首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
玉米光周期敏感相关性状发育动态QTL定位   总被引:2,自引:1,他引:1  
玉米是短日照作物,大多数热带种质对光周期非常敏感。光周期敏感性限制了温、热地区间的种质交流。研究玉米光周期敏感性的分子机理,有利于玉米种质的扩增、改良、创新,提高玉米品种对不同光周期变化的适应性。本研究以对光周期钝感的温带自交系黄早四和对光周期敏感的热带自交系CML288为亲本配置的组合衍生的一套207个重组自交系为材料,在长日照环境条件下对不同发育时期的叶片数、株(苗)高变化进行QTL分析。结果表明,双亲间的最终可见叶片数和株高差异很大;发育初期CML288的叶片数和苗高都低于黄早四,而发育后期CML288的叶片数和株高都明显高于黄早四;测定各时期F7重组自交系间也存在显著差异。利用包含237个SSR标记、图谱总长度1 753.6 cM、平均图距7.40 cM的遗传连锁图谱,采用复合区间作图法,分别检测到控制叶片数和株(苗)高发育的QTL 11个和20个。但是,没有一个条件QTL 能在测定的几个时期都有效应。在长日照条件下,控制叶片数与株(苗)高的非条件与条件QTL主要集中在第1、9和10染色体上,特别是在第10染色体的标记umc1873附近均检测到了影响这两个性状的QTL,且在不同的发育时期单个条件和非条件QTL所解释的表型变异分别为4.34%~25.74%和10.02%~22.57%,表明这一区域可能包含光周期敏感性关键基因。  相似文献   

2.
Sorghum is one of the most important cereal crops; it is used to produce feed, sugar, and biofuel. To investigate genetic tradeoffs between grain and stem sugar production, we evaluated plant height, Brix (the percentage of soluble solids in stalk juice), 100-grain weight and flowering time over 3 years in a recombinant inbred line (RIL) population consisting of 189 individuals derived from a cross between the sweet sorghum cultivar ‘Rio’ and grain sorghum ‘BTx623’. We constructed a genetic linkage map (total length, 1418.71 cM; average distance between markers, 11.26 cM), which consisted of 118 simple sequence repeat (SSR) and 8 insertion-deletion (INDEL) markers. A total of 14 QTLs were detected on chromosomes 1, 3, 6, 7, and 9, which included 6 QTLs for plant height; 4 for Brix; and 2 QTLs for each 100-grain weight and flowering time. Eight QTLs were detected at least in 2 years. These results will be useful for future QTL fine mapping and gene mining for these traits, and useful for the improvement of sorghum through molecular marker-assisted selection.  相似文献   

3.
以开花期相近的181个大豆重组自交系(RIL)为材料,研究开花后不同光照长度对大豆主要农艺性状的影响,并在利用SSR标记构建大豆遗传图谱的基础上,分别在长日(16 h)和短日(12 h)条件下检测与主要农艺性状及其光周期敏感度(PS)相关的QTL。结果表明,开花后光照处理对大豆农艺性状和品质性状有较大影响,不同性状的光周期敏感度差异明显,株高>主茎节数>蛋白质含量、脂肪含量>百粒重>单株荚数>蛋白质和脂肪总量。利用复合区间作图法检测到12个与株高、主茎节数、单株荚数、百粒重、蛋白质和脂肪总量等性状及各性状对开花后光周期处理的敏感度相关的QTL,分别定位于A1、A2、B1、B2、C1、D1a、F、L等8个连锁群上。其中,在短日条件下检测到4个QTL,可解释的遗传变异范围在11.37%~26.63%之间;在长日条件下检测到3个QTL,可解释的遗传变异范围在11.84%~27.85%之间;检测到5个与不同性状光周期敏感度有关的QTL,可解释相对应性状表型变异的范围在6.15%~21.44%之间。针对同一性状,未检测到在长日和短日条件下均起作用的主效QTL, 说明开花后光周期对大豆产量和品质性状相关基因的表达有较大影响。  相似文献   

