberta (55°43′N, 118°41′W), Canada. A medium duty cultivator with 25 cm sweeps spaced 22 cm apart and a working depth of 8–10 cm was used for tillage in the CT (once in fall and twice in spring) and RT (once in spring) plots. The ZT plots received a harrowing to spread straw and a preseeding application of Roundup (glyphosate) to control weeds. Experimental design was a randomized complete block with four replications and the tillage systems were fixed in space for the 1989, 1990 and 1991 seasons. The RT treatment resulted in higher yields than the CT or ZT treatments. However, the differences were not always significant. The ZT treatment produced higher yields than CT in 1989 and 1991, whereas its yields were lower than CT in 1990. The 3 year means of total dry matter (TDM) were 3899 kg ha−1, 3640 kg ha−1 and 3331 kg ha−1 for the RT, ZT and CT treatments, respectively. The corresponding grain yields were 1728 kg ha−1, 1573 kg ha−1 and 1530 kg ha−1. The concentration of total N in plants and grains of wheat, amounts of extractable NO3-N, NH4-N and P in soil and soil moisture and bulk density were not significantly affected by tillage. The mean weight diameter of aggregates in surface soil was significantly greater under ZT than under the other systems. Wild buckwheat (Polygonum convolvulus L.) was more abundant under CT, but common groundsel (Senecio vulgaris L.), dandelion (Taraxacum officinale Weber), hemp nettle (Galeopsis tetrahit L.), field horsetail (Equisetum arvense L.) and smartweed (Polygonum scabrum Moench) tended to have higher populations under the ZT system. The populations of foxtail barley (Hordeum jubatum L.) wild rose (Rosa sp.), stinkweed (Thlaspi arvense L.) and wild oats (Avena fatua L.) showed no consistent effect of tillage. Tillage or preseeding application of glyphosate did not provide an effective control of all weed species. The spring tillage of the RT system improved crop yields and weed control relative to ZT, whereas the fall tillage of the CT system (in addition to spring tillage) reduced crop yields and had no significant effect on weed population relative to RT. The overall results showed that tillage intensity could be reduced to the level of RT without any adverse influence on crop yields, soil properties or weed populations. The RT system is also economical and environmentally desirable owing to lower tillage and herbicide requirements.  相似文献   

11.
Soil thermal conductivity determines how a soil warms or cools with exchange of energy by conduction, convection, and radiation. The ability to monitor soil thermal conductivity is an important tool in managing the soil temperature regime to affect seed germination and crop growth. In this study, the temperature-by-time data was obtained using a single probe device to determine the soil thermal conductivity. The device was used in the field in some Jordanian clay loam and loam soils to estimate their thermal conductivities under three different tillage treatments to a depth of 20 cm. Tillage treatments were: no-tillage, rotary tillage, and chisel tillage. For the same soil type, the results showed that rotary tillage decreased soil thermal conductivity more than chisel tillage, compared to no-tillage plots. For the clay loam, thermal conductivity ranged from 0.33 to 0.72 W m−1 K−1 in chisel plowed treatments, from 0.30 to 0.48 W m−1 K−1 in rotary plowed treatments, and from 0.45 to 0.78 W m−1 K−1 in no-till treatments. For the loam, thermal conductivity ranged from 0.40 to 0.75 W m−1 K−1 in chisel plowed treatments, from 0.34 to 0.57 W m−1 K−1 in rotary plowed treatments, and from 0.50 to 0.79 W m−1 K−1 in no-till treatments. The clay loam generally had lower thermal conductivity than loam in all similar tillage treatments. The thermal conductivity measured in this study for each tillage system, in each soil type, was compared with independent estimates based on standard procedures where soil properties are used to model thermal conductivity. The results of this study showed that thermal conductivity varied with soil texture and tillage treatment used and that differences between the modeled and measured thermal conductivities were very small.  相似文献   

