首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A method using Raman spectroscopy was recently developed for the determination of the degree of acetylation in modified wheat starch. In this article, we show that the method can be generalized to a wide range of starches of different botanical origin and amylose content. Calibration sets were used to develop regression equations for 11 types of acetylated starches, including cereal (rice, maize, wheat) and noncereal (potato and sweetpotato) sources. The calibration lines were then used to predict the level of acetylation of starch samples with unknown level of acetylation using their Raman spectra. In each case, R2 > 0.98 for linear regression of Raman vs. titrimetric determination of acetylation. The Raman-based calibration curves allow fast and nondestructive determination of the degree of acetylation for different types of starches.  相似文献   

2.
An analytical method using Raman spectroscopy was developed for the determination of amylose concentration in maize starches. FT-Raman spectra of four maize starches with amylose content varying from 3.3 to 66% were obtained. A Raman band at ≈1657 cm-1 correlated linearly with amylose concentration in the four maize starches, and a calibration curve for Raman band intensity versus amylose content was developed. The linear correlation of the I1657/I900 integrated areas with amylose content was r = 0.997. The Raman-based calibration curve allows fast and nondestructive determination of the amylose content in maize starches with minimal sample preparation.  相似文献   

3.
Waxy maize starch was chemically modified to varying benzylation levels and the degree of benzylation substitution was measured using a nuclear magnetic resonance (NMR) method. Fourier Transform (FT) Raman spectra of the chemically modified starches were acquired and aromatic C=C stretch Raman bands characteristic of the benzylation modification were used to derive a calibration curve for the Raman intensity of these marker bands versus the degree of benzylation substitution. The best‐fit linear regression to the plotted data gave a linear correlation coefficient of 0.997. The FT‐Raman technique provides a fast, nondestructive method for the measurement of the degree of benzylation substitution of modified waxy maize starches and should be applicable for use with benzylated starches from other botanical sources.  相似文献   

4.
In this paper we report the application of NMR spectroscopy and Raman spectroscopy to determine the degree of maleate substitution in maleinated starches. Five kinds of maleinated starches were investigated and calibration sets were constructed to derive linear regression equations that may be used to predict the degree of maleate substitution for starch samples with unknown amounts of chemical modification. The calibration sets reported have very high linearity (r > 0.99) for both the NMR and Raman methods. The NMR and Raman calibration sets allow fast and nondestructive measurement of the degree of maleate substitution for different starches with little need of sample preparation.  相似文献   

5.
The development of genetically modified starches has relied on the use of maize (Zea mays L.) endosperm mutant alleles that alter starch structural and physical properties. A rapid method for predicting amylose content would benefit breeders and commercial handlers of specialty starch corn. For this reason, a study was conducted to investigate the use of near-infrared transmittance spectroscopy (NITS) as a rapid and nondestructive technique for predicting grain amylose content (GAC) in maize. Many single- and double-mutant inbreds and hybrids were used to create a calibration set for the development of a predictive model using partial least squares analysis. A validation set composed of similar genetic material was used to test the prediction model. A coefficient of correlation (r) of 0.94 was observed between GAC values determined colorimetrically and those predicted by NITS; however, the predicted values were associated with a large standard error of prediction (SEP = 3.5). Overall, NITS discriminated well among high amylose and waxy genotypes. The NITS calibration was used to determine levels of contamination by normal kernels in waxy and high-amylose (Amy VII) grain samples intended for wet milling. In both cases, a 5% contaminated sample could be detected from pure samples according to predicted NITS values.  相似文献   

