首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of different process conditions on the pasting behavior of the 14%, w/w suspensions of high amylose, waxy and normal maize starches at mixing speeds of 50, 160 and 250 rpm with the heating rates of 2.5, 5 and 10 °C/min were investigated. In addition, the impact of the starch mixture with an amylose-amylopectin ratio of 0–70% at 160 rpm and a heating rate of 5 °C/min on the pasting parameters was studied. According to the results, when stirring speed decreased from 250 rpm to 50 rpm, the peak viscosity dramatically increased. Furthermore, both heating and stirring rates significantly affected the pasting properties (p < 0.05). The amylose content of maize starch had a negative correlation with peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity. Besides, syneresis values decreased as amylose content decreased from 70% to 0%. According to the kinetic modelling of pasting curves, starch coefficients were found to be higher than 1 for all starches, indicating that the penetration of water into starch granules increased granule swelling rate. The findings of the present study confirmed that both process conditions and amylose/amylopectin ratio can be optimized without necessity of starch modification to obtain the products with the desired quality.  相似文献   

2.
Waxy maize (a standard starch of normal granule size) and five small granule starches from different botanical sources (rice, wheat B type, oat, quinoa and amaranth) were subjected to 2-octenyl-1-succinic anhydride (OSA) modification. Changes of pasting, gel texture, thermal and rheological properties were investigated. Different small granule starches showed quite different property changes after OSA modification. Pasting viscosity was generally increased in OSA starches, among which OSA oat starch had notably high peak and breakdown viscosity but low setback viscosity. Gel hardness of rice, wheat B type, oat and quinoa starches was reduced by OSA treatment, whereas that of waxy maize and amaranth starches was increased. Amylose content was considered to be the major factor influencing pasting, gel and thermal property of OSA starches. Esterification increased pseudoplastic flow behavior of all starches, while OSA oat starch uniquely had reduced flow consistency coefficient. The dynamic rheological properties were also changed differentially among OSA starches. Viscoelastic properties of rice, wheat B type, oat and quinoa starches were increased after OSA treatment, whereas those of waxy maize and amaranth starches were decreased. This study showed that diverse functionalities from OSA small granule starches may fulfil different demands in product development.  相似文献   

3.
This work fractionated waxy and normal wheat starches into highly purified A- and B-type granule fractions, which were representative of native granule populations within parent native wheat starches, to accurately assess starch characteristics and properties of the two granule types. Wheat starch A- and B-type granules possessed different morphologies, granule specific surface area measurements, compositions, relative crystallinities, amylopectin branch chain distributions, and physical properties (swelling, gelatinization, and pasting behaviors). Within a genotype, total and apparent amylose contents were greater for A-type granules, while lipid-complexed amylose and phospholipid contents were greater for B-type granules. B-type (relative to A-type) granules within a given genotype possessed a greater abundance of short amylopectin branch chains (DPn < 13) and a lesser proportion of intermediate (DPn 13–33) and long (DPn > 33) branch chains, contributing to their lower relative crystallinities. Variation in amylose and phospholipid characteristics appeared to account for observed differences in swelling, gelatinization, and pasting properties between waxy and normal wheat starch fractions of a common granule type. However, starch granule swelling and gelatinization property differences between A- and B-type granules within a given genotype were most consistently explained by their differential amylopectin chain-length distributions.  相似文献   

4.
The properties of starch and starch–lipid pastes have been explored using a novel extended Rapid Visco Analyser (RVA) profile, in which the heating and cooling cycles are repeated five times. Starches from four wheat varieties with amylose content ranging from 23 to 27%, and waxy starches of wheat, rice and maize were tested, alone and in mixtures with lauric acid and monopalmitin (glyceryl-1-monopalmitin). Gels of all of the starches formed and melted reproducibly during repeated heating and cooling in the RVA. The addition of lauric acid to the waxy starches had no effect on the multiple RVA profile. Monopalmitin caused an increase in viscosity during the heating stage of the second to the fifth cycles with the waxy starches, which was attributed to the presence of monopalmitin aggregates. Changes in the multiple cycle viscosity traces observed when monopalmitin or lauric acid was added to the amylose-containing starches were complex. It was concluded that RVA paste viscosities were determined by starch–lipid interactions, as well as by free lipid in the starch mixtures. The water solubility of the lipid and association of proteins with starch granules influence these interactions.  相似文献   

