首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the effect of continuous organic material (OM) application on soil humic acids, the amount and chemical characteristics of humic acids in various types of soils (n = 10) were compared between plots treated with farmyard manure (FYM) or rice straw compost (RSC) plus chemical fertilizer (CF) and plots treated with CF alone. The degree of humification (degree of darkening), molecular size distribution and 13C cross polarization/magic angle spinning nuclear magnetic resonance spectra of humic acids from CF‐treated soils showed wide variation among the soils. Humic acid content was generally larger in OM + CF soils than in corresponding CF soils, and the stable C isotopic ratio suggested partial replacement of indigenous humic acids with OM‐derived ones even where no apparent increase in humic acid content was observed. The rate of OM application and the indigenous humic acid content were related positively and negatively, respectively, to the apparent accumulation rate of humic acids among soils. The degree of humification of humic acids was generally smaller in OM + CF soils than in CF soils. Humic acids extracted from FYM and RSC exhibited chemical characteristics typical of humic acids having a smaller degree of humification, which suggested the contribution of OM‐derived humic acids to the differences between OM + CF and CF soil humic acids, such as larger average molecular sizes and smaller and larger proportions of aromatic C and O‐alkyl C, respectively, relative to total C in the OM + CF soil humic acids. Little change was observed in the chemical characteristics of humic acids when the degree of humification of indigenous humic acids was small. The effect of OM application on the chemical characteristics of humic acids was most conspicuous in soils containing humic acids having an intermediate degree of humification, possibly resulting from the combination of accelerated degradation of indigenous humic acids and the accumulation of OM‐derived humic acids.  相似文献   

2.
Some recalcitrant organic wastes, which contain a large proportion of lignin or cellulose, are not changed much by composting, and thus the effectiveness of the compost as fertilizer is usua.lly low. In this study, incubation of unripe compost with ligno-cellulolytic microorganisms —Trichoderma viride orBacillus spp. — was investigated to increase the degree of humification of the organic matter present, and improve ils quality as a soil amendment. High-performance liquid chromatography (HPLC) analyses together with humification indices and electrofocusing patterns were used to monitor the evolution of the humic substances during the incubation process. Plant growth effects exerted by Azotobacter chroococcum on lettuce plants growing on the previously incubated compost were affected by the length of incubation and by changes in the composition of humic substances. Higher organic matter content and better humification seem to be important factors for predictingA. chroococcum hebaviour in the rhizosphere.  相似文献   

3.
The fate of organic matter during composting is poorly understood. Therefore, we analysed composts of sewage sludges and green wastes (44 samples representative of 11 stages of biodegradation) by conventional chemical methods: pH, humic (HA) and fulvic acid (FA) content, C, N and organic matter (OM) content, and by 13C CPMAS NMR to assess the decomposition process of the organic matter. Chemical changes clearly occurred in two phases: first, decomposition of OM during the first 2 months was characterized by decreased C/N ratios, OM content and increased pH; and second, a humification process with increased HA/FA ratios. NMR spectrum changes confirmed this pattern, with an increase in aromaticity and a decrease in alkyl C. A decrease of syringyl to guaiacyl ratio (S/G), a sign of lignin transformation, also indicated humification during composting. NMR spectroscopic properties of composts were also studied by means of principal components analysis (PCA) and revealed changes according to the degree of compost maturation. The factorial map presents a chronological distribution of composts on the two first principal components. The influences of eight chemical factors on the PCA ordination of composts as monitored by their evolution by NMR were also studied by multivariate analyses. PCA clearly indicated two phases: the rapid decomposition of organic matter followed by the formation of humic‐like substances. The first phase, that is ‘new’ composts, was strongly correlated with OM contents, pH and C/N ratios whereas the second phase, corresponding to ‘old’ compost, was correlated with pH, HA content and HA/FA ratio. These results confirm that knowledge of the formation of humic substances is indispensable to suitable monitoring of the composting process.  相似文献   

4.
The Stability of Sandy Soils and its Dependence on Humification Degree and Content of Organic Matter The influence of organic matter on the strength parameters cohesion and friction angle was investigated with mixtures of a fine sand and 0-8% peat of different humification degrees - determined by using a thermobalance - and under different soil water suction. The results show that the strength parameters cohesion and friction angle increase with increasing organic matter content, but the increase is greater with lower humification degree. Especially if the organic matter content is lower than 5%, cohesion and friction angle depend on soil water suction and have a maximum in the range of about 50 hPa soil water suction. A simplified model based on the capillary theory for the calculation of cohesion was proposed to explain the influence of content and humification degree of organic matter on cohesion. One possible reason for the lower cohesion with higher humification degree is its lower wettability. The dependence of friction angle on soil water suction and humification degree of organic matter needs further examinations.  相似文献   