6.
《Cereal Chemistry》2017,94(2):262-269
The molecular size distribution of maize starch nanoparticles (SNP) prepared by acid hydrolysis (3.16M H2SO4) and their amylase‐resistant counterparts, before and after debranching, was investigated. The weight average molecular weight (Mw) and linear chain length distribution were determined by high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography (HPAEC), respectively. The objective was to understand the role of amylose involvement in the formation of SNP showing different crystalline structures (A‐ and B‐types). The HPSEC profiles of SNP before debranching from waxy, normal, and high‐amylose maize starches showed broad monomodal peaks. Debranched SNP from waxy maize eluted in a single narrow peak, whereas those from nonwaxy starches showed a multimodal distribution. Similar trends were also observed for the chain length distribution patterns, for which the longest detectable chains (degree of polymerization [DP] 31) in waxy maize were significantly lower than those of nonwaxy maize starches (DP 55–59). This indicated the potential amylose involvement in the SNP structure of normal and high‐amylose starches. Further evidence of amylose involvement was ascribed to the resistance of SNP toward amylolysis (Hylon VII > Hylon V > normal > waxy). The amylase‐resistant residues of SNP from high‐amylose maize starches were composed of both low Mw linear and branched chains.  相似文献   

7.
Maize starches extracted from selected maize cultivars with 0.2–60.8% amylose contents were used to produce bihon-type noodles. Starch dough using a pregelatinized starch binder was prepared and extruded through a laboratory-scale extruder simulating the traditional process of making bihon in the Philippines. The normal maize starches with amylose content of ≈28% were successfully used for bihon-type noodle production, but waxy maize starches with 0.2–3.8% amylose content and high-amylose maize starches with 40.0–60.8% amylose content failed to produce bihon-type noodles. Viscoamylograph profile parameters and swelling volume are significantly correlated to amylose content of maize starch samples evaluated. These physicochemical properties may be used to indicate that the starch samples at normal amylose levels may be used for bihon-type noodles. Starch noodles produced in the laboratory were not significantly different in terms of either cooking quality or textural properties from two commercially produced maize noodle samples, except for adhesiveness. The laboratory process and fabricated extruder can be used to produce bihon-type noodles.  相似文献   

8.
Physicochemical properties of starches from eight coix (Coix lachrymajobi L.) accessions were investigated. There was considerable variation in most measured traits, generally corresponding to the separation into waxy and normal amylose types. The amylose contents of five normal coix ranged from 15.9 to 25.8%, and those of three waxy coix were 0.7–1.1%. Swelling power of waxy coix starches varied between 28.6 and 41.0 g/g, generally higher than waxy maize. Normal coix starches had significantly higher gelatinization peak temperature (Tp) than the normal maize, 71.9–75.5°C. The Tp of waxy coix starches was 71.1–71.4°C, similar to waxy maize. Rapid Visco-Analyser (RVA) pasting profiles of normal coix showed little variation and closely matched the normal maize starch profile. Pasting profiles of waxy coix showed more variation and had lower peak viscosities than waxy maize starch. Waxy coix starches formed very weak gels, while the gel hardness of normal coix starches was 11.4–31.1 g. Amylose content was the main factor controlling differences in starch properties of the coix starches.  相似文献   

9.
To determine the rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents in a starch sample, the addition of amyloglucosidase is often used to convert hydrolyzates from α-amylase digestion to glucose. The objectives of this study were to investigate the exact role of amyloglucosidase in determining the digestibility of starch and to understand the mechanism of enzymatic actions on starch granules. Four maize starches differing in amylose content were examined: waxy maize (0.5% amylose), normal maize (≈27% amylose), and two high-amylose starches (≈57 and ≈71% amylose). Notably, without amyloglucosidase addition, the RS content increased from 4.3 to 74.3% for waxy maize starch, 29.7 to 76.5% for normal maize starch, 65.8 to 88.0% for starch with 57% amylose, and 68.2 to 90.4% for the starch with 71% amylose. In the method without α-amylase addition, less RS was produced than without added amyloglucosidase, except in maize at 71% amylose content. Scanning electron microscopy (SEM) revealed the digestive patterns of pinholes with α-amylase and burrowing with amyloglucosidase as well as the degree of digestion between samples. To understand the roles of amyloglucosidase and α-amylase in the in vitro test, multiple analytical techniques including gel permeation chromatography, SEM, synchrotron wide-angle X-ray diffraction, and small-angle X-ray scattering were used to determine the molecular and crystalline structure before and after digestion. Amyloglucosidase has a significant impact on the SDS and RS contents of granular maize starches.  相似文献   