4.
Primitive cottons (Gossypium spp.) represent resources for genetic improvement. Most primitive accessions are photoperiod sensitive; they do not flower under the long days of the U.S. cotton belt. Molecular markers were used to locate quantitative trait loci (QTLs) for node of first fruiting branch (NFB), a trait closely related to flowering time in cotton. An F2 population consisted of 251 plants from the cross of a day neutral cultivar Deltapine 61, and a photoperiod sensitive accession Texas 701, were used in this study. Segregation in the population revealed the complex characteristics of NFB. Interval mapping and multiple QTL mapping were used to determine QTLs contributing to NFB. Three significant QTLs were mapped to chromosome 16, 21, and 25; two suggestive QTLs were mapped to chromosome 15 and 16. Four markers associated with these QTLs accounted for 33% of the variation in NFB by single and multiple-marker regression analyses. Two pairs of epistasis interaction between markers were detected. Our results suggested that at least three chromosomes contain factors associated with flowering time for this population with epistasis interactions between chromosomes. This research represent the first flowering time QTL mapping in cotton. Makers associated with flowering time may have the potential to facilitate day neutral conversion of accessions. Contribution of USDA-ARS in cooperation with the Mississippi Agric. and Forestry Exp. Stn. Journal paper J-11131 of Mississippi Agric. and Forestry Exp. Stn. Mention of trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by USDA, ARS and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

5.
Flowering time has biological and agricultural significance for crops. In Upland cotton (Gossypium hirsutum L.), photoperiodic sensitivity is a major obstacle in the utilization of primitive accessions in breeding programs. Quantitative trait loci (QTLs) analysis was conducted in two F2 populations from the crosses between a day-neutral cultivar Deltapine 61 (DPL61) and two photoperiod sensitive G. hirsutum accessions (T1107 and T1354). Node of first fruiting branch (NFB) was used to measure relative time of flowering. Different flowering time genetic patterns were observed in the two populations. Two QTLs were found across five scoring dates, accounting 28.5 (qNFB-c21-1) and 15.9% (qNFB-c25-1) of the phenotypic variation at the last scoring date in Pop. 1107 (DPL61 by T1107); whereas, one major QTL (qNFB-c25-1) can be detected across five scoring dates, explained 63.5% of the phenotypic variation at the last scoring date in Pop. 1354 (DPL61 by T1354). QTLs with minor effects appeared at various scoring date(s), indicating their roles in regulating flowering at a lower or higher node number. Genetic segregation analysis and QTL mapping results provide further information on the mechanisms of cotton photoperiodic sensitivity. Part of a Ph.D. dissertation by senior author submitted to the Department of Plant and Soil Sciences, Mississippi State University, December 2007. Contribution of USDA-ARS in cooperation with the Mississippi Agric. and Forestry Exp. Stn. Journal paper J. 11276 of Mississippi Agric. and Forestry Exp. Stn.  相似文献   

6.
Salt tolerance of rice (Oryza sativa L.) at the seed germination stage is one of the major determinants for the stable stand establishment in salinity soil. One population of recombinant inbred lines (RILs, F2:9), derived from a cross between a japonica rice landrace tolerant to salt stress and a sensitive indica rice variety, was used to determine the germination traits including imbibition rate and germination percentage under control (water) and salt stress (100 mM NaCl) for 10 days at 30 °C. The multiple interval mapping (MIM) were applied to conduct QTL for the traits. The results showed that seed germination was a quantitative trait controlled by several genes, and strongly affected by salt stress. A total of 16 QTLs were detected in this study, and each QTL could explain 4.6–43.7% of the total phenotypic variance. The expression of these QTLs might be developmentally regulated and growth stage-specific. In addition, only one digenic interaction was detected under salt stress, showing small effect on germination percentage with R2 2.7%. Among sixteen QTLs detected in this study, four were major QTLs with R2 > 30%, and some novel alleles of salt tolerance genes in rice. The results demonstrated that the japonica rice Jiucaiqing is a good source of gene(s) for salt tolerance and the major or minor QTLs identified could be used to improve the salt tolerance by marker-assisted selection (MAS) in rice.  相似文献   