5.
Although condensed aromatic components are considered to be one of the major structural units of soil humic acids (HAs) and to be responsible for the dark colour of HAs, their amount and composition remain largely unknown. In ruthenium tetroxide oxidation (RTO), condensed aromatic components are detectable as their degradation products, mainly benzenepolycarboxylic acids (BPCAs). We applied this technique to soil HAs with various degrees of humification (darkening). The yields of water‐ and dichloromethane‐soluble products from HAs upon RTO after methylation ranged from 210 to 430 mg g−1 and 10–40 mg g−1, respectively. Eight kinds of BPCAs with two to six carboxyl groups, and seven kinds of BPCAs with additional side chains (tentative assignment) were obtained as methylated counterparts. The yield of each BPCA and the sum of the yields of BPCAs (12–85 mg g−1 HAs) increased with increasing degree of humification and aromatic C content. The compositions of BPCAs indicated that the degree of condensation was greater in the HAs with greater degrees of humification. The sum of the yields of aliphatic compounds ranged from 0.1 to 6.5 mg g−1, and decreased with increasing degree of humification. The C12 to C30 monocarboxylic acid methyl esters accounted for > 56% of the aliphatic compounds assigned, which may be present mainly as end alkyl groups in the HA molecules. We also obtained the methylated counterparts of C14 to C24 dicarboxylic acids; these were possibly derived from polymethylene bridges between adjacent aromatic rings.  相似文献   

6.
Some recalcitrant organic wastes, which contain a large proportion of lignin or cellulose, are not changed much by composting, and thus the effectiveness of the compost as fertilizer is usua.lly low. In this study, incubation of unripe compost with ligno-cellulolytic microorganisms —Trichoderma viride orBacillus spp. — was investigated to increase the degree of humification of the organic matter present, and improve ils quality as a soil amendment. High-performance liquid chromatography (HPLC) analyses together with humification indices and electrofocusing patterns were used to monitor the evolution of the humic substances during the incubation process. Plant growth effects exerted by Azotobacter chroococcum on lettuce plants growing on the previously incubated compost were affected by the length of incubation and by changes in the composition of humic substances. Higher organic matter content and better humification seem to be important factors for predictingA. chroococcum hebaviour in the rhizosphere.  相似文献   

7.
In the previous reports1)2), we published the significant relationship between methoxyl content and other properties of humus. In order to prove that methoxyl content decreased with the progress of humification and that this amount might be used as an index of the degree of humification, we investigated the deformation of humic acid by acid treatment.  相似文献   

8.
The goal of this experiment was to investigate the effect of aeration quantity (0, 11, 33, 55, and 77 L·min?1) on the growth of aerated compost extracts from a pig manure–straw compost. When the aeration quantity was 11 L·min?1, lettuce root growth enhancement of normalized compost extracts was at a maximum. As the aeration quantity increased, the total water-soluble organic carbon (TWSOC), total nitrogen (TN), total phosphorus (TP), humic carbon (humic C) content, and humification degree of compost extracts improved gradually. No differences in functional group structure were found among the aerated compost extracts. The positive root growth could be attributed to physicochemical and spectral characteristics, such as TN content, humic substances content, humification, aromaticity, and the low content of carboxyl groups. In conclusion, the aeration quantity of 11 L·min?1 was suitable for the production of aerated compost extracts, which obtained much greater promotion growth.  相似文献   

9.
Microbial communities are responsible for soil organic matter cycling and thus for maintaining soil fertility. A typical Orthic Luvisol was freed from organic carbon by thermal destruction at 600°C. Then the degradation and humification of 14C‐labelled maize straw by defined microbial communities was analysed. To study the role of microbial diversity on the humification of plant material, microcosms containing sterilized soil were inoculated with a natural microbial community or with microbial consortia consisting of bacterial and fungal soil isolates. Within 6 weeks, 41 ± 4% of applied 14C‐labelled maize straw was mineralized in the soil microcosms containing complex communities derived from a soil suspension, whilst the most efficient communities composed of soil isolates mineralized less than 35%. The humification products were analysed by solution state 13C‐NMR‐spectroscopy and gel permeation chromatography (GPC). The analyses of humic acids extracts by solution state 13C‐NMR‐spectroscopy revealed no difference in the development of typical chemical functional groups for humic substances during incubation. However, the increase in specific molecular size fractions of the extracted humic acids occurred only after inoculation with complex communities, but not with defined isolates. While it seems to be true that redundancy in soil microbial communities contributes to the resilience of soils, specific soil functions may no longer be performed if a microbial community is harshly affected in its diversity or growth conditions.  相似文献   