10.
Thermal decomposition of corn starches with different amylose to amylopectin ratios (0:100 waxy, 23:77 maize, 50:50 Gelose 50, 80:20 Gelose 80) were studied by thermogravimetric analysis (TGA) in an open system and differential scanning calorimetry (DSC) in a sealed system using stainless steel high‐pressure pans with varying water content (9–75%). The initial water content did not affect the decomposition temperature in the open system because all water evaporated from samples before reaching the decomposition temperature. The sequence of decomposition temperature of different starches is waxy > maize > G50 > G80 in an open system. The moisture content in starch remains constant during the degradation process in a sealed system. Two decomposition temperatures were observed in the sealed system: the first at lower temperature represents long chain scission and the second at higher temperature involves decomposition of the glucose ring. The sequence of the first degradation is waxy > maize > G50 > G80. There is no observable difference of the second degradation for the samples containing different amylose to amylopectin ratios. The higher the moisture content, the lower the second decomposition temperature. Decomposition of glucose was used to confirm the mechanisms proposed for the starch degradation.  相似文献   

11.
We studied the effect of amylose content on the gelatinization, retrogradation, and pasting properties of starch using wheat starches differing in amylose content. Starches were isolated from waxy and nonwaxy wheat and reciprocal F1 seeds by crossing waxy and nonwaxy wheat. Mixing waxy and nonwaxy wheat starch produced a mixed starch with the same amylose content as F1 seeds for comparison. The amylose content of F1 seeds ranged between waxy and nonwaxy wheat. Nonwaxy‐waxy wheat had a higher amylose content than waxy‐nonwaxy wheat. Endothermic enthalpy and final gelatinization temperature measured by differential scanning calorimetry correlated negatively with amylose content. Gelatinization onset and peak temperature clearly differed between F1 and mixed starches with the same amylose content as F1 starches. Enthalpy for melting recrystallized starches correlated negatively with amylose content. Rapid Visco Analyser measurement showed that F1 starches had a higher peak viscosity than waxy and nonwaxy wheat starches. Mixed starches showed characteristic profiles with two low peaks. Setback and final viscosity correlated highly with amylose content. Some of gelatinization and pasting properties differed between F1 starches and mixed starches.  相似文献   

12.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

13.
Starch nanoparticles (SNP) from maize starches of varying amylose content (0–71%) were prepared by acid hydrolysis (3.16M H2SO4, at 40°C up to 6 days) followed by repeated water washings. During the washing cycles, nonwaxy starches (normal, Hylon V, and Hylon VII) had suspended particles in the water washings, which were not evident in waxy starch. Microscopic examination revealed the presence of SNP in the “cloudy supernatants” of nonwaxy starches and in the “final washed residue” of waxy maize. The objective of this study was to collect SNP fractions accordingly and determine whether variation in the native starch amylose content would influence the yield, morphology, and crystallinity of the SNP. In nonwaxy starches, the yield of SNP increased up to 26.6% with hydrolysis time and was proportional to the amylose content. Morphology of SNP differed with starch type: flat/elliptical (500 nm) in waxy, oval/irregular (50–200 nm) in normal, oval/round (40–50 nm) in Hylon V, and square/polygonal (50–100 nm) in Hylon VII. X‐ray diffraction confirmed the presence of A‐type crystals in SNP from all starch types and a crystalline transformation from B‐ to A‐type in Hylon starches. The relative crystallinity of SNP was higher than their native starch counterparts.  相似文献   