7.
Stalk rot, also called as charcoal rot in India, caused by Macrophomina phaseolina, is an economically important, soil borne disease in major sorghum growing areas across the world. A population of F9 generation recombinant inbred lines (RILs), derived from IS22380 (susceptible) × E36-1 (resistant), along with parents were phenotyped in sick plots at two locations (Dharwad and Bijapur, Karnataka, India). A total of 85 polymorphic marker loci (62 nuclear and 4 genic SSRs, 19 RAPDs) was available for the construction of genetic map, spanning 650.3 cM in all the ten linkage groups. Analysis with QTL Cartographer (2.5b), adopting composite interval mapping method (LOD > 2.0) at both locations, revealed 5 QTLs at Dharwad and 4 QTLs at Bijapur locations for the component traits of charcoal rot disease resistance. QTLs for number of internodes crossed, length of infection and per cent lodging accounted for 31.83, 10.76 and 18.90 per cent at Dharwad location and 14.87, 10.47 and 26.44 per cent phenotypic variability at Bijapur location, respectively. The QTLs for number of internodes crossed by the rot, length of infection and percent lodging were common across two locations. These QTLs, consistent over environments for the component traits, are likely to assist in marker-assisted selection (MAS) for charcoal rot resistance in sorghum.  相似文献   

8.
The hybrid vigor typical of F1 cultivars is used to boost biomass production of sorghum (Sorghum bicolor (L.) Moench). The high dry-matter yielding F1 cultivar Kazetachi uniquely shows extremely late flowering and a long culm, and is greatly different from its parents. We investigated the genetic mechanisms underlying these phenotypes by quantitative trait locus (QTL) analysis of recombinant inbred lines derived from a male-fertile line and a restorer line and grown in 3 years. QTL analysis for six traits (days-to-heading, culm length, culm width, culm number, panicle length, panicle number) revealed that the unique phenotypes of the F1 plants were controlled by the genetic combination of 12 or more QTLs detected in at least 2 years. Two putative QTLs for days-to-heading (qDH1 on SBI-01 and qDH6 on SBI-06) would strongly affect the other phenotypes because of their co-localization with QTLs for other traits, as supported by significant phenotypic correlations. These QTLs would be useful for understanding the association of plant type with biomass production in sorghum.  相似文献   

9.
In cucumber, the genetic basis of traits under domestication and/or diversifying selection is not well understood. Here, we reported QTL mapping for flowering time and fruit size-related traits with segregating populations derived from a cultivated × wild cross. Phenotypic data of flowering time (FT), fruit size (FS), fruit number (FN) and fruit weight per plant (FW) were collected in multiple environments. QTL analysis identified 19 QTL for these traits. We found that the major-effect QTL FT1.1 played an important role in regulating flowering time in cultivated cucumber, whereas the minor-effect QTL FT6.3 contributed to photoperiod sensitive flowering time during domestication. Two novel consensus FS QTL, FS1.4 and FS2.3, seem to be the targets of selection during breeding for the US processing cucumber. All other FS QTL were co-localized with previously detected QTL using populations derived from cultivated cucumbers, suggesting that they were under selection during both initial domestication and subsequent improvement. Results from this study also suggested that the wild cucumber is a useful resource for capturing positive transgressive segregation and novel alleles that could be explored in cucumber breeding.  相似文献   