5.
The effect of γ-irradiation on the physicochemical properties of cross-linked waxy maize resistant starches was examined. The cross-linked waxy maize starches contained resistant starch (RS) of 56.1 and 63.5%, respectively for 5 and 10% sodium trimetaphosphate (STMP)/sodium tripolyphosphate (STPP) cross-linking, and the RS contents slightly decreased as the irradiation dose increased whereas the RS content in unmodified waxy maize starch increased with an increase in irradiation dose. For both native and cross-linked starches, the rapidly digestible starch (RDS) content increased and the slowly digestible starch (SDS) content decreased by the irradiation. The solubility of the native and cross-linked starches increased as the irradiation dose increased. The cross-linked starches did not swell in boiling water without showing pasting viscosity. However, the starches became swellable, forming pastes by irradiation, and the pasting viscosity gradually increased with an increase in irradiation dose. The crystallinity as determined by an X-ray diffraction analysis remained unchanged upon cross-linking and γ-irradiation. However, the gelatinization enthalpy of the cross-linked starches decreased in proportion with irradiation dose. The melting temperatures of cross-linked starches gradually decreased and the temperature range for melting increased with an increase in irradiation dose.  相似文献   

6.
Amylopectin Fine Structure and Rice Starch Paste Breakdown   总被引:1,自引:0,他引:1  
Ten rice starches with a fairly narrow range of amylose content, but wide variation in RVA pasting curves, were selected to study a possible relationship between amylopectin fine structure and RVA paste viscosity parameters. Amylopectin fine structure was found to significantly correlate with paste breakdown. Proportion of long chains of amylopectin (FrI) was negatively correlated (r=0·84, p<0·01) and proportion of short chains of amylopectin (FrIII) was positive correlated (r=0·89, p<0·001) with paste breakdown. The findings imply that amylopectin fine structure relates to the extent of breakdown of swollen granules and the viscosity after gelatinised starch granule structure is disrupted. The results suggest the possibility that lines can be selected with high proportion of amylopectin long chains for reduced paste breakdown.  相似文献   

7.
Starch was isolated from breadfruit (Artocarpus artilis). It was further modified by oxidation, acetylation, heat–moisture-treatment and annealing. The functional properties of native and modified starches were then studied. Proximate analysis revealed that following modifications, the annealed (BANS), oxidised (BOS) and acetylated (BACS) starches retained higher moisture content compared to native starch (BNS), while heat–moisture treated starch (BHMTS) had lower moisture content. Crude fibre was reduced by following modifications, except that BNS and BANS had the same value (0.42%). Protein and fat contents were also reduced after modifications. Acetylation, oxidation and heat–moisture-treatment improved the swelling power of the native starch. The result indicates that all forms of modification reduced the solubility of native breadfruit starch. For all the starches, replacing the wheat flour by the starch resulted in increased alkaline water retention of the blends. Gelation studies revealed that native breadfruit starch is a better gelating food material than the modified derivatives. All forms of modification reduced pasting temperature, peak viscosity, hot paste viscosity and cold paste viscosity of the native starch, except that heat–moisture-treatment increased the pasting temperature. Setback value reduced after modifications, indicating that modifications would minimize starch retrogradation.  相似文献   

8.
为了解灌浆期遮阴对小麦胚乳淀粉粒度分布及淀粉糊化特性的影响,研究了灌浆期对扬麦13、宁麦13和烟农19进行30%遮阴后籽粒的淀粉粒度分布与糊化特性的变化。结果表明,小麦灌浆期遮阴显著降低了<10μm的B型淀粉粒体积和表面积占比,增加了>10μm的A型淀粉粒的体积和表面积占比,其中A型淀粉粒中主要增加了10~20μm淀粉粒的体积和表面积占比;遮阴处理对淀粉粒数目分布无显著影响。遮阴处理后,峰值粘度、低谷粘度、稀懈值、最终粘度、回升值等糊化参数指标均显著降低。小麦籽粒硬度、容重、出粉率等指标也因遮阴处理而显著降低。综上所述,遮阴处理改变了小麦籽粒淀粉粒粒度分布,降低了淀粉糊化参数和加工品质。  相似文献   

9.
Normal maize, waxy maize, dull waxy maize and amylomaize V starches were heat treated at 100 °C for 16 h at a moisture content of 30%. The results showed that the X-ray intensities of the major d-spacings of all starches increased on heat–moisture treatment (waxy maize > normal maize > dull waxy maize > amylomaize V). This treatment decreased the apparent amylose content (amylomaize V > normal maize), swelling factor (amylomaize V > waxy maize > dull waxy maize > normal maize), amylose leaching (amylomaize V > normal maize), pasting viscosities (amylomaize V > normal maize), acid hydrolysis (amylomaize V > normal maize > waxy maize > dull waxy maize), enzyme hydrolysis (amylomaize V > normal maize > dull waxy maize > waxy maize) and syneresis (amylomaize V > normal maize > waxy maize ≈ dull waxy maize). The gelatinization transition temperatures of all starches increased on heat–moisture treatment (amylomaize V > normal maize > waxy maize > dull waxy maize). However, the gelatinization temperature range increased only in normal maize and amylomaize V starches (amylomaize V > normal maize), while it remained unchanged in both the waxy starches. The enthalpy of gelatinization remained unchanged on heat–moisture treatment in all starches and the pasting viscosities of the two waxy starches were also unaffected. The foregoing data showed that starch chains within the amorphous and crystalline regions of the granule associate during heat–moisture treatment. However, the extent of this association was of a greater order of magnitude within the amorphous regions. DSC studies have indicated associations involving amylose chains (amylose–amylose and amylose–native starch lipids) resulted in the formation of new crystallites of different stabilities. In contrast, associations involving amylopectin chains (amylopectin–amylopectin) did not lead to crystallite formation.  相似文献   