14.
It has long been recognized that limitations exist in the analytical methodology for amylose determination. This study was conducted to evaluate various amylose determination methods. Purified amylose and amylopectin fractions were obtained from corn, rice, wheat, and potato and then mixed in proportion to make 10, 20, 30, 50, and 80% amylose content starch samples for each source. These samples, considered amylose standards, were analyzed using differential scanning calorimetry (DSC), high-performance size-exclusion chromatography (HPSEC), and iodine binding procedures to generate standard curves for each of the methods. A single DSC standard equation for cereal starches was developed. The standard curve of potato starch was significantly different. Amylose standard curves prepared using the iodine binding method were also similar for the cereal starches, but different for potato starch. An iodine binding procedure using wavelengths at 620 nm and 510 nm increased the precision of the method. When HPSEC was used to determine % amylose, calculations based on dividing the injected starch mass by amylose peak mass, rather than calculations based on the apparent amylose/amylopectin ratio, decreased the inaccuracies associated with sample dispersion and made the generation of a cereal amylose standard curve possible. Amylose contents of pure starch, starch mixtures from different sources with different amylose ranges, and tortillas were measured using DSC, HPSEC, iodine binding, and the Megazyme amylose/amylopectin kit. All the methods were reproducible (±3.0%). Amylose contents measured by these methods were significantly different (P < 0.05). Amylose measurements using iodine binding, DSC, and Megazyme procedures were highly correlated (correlation coefficient >0.95). DSC and traditional iodine binding procedures likely overestimated true amylose contents as residual butanol in the amylose standards caused interference. The modified two-wavelength iodine binding procedure seemed to be the most precise and generally applicable method. Each amylose determination method has its benefits and limitations.  相似文献   

15.
An automated single kernel near‐infrared (NIR) sorting system was used to separate single wheat (Triticum aestivum L.) kernels with amylose‐free (waxy) starch from reduced‐amylose (partial waxy) or wild‐type wheat kernels. Waxy kernels of hexaploid wheat are null for the granule‐bound starch synthase alleles at all three Wx gene loci; partial waxy kernels have at least one null and one functional allele. Wild‐type kernels have three functional alleles. Our results demonstrate that automated single kernel NIR technology can be used to select waxy kernels from segregating breeding lines or to purify advanced breeding lines for the low‐amylose kernel trait. Calibrations based on either amylose content or the waxy trait performed similarly. Also, a calibration developed using the amylose content of waxy, partial waxy, and wild‐type durum (T. turgidum L. var durum) wheat enabled adequate sorting for hard red winter and hard red spring wheat with no modifications. Regression coefficients indicated that absorption by starch in the NIR region contributed to the classification models. Single kernel NIR technology offers significant benefits to breeding programs that are developing wheat with amylose‐free starches.  相似文献   

16.
Structures and physicochemical properties of six wild rice starches   总被引:2,自引:0,他引:2  
Starches from six wild rice cultivars were studied for their chemical structures and physicochemical properties and compared with a long-grain rice starch. The six wild rice starches were similar in morphological appearance, X-ray diffraction patterns, swelling power, and water solubility index but different in amylose content, beta-amylolysis limit, branch chain length distribution, thermal properties, and pasting properties. The structure of the wild rice amylopectins was close to that of waxy rice amylopectin with more branching and a larger proportion of short branch chains of degree of polymerization 6-12 as compared with that of amylopectin from rice starch with a similar amylose content. The differences in branch chain length distribution of amylopectin and amylose content were assumed to contribute to the differences in physicochemical properties among the six wild rice starches as well as to the differences between the wild rice starches and the rice starch.  相似文献   

17.
Structures and properties of starches isolated from different botanical sources were investigated. Apparent and absolute amylose contents of starches were determined by measuring the iodine affinity of defatted whole starch and of fractionated and purified amylopectin. Branch chain-length distributions of amylopectins were analyzed quantitatively using a high-performance anion-exchange chromatography system equipped with a postcolumn enzyme reactor and a pulsed amperometric detector. Thermal and pasting properties were measured using differential scanning calorimetry and a rapid viscoanalyzer, respectively. Absolute amylose contents of most of the starches studied were lower than their apparent amylose contents. This difference correlated with the number of very long branch chains of amylopectin. Studies of amylopectin structures showed that each starch had a distinct branch chain-length distribution profile. Average degrees of polymerization (dp) of amylopectin branch chain length ranged from 18.8 for waxy rice to 30.7 for high-amylose maize VII. Compared with X-ray A-type starches, B-type starches had longer chains. A shoulder of dp 18–21 (chain length of 6.3–7.4 nm) was found in many starches; the chain length of 6.3–7.4 nm was in the proximity of the length of the amylopectin crystalline region. Starches with short average amylopectin branch chain lengths (e.g., waxy rice and sweet rice starch), with large proportions of short branch chains (dp 11–16) relative to the shoulder of dp 18–21 (e.g., wheat and barley starch), and with high starch phosphate monoester content (e.g., potato starch) displayed low gelatinization temperatures. Amylose contents and amylopectin branch chain-length distributions predominantly affected the pasting properties of starch.  相似文献   