10.
Using the marker information of 275 F2 plants quantitative traits determining morphological and yield characters were studied analyzing F3progenies grown in four different experiments at three sites. The map constructed contains 113 markers including the major dwarfing gene Ddw1 with an average distance of about 10 cM between adjacent markers. Of the 21 QTLs detected ten were found to map on chromosome 5RL in the region of Ddw1. Beside the expected effects on plant height and peduncle length that are most probably due to the presence of the major dwarfing gene, additional effects on yield characters and flowering time were discovered in that region which may be caused by pleiotropic effects of Ddw1. An additional supposed gene cluster consisting of four QTLs controlling flowering time and yield components was discovered in the centromere region of chromosome 2R. Further loci are distributed on chromosomes 1R (1), 4R (1) 6R (3) and 7R (1). The map positions of the quantitative trait loci detected in rye are discussed in relation to major genes or QTLs determining agronomically important traits in other cereals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Flowering time is an important trait for the adaptation of wheat to its target environments. To identify chromosome regions associated with flowering time in wheat, a whole genome scan was conducted with five sets of field trial data on a recombinant inbred lines (RIL) population derived from the cross of spring wheat cultivars ‘Nanda 2419’ and ‘Wangshuibai’. The identified QTLs involved seven chromosomal regions, among which QFlt.nau-1B and QFlt.nau-2B were homoeologous to QFlt.nau-1D and QFlt.nau-2D, respectively. Nanda 2419, the earlier flowering parent, contributed early flowering alleles at five of these QTLs. QFlt.nau-1B and QFlt.nau-7B had the largest effects in all trials and were mapped to the Xwmc59.2Xbarc80 interval on chromosome 1BS and the Xgwm537Xgwm333 interval on 7BS. Most of the mapped QTL intervals were not coincident with known vernalization response or photoperiod sensitivity loci and QFlt.nau-1B seems to be an orthologue of EpsA m 1. Four pairs of loci showed significant interactions across environments in determining flowering time, all of which involved QFlt.nau-1B. These findings are of significance to wheat breeding programs.  相似文献   

12.
Two soybean recombinant inbred line populations, Jinpumkong 2 × SS2-2 (J × S) and Iksannamulkong × SS2-2 (I x S) showed population-specific quantitative trait loci (QTLs) for days to flowering (DF) and days to maturity (DM) and these were closely correlated within population. In the present study, we identified QTLs for six yield-related traits with simple sequence repeat markers, and biological correlations between flowering traits and yield-related traits. The yield-related traits included plant height (PH), node numbers of main stem (NNMS), pod numbers per plant (PNPP), seed numbers per pod (SNPP), 100-seed weight (SW), and seed yield per plant (SYPP). Eighteen QTLs for six yield-related traits were detected on nine chromosomes (Chrs), containing four QTLs for PH, two for NNMS, two for PNPP, three for SNPP, five for SW, and two for SYPP. Two highly significant QTLs for PH and NNMS were identified on Chr 6 (LG C2) in both populations where the major flowering gene, E1, and two DF and DM QTLs were located. One other PNPP QTL was also located on this region, explaining 12.9% of phenotypic variation. Other QTLs for yield-related traits showed population-specificity. Two significant SYPP QTLs potentially related with QTLs for SNPP and PNPP were found on the same loci of Chrs 8 (Satt390) and 10 (Sat_108). Also, highly significant positive phenotypic correlations (P < 0.01) were found between DF with PH, NNMS, PNPP, and SYPP in both populations, while flowering was negatively correlated with SNPP and SW in the J × S (P < 0.05) and I × S (P < 0.01) populations. Similar results were also shown between DM and yield-related traits, except for one SW. These QTLs identified may be useful for marker-assisted selection by soybean breeders.  相似文献   

13.
Faba bean (Vicia faba L.) is a grain legume primarily used for animal feed and human food grown in a range of environments, globally. Time of flowering in faba bean is critical for adaptation to specific environments and is controlled largely by factors such as ambient temperature and photoperiod. The aim of this study was to investigate the genetic control of flowering time and the responses of flowering time to ambient temperature and photoperiod in faba bean. A bi-parental recombinant inbred line population (Icarus × Ascot) was evaluated over three years in field trials and three different controlled environments with varying temperatures and photoperiods. QTL analysis identified eight regions of co-localised QTLs associated with days to flowering, thermal time to flowering and node of first flower; on Chr-I.A/III/V, Chr-I.B.3, Chr-III.1, Chr-III.2, Chr-V.1 and Chr-V.2. Two of the detected regions are common with previously detected QTLs, up to two more are possibly common and the remaining four appear to be novel. For the first time, the associations of these QTLs with ambient temperature and photoperiod response were described. Candidate genes for some of the QTLs were identified using the associations with ambient temperature and photoperiod response together with knowledge extended from other legumes that have a syntenic relationship with faba bean.  相似文献   