10.
Standard maize starch (SMS), waxy maize starch (WMS) and wheat starch (WTS) were hydrothermally treated by the Instantaneous Controlled Pressure Drop (DIC) process. This process consists in a short pressurisation obtained by the injection of saturated steam at fixed pressure during a predetermined time followed by a sudden pressure drop towards vacuum. The effects of DIC conditions on thermal characteristics, enzyme susceptibility, pasting (Brabender) and rheological properties of treated starches were investigated. For treated starches, an increase of transition temperatures (To and Tp), a narrowing of the width of gelatinization endotherms and a decrease of the gelatinization enthalpies (ΔH) were observed as the severity of processing conditions increased. WMS, SMS and WTS showed a significant increase in enzymatic hydrolysis after treatment. The saccharification yield showed an increase from 19% (native) to 44%, 21% (native) to 59% and 55% (native) to 79% for SMS, WMS and WTS, respectively. The study suggests that the structural modifications due to the previous DIC treatment influence the in-vitro hydrolysis and the access to the ultrastructure of starch granules; the susceptibility to hydrolysis increases from SMS to WMS and WTS. For all treated starches, the decrease in peak viscosity and in apparent viscosity was related to the processing conditions.  相似文献   

11.
The pasting profiles of native and cross-linked corn starch in dimethylsulfoxide (DMSO)–water mixtures were investigated with a Rapid Visco Analyser. The temperature profile included an isothermal step of 1 min at 30 °C, followed by a linear gradient to 75 °C in 3 min and finally an isothermal step of 20 min at 75 °C. The profiles were characterised by an initial peak (at 75 °C) followed by a trough, much as is the case with profiles of such starch in water. Increasing the DMSO concentration in the DMSO–water mixture from 70–97·5% (by weight), without changing the starch concentration, resulted in lower end-viscosities. The RVA pasting profiles of a series of sodium trimetaphosphate (STMP) and epichlorohydrin (ECH) cross-linked corn starches were investigated in 92·5% DMSO at different dry matter (d.m.) contents. At high starch concentrations (>60% d.m.), the end viscosity increased with the degree of cross-linking. At lower starch concentrations (<6% d.m.), the more highly cross-linked starches yielded lower peak- and end-viscosities than starches with lower degrees of cross-linking. The solubilisation of the starches in 92·5% DMSO was complete for the native starch and decreased considerably for the highly cross-linked starches. Light microscopy showed that the cross-linked starches, upon heating in DMSO–water, were converted to a biphasic system consisting of insoluble granule remnants and a starch solution.  相似文献   

12.
The pasting of commercial maize starches was found to be a biphasic phenomenon, exhibiting an expected first viscosity peak as well as an unexpected, relatively large second viscosity peak under specific cooking conditions when using a Rapid Visco Analyser (RVA). The second peak formed at long holding times (between 32 and 45 min), holding temperatures within the range of 82 to 95 °C, starch concentrations from 8 to 13% with a wide range of initial heating rates (0·5–10 °C/min) and shear conditions (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1 : 3 v/v), the second pasting peak disappeared. When, however, the starch sample was treated with solvent and the solvent removed by evaporation, the second peak remained, but formed earlier. Increasing the holding temperature gave a slightly higher first viscosity peak, slightly earlier, and led to a decrease in the area and height of the second viscosity peak. Increasing heating rate also led to an earlier, slightly higher first peak and earlier but lower second viscosity peak. Increasing starch concentration led to an increase in height and area of both the first and second peaks and their later occurrence. Increasing shear led to a decrease in height and area of both the first and second peaks and their later appearance.  相似文献   