18.
Starches from the endosperm of three types of total‐waxy cereals (bread wheat, maize, and barley) were used in reconstitution studies of durum wheat semolinas to investigate the effect of waxy starch on pasta cooking quality. The chemical composition and the pasting and gelatinization properties of the starches used in this study were evaluated to define the functional properties of each waxy starch. The rheological properties of dough semolinas were evaluated by small‐scale mixograph. Spaghetti was prepared using a small‐scale pasta extruder and its cooking quality was assessed using a texture analyzer. Cooked pasta firmness, resilience, and stickiness were measured. The substitution of semolina starch with waxy starches from different sources changed the functional properties of dough and their pasta quality. A decrease in firmness was detected in all the semolinas reconstituted with waxy starches. An increase in stickiness was found when semolinas with waxy starch from wheat were evaluated. No improvement in pasta quality should be expected if the waxy character is introduced in durum wheat.  相似文献   

19.
The effects of amylose content and other starch properties on concentrated starch gel properties were evaluated using 10 wheat cultivars with different amylose content. Starches were isolated from grains of two waxy and eight nonwaxy wheat lines. The amylose content of waxy wheat lines was 1.4–1.7% and that of nonwaxy lines was 18.5–28.6%. Starch gels were prepared from a concentrated starch suspension (30 and 40%). Gelatinized starch was cooled and stored at 5°C for 1, 8, 16, 24, and 48 hr. The rheological properties of starch gels were studied by measuring dynamic viscoelasticity with parallel plate geometry. The low‐amylose starch showed a significantly lower storage shear modulus (G′) than starches with higher amylose content during storage. Waxy starch gel had a higher frequency dependence of G′ and properties clearly different from nonwaxy starches. In 40% starch gels, the starch with lower amylose showed a faster increase in G′ during 48 hr of storage, and waxy starch showed an extremely steep increase in G′. The amylose content and concentration of starch suspension markedly affected starch gel properties.  相似文献   

20.
The effect of amylose content of starch on processing and textural properties of instant noodles was determined using waxy, partial waxy, and regular wheat flours and reconstituted flours with starches of various amylose content (3.0–26.5). Optimum water absorption of instant noodle dough increased with the decrease of amylose content. Instant noodles prepared from waxy and reconstituted wheat flours with ≤12.4% amylose content exhibited thicker strands and higher free lipids content than wheat flours with ≥17.1% amylose content. Instant noodles of ≤12.4% amylose content of starch exhibited numerous bubbles on the surface and stuck together during frying. Lightness of instant noodles increased from 77.3 to 81.4 with the increase of amylose content of starch in reconstituted flours. Cooking time of instant noodles was 4.0–8.0 min in wheat flours and 6.0–12.0 min in reconstituted flours, and constantly increased with the increase in amylose content of starch. Hardness of cooked instant noodles positively correlated with amylose content of starch. Reconstituted flours with ≤12.4% amylose content of starch were higher in cohesiveness than those of wheat flours of wild‐type and partial waxy starches and reconstituted flours with ≥17.1% amylose content. Instant fried noodles prepared from double null partial waxy wheat flour exhibited shorter cooking time, softer texture, and higher fat absorption (1.2%) but similar color and appearance compared with noodles prepared from wheat flour of wild‐type starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号