12.
Soil translocation by tillage may be an important factor in land degradation in the humid tropics. The objective of this study was to evaluate tillage-induced soil translocation on an Oxisol with 25% and 36% slopes in Claveria, Philippines for three tillage systems: contour moldboard plowing (CMP), moldboard plowing up and downslope (UMP), and contour ridge tillage (CRT). Small rocks 3–4 cm in “diameter” were used as soil movement detection units (SMDU). The SMDUs were placed at 10 cm intervals in a narrow 5-cm-deep trench near the upper boundary of each plot, the position of each rock recorded, and the trench backfilled. Five tillage operations used to produce one corn crop were performed during a one month period: two moldboard plowing operations for land preparation (except for CRT), one moldboard plowing for corn planting, and two inter-culture (inter-row cultivation) operations. After these operations, over 95% of the SMDU were recovered manually and their exact locations recorded. Mean annual soil flux for the 25% slope was 365 and 306 kg m−1 y−1 for UMP and CMP, respectively. For the 36% slope, comparable values were 481 and 478 kg m−1 y−1. Estimated tillage erosion rates for the 25% slope were 456 and 382 Mg ha−1 y−1 for UMP and CMP, respectively, and increased to 601 and 598 Mg ha−1 y−1, respectively, for the 36% slope. The mean displacement distance, mean annual soil flux, and mean annual tillage-induced soil loss for both slopes were reduced by approximately 70% using CRT compared to CMP and UMP.  相似文献   

13.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   

14.
Soil organic carbon (SOC) pool is the largest among terrestrial pools. The restoration of SOC pool in arable lands represents a potential sink for atmospheric CO2. Restorative management of SOC includes using organic manures, adopting legume-based crop rotations, and converting plow till to a conservation till system. A field study was conducted to analyze soil properties on two farms located in Geauga and Stark Counties in northeastern Ohio, USA. Soil bulk density decreased with increase in SOC pool for a wide range of management systems. In comparison with wooded control, agricultural fields had a lower SOC pool in the 0–30 cm depth. In Geauga County, the SOC pool decreased by 34% in alfalfa (Medicago sativa L.) grown in a complex rotation with manuring and 51% in unmanured continuous corn (Zea mays L.). In Stark County, the SOC pool decreased by 32% in a field systematically amended with poultry manure and 40% in the field receiving only chemical fertilizers. In comparison with continuous corn, the rate of SOC sequestration in Geauga County was 379 kg C ha−1 year−1 in no-till corn (2 years) previously in hay (12 years), 760 kg C ha−1 year−1 in a complex crop rotation receiving manure and chemical fertilizers, and 355 kg C ha−1 year−1 without manuring. The rate of SOC sequestration was 392 kg C ha−1 year−1 on manured field in Stark County.  相似文献   

15.
Field experiments were conducted on a river deposit during 1983–1984 and 1984–1985 in order to study the effect of different soil management practices, such as zero tillage with surface-applied crop residue mulch at a rate of 10 t ha−1 (ZT+M), conventional tillage (CT), CT+ surface-applied crop residue mulch at a rate of 10 t ha−1 (CT + M), CT+crop residue incorporation at a rate of 10 t ha−1 (CT + SI), CT + farmyard manure incorporation at a rate of 10 t ha−1 (CT + FYM), on soil hydro-thermal regime root growth, nutrient uptake and dry matter yield of winter wheat (Triticum aestivum L.). The soils of the site are classified as Entisol, Typic Psammaquent with pH 6.0, cation exchange capacity 10 c mol (p+) per kg in the surface (0–0.3 m) depth. In the CT + M and CT + FYM treatments, higher water retention was observed compared to CI. The minimum soil temperature was also raised by 3°C under CT + M to CT at 0.1-m depth. CT + M and CT + FYM had significantly higher root mass density compared with other treatments at all stages of crop growth. The nitrogen (N) uptake under these two treatments was also significantly higher compared to CT. Under CT+M, plants did not suffer from N stress compared to other treatments. Phosphorus (P) uptake (except at tillering) and potassium (K) uptake under CT+M and CT + FYM were significantly higher than for all the other treatments. Treatments ZT+M and CT+SI behave simply to CT in terms of hydro-thermal regime, root growth, nutrient uptake and dry matter yield. The grain yield under CT+M and CT+FYM during 1983–1984 and 1984–1985 was significantly higher than that under all the other treatments.  相似文献   