14.
玉米开花期性状的QTL及杂种优势位点定位   总被引:2,自引:0,他引:2  
开花期是玉米进化和适应过程中的重要性状,明确开花期杂种优势的遗传机制对培育适应不同生态区的优良玉米品种具有重要的意义。本研究利用以许178为受体,综3为供体构建的包含203个SSSL的单片段代换系群体及其与许178的测交群体,通过2年3个试点玉米开花期性状(散粉期、吐丝期和散粉至吐丝间隔)QTL和杂种优势位点(HL)分析,分别鉴定出40个开花期相关性状的QTL和37个开花期相关性状的HL。其中6个QTL和4个HL在3个地点被同时检测到。在所检测到的染色体区段中,11个区段同时包含调控开花期的QTL和HL。该研究为进一步解析玉米开花期遗传机制和开花期杂种优势的遗传机制提供了基础。  相似文献   

15.
Due to its critical importance in crop yield, the photoperiodic regulation of flowering time is considered an important trait in sorghum breeding programs. In this study, quantitative trait loci for flowering time were detected using an F2 population derived from a cross between Kikuchi Zairai, a late-flowering cultivar originating from Japan and SC112, an early-flowering cultivar originating from Ethiopia. F2 plants were grown with their parents under a natural day length and a 12 h day length. Two linkage maps were constructed using 213 simple sequence repeats markers. Nine quantitative trait loci controlling flowering time were identified in F2 plants grown under a natural day length, whereas 7 QTLs were identified under a 12 h day length. Five QTLs controlling flowering time were shared under both of the day length conditions.  相似文献   

16.
Multivariate analysis of traits determining adaptation in cultivated barley   总被引:6,自引:0,他引:6  
I. Karsai    K. Mészáros    L. Láng    P. M. Hayes  Z. Bedö   《Plant Breeding》2001,120(3):217-222
Thirty‐nine barley varieties of different origin, representing different growth types, were included in a series of experiments aimed at analysing the variability in vernalization response, photoperiod sensitivity and earliness per se and establishing the types of ecoclimatic adaptability using multivariate analysis. In the case of spring barley varieties there was no correlation between any of the three traits. For winter barleys, a negative correlation was found between photoperiod sensitivity and vernalization response and between photoperiod sensitivity and earliness per se. Vernalization response and earliness per se showed a positive correlation. Among the winter barley varieties large variations were apparent in photoperiod sensitivity, vernalization response and earliness per se, which resulted in a tremendous variation in flowering patterns and frost tolerance. Between the spring barley varieties only wider variations in photoperiod sensitivity were detected. Based on the cluster analysis, the 39 varieties could be separated into seven groups. The spring barley varieties were placed in two groups, and the winter barleys in five groups representing different adaptational types. Among these five groups two represented the two opposing extreme combinations of photoperiod sensitivity and vernalization response. The combination of large photoperiod sensitivity and no vernalization response resulted in better frost tolerance than did the combination of photoperiod insensitivity and large vernalization response.  相似文献   

17.
Summary Photoperiod response of flowering in common bean (Phaseolus vulgaris L.) is thought to be controlled by the genes Ppd and Hr. However, cultivars also vary in the degree that cooler temperatures reduces their sensitivity to photoperiod. To examine the inheritance of this temperature sensitivity, crosses of cvs. Gordo x de Celaya and Flor de Mayo × Rojo 70 were evaluated at two sites differing in mean temperature and using 12.5-h natural photoperiod or 18-h artificially extended photoperiod. Under 18-h photoperiod at the warmer site, Palmira, no plants of the parents or of the F2 populations flowered, confirming that the parents were sensitive to photoperiod. Under 12.5-h photoperiod at the cooler site, Popayan, the parents for each cross flowered at similar dates and no segregation for days to flower was observed. However, under 18-h photoperiod, de Celaya and Rojo 70 and the F1 populations did not flower within 100 days after planting, while the F2 and F3 populations showed segregation that was consistent with single gene inheritance, late flowering being dominant. Late flowering at Popayan under 18-h photoperiod indicates a lack of temperature sensitivity, so temperature insensitivity of the photoperiod response was dominant to sensitivity. The name Tip, for temperature insensitivity of photoperiod response, is proposed for this gene, with the recessive form of this gene conditioning earlier flowering at cooler temperatures with long daylengths. It is recognized that the observed segregation patterns could represent the effect of multiple alleles at the Ppd or Hr loci, and studies are proposed to test this possibility with molecular markers and recombinant inbred lines.  相似文献   