10.
Norfloxacin (NOR), an antibiotic widely used in livestock and poultry production, has become ubiquitous in the aquatic and terrestrial ecosystems as a result of veterinary excretion of the parent compound or its active metabolites. The sorption of NOR onto humic acid (HA) may influence the fate of NOR in the environment. In the present study, HA was extracted from sewage sludge in different composting stages of days 0, 10, 30, and 70 to investigate the sorption of NOR onto HA as affected by the humification degree of HA. The results of elemental and Fourier transform infrared (FTIR) spectrum analyses showed that the contents of aromatic and carboxylic groups in HA increased with composting time, indicating an increase of humification degree. The result of sorption experiments demonstrated that the HA had a high sorption capacity for NOR with strong nonlinearity. A two-stage sorption was observed in the sorption process with an equilibration time of 48 h. Both the Freundlich model (Adj. R2 range 0.988–0.994) and Langmuir model (Adj. R 2 range 0.917–0.928) fitted well with all sorption isotherms of the HA samples of different humification degrees. Moreover, the increase of sorption distribution coefficient (K d ) value with composting time indicated that the sorption affinity of HA for NOR increased with increasing humification degree of HA. The major sorption mechanism was the interaction between NOR and rich aromatic moieties and carboxylic group in the HA.  相似文献   

11.
The aims of this work were: i) to evaluate, during a composting process, some parameters in two contrasting raw materials: one a ligneous material (C1) and the other (C2) a mixture of horse and poultry manure with a low straw percentage and ii) to compare results from microbiological and chemical analyses of both composting material during the process. Total carbon, total nitrogen, C: N ratio, ash, organic matter, organic matter destroyed, CEC, soluble organic carbon, soluble ammonium and nitrate, ammonium: nitrate ratio and respiration rate were evaluated during 18 weeks. C1 material showed a lower rate of organic matter mineralization probably due to the high proportion of ligneous material. This material reached a greater CEC during the experiment. Increase in CEC during composting is due to conversion of the remaining organic material into humic substances. These results would imply that C1 presented a greater humification level and consequently, a better quality. On the other hand, the greater decrease in soluble organic carbon and NH4+-N values in C2 is in accordance with greater organic matter mineralization. A high decrease in soluble fractions, especially the more degradable ones (water soluble components) indicates a high mineralization of the organic matter during composting and a lower humification level. According to the data obtained in our experiment, some parameters such as CEC, soluble organic carbon and soluble NH4+-N seem to achieve the stability level for both studied materials, while those parameters or indices such as C: N ratio, NH4+-N: NO3?-N ratio indicated stability/maturity only in C2 material during the experimental time.  相似文献   

12.
Biological [dynamic respiration index (DRI); chemical humification indexes: humification index (HI), degree of humification (DH) and humification rate (HR); and thermoanalytical (thermostability index, R1 and a labile fraction)] indexes were used to assess compost stability of 15 end products. By use of these three techniques independent assessment of compost stability was made possible. Evidence of unstable materials was found where labile, easily biodegradable, and non-humified organic fractions were present. The DRI was used as a reference index for biological stability, and no significant correlation was observed between DRI and the humification indices (HI, DH, HR) and the thermogravimetry index (R1). On the other hand, significant correlation was observed for DRI vs. non-humified carbon (NHC), which was determined using the chemical method and the labile fraction determined by thermogravimetry, as well as for NHC vs. “labile fraction”. These fractions represent labile, easily biodegradable, and non-humified organic matter. Significant correlations were also observed between the three above mentioned measurements and TEC, suggesting that this fraction is mainly formed of the easily degradable organic fraction. These results suggest that the integrated use of biological, chemical, and thermoanalytical methods could represent a useful tool in differentiating stabilized composts from non-stabilized ones, and it could provide more reliable information for both managerial and sanitary health aspects involved in good agricultural practice.  相似文献   

13.
To characterize the nature of humus in paddy soils, a comparison was made between the properties of humus in paddy soils and those in adjacent unflooded arable soils.

Rice cultivation generally brought about a considerable increase in organic matter and in the PQ-value, with the exception of Andosol-paddy soils in which organic matter tended to decrease somewhat and the PQ-value remained virtually unchanged. The humification degree of humic acid as judged from Δ log k and RF values was generally lowered by rice cultivation except in the case of Yellow soil-paddy soil in which humic acid was originally low in the degree of humification.