16.
Soil is a potential C sink and could offset rising atmospheric CO2. The capacity of soils to store and sequester C will depend on the rate of C inputs from plant productivity relative to C exports controlled by microbial decomposition. Management practices, such as no-tillage and high intensity cropping sequences, have the potential to enhance C and N sequestration in agricultural soils. An investigation was carried out to study the influence of long-term applications of fertilizers and manures on different organic C fractions in a Typic Haplustept under intensive sequence of cropping with maize–wheat–cowpea in a semi-arid sub-tropic of India. In 0–15 cm, the bulk density was lowest (1.52 Mg m−3) in plots treated with 100% NPK + FYM, while the control treatment showed the highest value (1.67 Mg m−3). Balanced application of NPK (100% NPK) showed significantly lower bulk density (1.56 Mg m−3) over either 100% N (1.67 Mg m−3) or 100% NP (1.61 Mg m−3) in surface soils. The application of super-optimal dose of NPK (150% NPK) showed higher total organic C (TOC) (12.9 g C kg−1) over either 50% NPK (9.3 g C kg−1) or 100% NPK (10.0 g C kg−1) in 0–15 cm soil layer. There was an improvement in TOC in 100% NPK or 100% NP (9.3 g C kg−1) over 100% N (8.7 g C kg−1) in the same depth. The application of FYM with 100% NPK showed 15.2, 9.9 and 5.2 g C kg−1 in 0–15, 15–30 and 30–45 cm, respectively. Application of graded doses of NPK from 50 to 150% of recommendation NPK significantly enhanced other organic C fractions like, microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidizable C (KMnO4–C) in all the three soil depths. The TOC in 0–45 cm soil depth in 150% NPK (63.5 Mg C ha−1) was increased by 39% over that in 50% NPK treatment (51.5 Mg C ha−1) and 29% over that in 100% NPK treatment (54.1 Mg C ha−1). Integrated use of farmyard manure with 100% NPK (100% NPK + FYM) emerged as the most efficient management system in accumulating largest amount of organic C (72.1 Mg C ha−1) in soil. Nevertheless, this treatment also sequestered highest amount of organic C (731 kg C ha−1 year−1). Particulate organic carbon, a physically protected carbon pool in soil, could well be protected in sub-surface soil layers than in surface soil layer as a means of carbon aggradations. Microbial metabolic quotient (qCO2) was significantly lower in 100% NPK + FYM over other treatments to indicate this to be the most efficient manuring practice to preserve organic carbon in soil where it facilitates aggradations of more recalcitrant organic C in soil. As compared to POC, total TOC proved to be a better predictor of MBC as it strongly correlated with total carbon mineralized from soil.  相似文献   

17.
The type of conservation-tillage management employed could impact surface-soil properties, which could subsequently affect relationships between soil and water quality, as well as with soil C sequestration and greenhouse gas emissions. We determined soil bulk density, organic C and N fractions, plant-available N, and extractable P on Typic Kanhapludults throughout a 7-year period, in which four long-term (>10 years), no-tillage (NT) water catchments (1.3–2.7 ha each) were divided into two treatments: (1) continuation of NT and (2) paraplowing (PP) in autumn (a form of non-inversion deep ripping) with NT planting. Both summer [cotton (Gossypium hirsutum L.), maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), soybean (Glycine max L. Merr.)] and winter [wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale L.), crimson clover (Trifolium incarnatum L.)] crops were NT planted throughout the study under each management system. Soil bulk density was reduced with PP compared with NT by as much as 0.15 Mg m−3, but the extent of reduction was inversely related to the time lag between PP operation and sampling event. Soil organic C became significantly enriched with time during this study under NT (0.49 Mg C ha−1 year−1), but not under PP, in which poultry litter was applied equivalent to 5.7 Mg ha−1 year−1 to all water catchments. Soil maintained a highly stratified depth distribution of organic C and N fractions and extractable P under both NT and PP. Inability to perform the PP operation in the last year of this study resulted in rapid convergence of soil bulk density between tillage systems, suggesting that PP had <1-year effectiveness on soil loosening. The high energy cost of PP (ca. 30 kW shank−1) and the lack of sustained improvement in surface-soil properties put into question the value of PP for improving upon long-term NT management in sandy loam and sandy clay loam Ultisols of the Southern Piedmont USA, unless large effects on crop yield, water quality, or other ecosystem processes warrant its use.  相似文献   