18.
Forage sorghum cultivars grown in India are susceptible to various foliar diseases, of which anthracnose, rust, zonate leaf spot, drechslera leaf blight and target leaf spot cause severe damage. We report here the quantitative trait loci (QTLs) conferring resistance to these foliar diseases. QTL analysis was undertaken using 168 F7 recombinant inbred lines (RILs) of a cross between a female parental line 296B (resistant) and a germplasm accession IS18551 (susceptible). RILs and parents were evaluated in replicated field trials in two environments. A total of twelve QTLs for five foliar diseases on three sorghum linkage groups (SBI-03, SBI-04 and SBI-06) were detected, accounting for 6.9–44.9% phenotypic variance. The morphological marker Plant color (Plcor) was associated with most of the QTL across years and locations. The QTL information generated in this study will aid in the transfer of foliar disease resistance into elite susceptible sorghum breeding lines through marker-assisted selection.  相似文献   

19.
Two genetic linkage maps based on doubled haploid (DH) and recombinant inbred lines (RILs) populations, derived from the same indica-japonica cross ‘Samgang × Nagdong’, were constructed to analyze the quantitative trait loci (QTLs) affecting agronomic traits in rice. The segregations of agronomic traits in RILs population showed larger variations than those in DH population. A total of 10 and 12 QTLs were identified on six chromosomes using DH population and seven chromosomes using RILs population, respectively. Three stable QTLs including pl9.1, ph1.1, and gwp11.1 were detected through different years. The percentages of phenotypic variation explained by individual QTLs ranged from 8 to 18% in the DH population and 9 to 33% in the RILs population. Twenty-three epistatic QTLs were identified in the DH population, while 21 epistatic QTLs were detected in the RILs population. Epistatic interactions played an important role in controlling the agronomic traits genetically. Four significant main-effect QTLs were involved in the digenic interactions. Significant interactions between QTLs and environments (QE) were identified in two populations. The QTLs affecting grain weight per panicle (GWP) were more sensitive to the environmental changes. The comparison and QTLs analysis between two populations across different years should help rice breeders to comprehend the genetic mechanisms of quantitative traits and improve breeding programs in marker-assisted selection (MAS).  相似文献   

20.
Photoperiod sensitivity is an important trait related to crop adaptation and ecological breeding in common buckwheat (Fagopyrum esculentum Moench). Although photoperiod sensitivity in this species is thought to be controlled by quantitative trait loci (QTLs), no genes or regions related to photoperiod sensitivity had been identified until now. Here, we identified QTLs controlling photoperiod sensitivity by QTL analysis in a segregating F4 population (n = 100) derived from a cross of two autogamous lines, 02AL113(Kyukei SC2)LH.self and C0408-0 RP. The F4 progenies were genotyped with three markers for photoperiod-sensitivity candidate genes, which were identified based on homology to photoperiod-sensitivity genes in Arabidopsis and 76 expressed sequence tag markers. Among the three photoperiod-sensitivity candidate genes (FeCCA1, FeELF3 and FeCOL3) identified in common buckwheat, FeELF3 was associated with photoperiod sensitivity. Two EST regions, Fest_L0606_4 and Fest_L0337_6, were associated with photoperiod sensitivity and explained 20.0% and 14.2% of the phenotypic variation, respectively. For both EST regions, the allele from 02AL113(Kyukei SC2)LH.self led to early flowering. An epistatic interaction was also confirmed between Fest_L0606_4 and Fest_L0337_6. These results demonstrate that photoperiod sensitivity in common buckwheat is controlled by a pathway consisting of photoperiod-sensitivity candidate genes as well as multiple gene action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号