The accumulation of poorly humified humic acid may be a characteristic feature common to all paddy soils. These changes by rice cultivation are observed only in the upper part of the profiles, and seem to be associated with seasonally flooded conditions ot paddy soils. Iron oxides accumulated in subsurface soil have virtually no effect on the properties of humus.  相似文献   

14.
13C标记技术在土壤和植物营养研究中的应用   总被引:9,自引:1,他引:8  
过去研究有机物在土壤中的周转通常采用14C标记技术 ,但由于人们对其放射性的关注 ,进入 80年代以来研究者趋于使用稳定性同位素13C标记技术。虽然13C标记技术相对来说还较年轻 ,但从已有有限的研究资料来看其优越性已经显示出来。一是在一定的条件下可以利用自然丰度分异较大的天然材料作为标记材料 ,既可以省去标记的时间和费用 ,又可以做到真正的原位研究 ;二是利用13C和15N加富标记技术 ,结合核磁共振测定 ,不仅可以研究有机物分解的动态变化 ,还可以追踪有机物在周转过程中C、N组分化学结构的变化 ,能为揭示土壤养分循环和腐殖质形成机理提供更多的信息。本文根据已收集到的部分资料 ,对13C标记技术在土壤和植物营养中的应用情况作一简要综述 ,并在此基础上讨论了13C加富标记技术在研究植物光合作用、光合产物的去向以及标记秸杆在土壤中的分解等方面的应用及其注意点 ,旨在能为国内开展这方面的工作提供十分有用的参考  相似文献   

15.
Eleven samples of terrestrial humus from different vegetational backgrounds were examined with solid-state 13C NMR using cross-polarization and magic-angle spinning (CP-MAS). In addition, all the samples were run with a dipolar dephasing pulse sequence for non-quarternary carbon suppression (NQS). The humus samples all appeared to contain small amounts of aromatic substances and larger amounts of aliphatic compounds. Most of the samples contained considerable amounts of hydroxyl groups and acetals, which originate mainly from carbohydrates. No correlations were found between vegetational background and chemical structure.  相似文献   

16.
In a long-term field experiment started in 1956 on a clay loam soil at Uppsala, Sweden, changes of organic carbon in the topsoils receiving various organic amendments at the rate of 200 kg C ha'1 year'1 were studied to determine soil organic matter characteristics, variations of δ13C in the soil and to estimate a carbon balance. Fallow and mineral fertilizer without N led to a significant decrease of soil organic matter (SOM) in the soil, green manure maintained the SOM content, and animal manure and peat increased the SOM content significantly. The stable portion of the added organic materials after 37 years of continuous input was 12·8, 27·3, and 56·7%, for green manure, animal manure and peat, respectively. This was reflected by half-lives of organic carbon originating from the amendments between 3·0 (green manure) and 14·6 years (peat). The isotopic composition of SOM changed both due to mineralization (continuous fallow) and the addition of amendments is topically different from soil humus (green manure, animal manure). The isotopic effect was used to calculate the percentage of carbon derived from animal manure present for the year 1993. This value (55·4%) was larger than that derived from the carbon balance, which indicated a priming effect of the animal manure on the initial soil humus. Mineralization of microbially available organic substances led to an increase in the degree of humification on plots not receiving organic amendments. Adding peat and animal manure resulted in a decrease of the humification index due to the continuous input of poorly humified material. The extinction ratio (E4/E6) and ratio of fulvic acid to humic acid changed considerably in the peat treated plots. Fourier transform infrared (FTIR)-measurements of the extracts showed that peat characteristics can be detected in peat treated soils. The other amendments did not alter the characteristics of the extractable humic substances.  相似文献   

17.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

18.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   

19.
The transformation of the organic matter in the course of corn residues humification in an agrogray soil and an agrochernozem was studied in long-term experiments using the method of solid-phase 13C-nuclear magnetic resonance spectroscopy. The humification of the plant residues was found to be accompanied by a decrease in the content of the O-alkyl fragments comprising polysaccharides and polypeptides, an increase in the unsubstituted alkyds content, and by the relative accumulation of aromatic fragments and carboxyl groups. The most strongly transformed pool of the organic matter, as compared to the initial plant residues, was the humic acids with their maximal content of aromatic and carboxyl functional groups and the minimal content of O-alkyls. The chemically stable aromatic fragments were concentrated not only in the pool of humic acids; their content was 64–89% of the pool of the aromatic fragments identified in the soil organic matter. Therefore, to assess the stable pool, the distribution of the functional groups is necessary to be analyzed not only in the humic acids but also in the whole soil organic matter.  相似文献   

20.

Purpose  

Chemometric methods were used to analyze chemical/spectroscopic data of fulvic acid (FA) isolated from soils in Hetao Irrigation District of China and to indicate humification degree of soil organic matter and assess soil salinization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号