18.
Although reduced tillage (RT) may preserve soil biota and improve the productivity and sustainability of arable lands in temperate regions, the extension of RT is limited by difficulties in controlling weeds. We studied the effect of RT without herbicide application on weed communities and soil biota in a 1-year 2-crop rotation system with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) on Andosols in Japan. RT of the surface 3 cm and conventional moldboard plowing (CT) were conducted before seeding twice per year. For the first 3 years, from autumn 1997 to spring 2000, one field was managed with RT and another with CT. For the second 3 years, from autumn 2000 to spring 2003, RT and CT were conducted in two replicated plots in each field. Weed communities and soil biota were studied in the last 2 years. Dominant weed species in winter wheat cropping were Italian ryegrass (Lolium multiflorum Lam.) in 2002 and common vetch (Vicia angustifolia L.) in 2003, and their biomass was high where RT or CT was continuously conducted. Switching of tillage methods, from RT to CT or vice versa, reduced the biomass of winter weeds. In summer maize cropping, several annual and perennial weed species tended to increase under RT in the second 3 years. However, redroot pigweed (Amaranthus retroflexus L.), the most dominant weed in 2002 and 2003, responded to tillage inconsistently and its biomass was not always increased by RT. Species diversity of winter weeds was decreased by CT conducted in the first 3 years, and that of summer weeds was decreased by CT conducted in the second 3 years. The seedbank in the 0–10-cm soil layer under recent RT was large (7200–16 300 seeds m−2) compared with that under CT (2900–7300 seeds m−2). The microbial substrate-induced respiration (SIR) and the population densities of nematodes and mites were higher under RT in the second 3 years and were not affected by previous tillage practices. Both were highly correlated with soil total nitrogen. The positive effect of RT on these soil organisms was primarily attributable to the accumulation of organic matter in soil, but not to plant cover as a result of incomplete weed control by RT. Occasional adoption of RT in current CT systems may be effective at enriching soil organisms with little risk of weed infestation.  相似文献   

19.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

20.
Hedgerows planted along the contour on steep lands in the humid tropics reduce soil erosion and build terraces over time. The objectives of this study in two Hapludoxes in the Philippines were to evaluate changes after 4 years in soil properties and soil water relations on transects perpendicular to the cropped alleys between four grass and tree hedgerow systems and a control. Hedgerow plants included Gliricidia sepium, Paspalum conjugatum, and Penisetum purpureum. Soil properties evaluated as a function of position in the alley (upper, middle, or lower elevation in an alley) included bulk density, mechanical impedance, soil water transmissivity, water retention, soil water pressure, and soil water content. In general, soil properties were not affected by hedgerow system, but were affected by position in the alley. Nearness to the hedgerow, but not hedgerow species, affected soil water distribution (P = 0.05). Plant available water at the 10–15 cm depth was 0.16 m3 m−3, 0.13 m3 m−3, and 0.08 m3 m−3 for the lower, middle, and upper alley position, respectively. Water transmissivity decreased from 0.49 mm s−1 in the lower alley to 0.12 mm s−1 in the upper alley. The lower soil water contents and soil water pressures in and near the hedgerows confirmed competition for water between the hedgerow species and the food crop in the alley, a condition that is expected to suppress food crop production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号