13.
The effect of glycerol on gelatinization behaviours of high-amylose maize starch was evaluated by confocal laser scanning microscopy (CLSM), scanning electronic microscope (SEM), differential scanning calorimetry (DSC), texture analyzer (TPA) and rheometer. Gelatinization of the high-amylose maize starches with glycerol content of 10% (w/w) began at 95.4 °C (To), peaked at 110.3 °C (Tp), and completed at 118.9 °C (Tc). The birefringence began to disappear at around 100 °C and finished at 120 °C which corresponded well to the onset and conclusion temperatures obtained by DSC. The high-amylose maize starch granules maintained original morphological structure at 100 °C and swelled to a great degree at 110 °C. The high-amylose maize starch paste formed at 100 °C showed the lowest hardness (39.92 g), while at 120 and 130 °C, showed the highest hardness (610.89 g and 635.43 g, respectively). It should be noted that in going from 100 °C to 110 °C there is a significant increase in the viscosity of the slurry solution. The identical apparent viscosity was observed when the shear rate exceed 100 s−1, resulting from the high-amylose maize starch granules were completely gelatinized at 120 °C, which was consistent with DSC analysis.  相似文献   

14.
Protein-protein crosslinks, especially disulfide bonds, widely exist and influence the quality of cereal-based food. In order to investigate the effect of disulfide bonds on pasting properties of foxtail millet, ten typical varieties were selected and separated into three groups according to their eating quality, and then reducing agent dithiothreitol (DTT) was used to disrupt disulfide bonds. Disulfide and sulfhydryl groups’ variations, pasting, and hydration properties were determined. Scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) were also used to analyze the microstructure of foxtail millet paste. Results showed that foxtail millet with poor eating quality was more prone to form disulfide bond linkage at a higher rate and degree during cooking. Disrupting disulfide bonds increased peak viscosity, breakdown, water absorption, and swelling power of granules. Meanwhile, pasting temperature, setback, and final viscosity decreased significantly. The larger size of swollen starch granules and breakage of protein networks were found under CLSM, and firmer lamellar structures with less connections and pores were illustrated under SEM in DTT-treated paste. After DTT-treatment, disulfide bonds were believed to restrict hydration and pasting properties of foxtail millet, and strengthen the swollen granules and paste rigidity as well as a high level of starch reassociation.  相似文献   

15.
小麦胚乳 A、B 型淀粉粒发育特征及黏度特性   总被引:2,自引:0,他引:2  
利用扫描电镜对4个小麦品种不同发育时期籽粒自然断面和分离提纯的A、B型淀粉粒进行观察,并采用黏度糊化仪对小麦面粉和成熟小麦胚乳A、B型淀粉粒分别进行黏度测定.电镜扫描结果显示,小麦授粉3d有凝胶状物质产生于造粉体内壁,6d可明显看到部分造粉体被淀粉粒充满,此时淀粉粒雏形已现,9d淀粉粒体积增大,基本充满所有造粉体,12d前观察到的均为A型淀粉粒,15d有B型淀粉粒出现,18d以后造粉体被完全破坏降解,只留存有A、B型淀粉粒和各自表面的结合蛋白.这说明12d前是A型淀粉粒形成时期,后逐渐形成B型淀粉粒.黏度糊化测定结果表明,A、B型淀粉粒糊化后呈天蓝色,而面粉糊化后呈白色.其次,所测小麦样品糊化焓变和峰值黏度大小表现为B型淀粉粒>A型淀粉粒>小麦面粉.  相似文献   

16.
An investigation was conducted into the effects of potassium chloride (KCl) and sodium chloride (NaCl) on the gelation properties of maize starch-Mesona chinensis polysaccharide (MCP) gels. Waxy maize starch (WS), normal maize starch (NS), and high amylose maize starch (HS) were used to compare the effects of different amylose contents on the gel properties of maize starch-MCP gels. The results showed that KCl and NaCl have similar effects on the gelation, rheological, and structural properties of maize starch-MCP gels. The addition of KCl and NaCl increased the pasting viscosity, breakdown values, setback values, dynamic modulus, and apparent viscosity of maize starch-MCP gels, especially for HS-MCP gels. LF-NMR (Low-field nuclear magnetic resonance) showed that salts reduced bound water content while increasing the free water content of maize starch-MCP gels. CLSM (Confocal laser scanning microscopy) results also indicated that salt can restrict the expansion and maintain the integrity of starch granules, especially for WS-MCP gels.  相似文献   

17.
小麦淀粉的粒度分布、组分及糊化特性对氮硫肥的响应   总被引:2,自引:0,他引:2  
为明确氮硫肥对小麦淀粉粒度分布及主要理化特性的影响,以强筋小麦品种西农9718和中筋品种陕农138为材料,采用不同氮硫肥水平进行处理,系统分析了小麦A、B淀粉的粒度分布、淀粉组成、膨胀势及糊化特性对氮硫肥的响应。结果表明,强筋和中筋小麦品种的淀粉粒度分布基本一致。A淀粉粒体积分布占总淀粉的74.95%~75.43%,但淀粉粒数量远少于B淀粉粒。A淀粉的直链淀粉、峰值黏度、低谷黏度、崩解值、最终黏度以及回生值高于B淀粉,而B淀粉有更高的支链淀粉、膨胀势和糊化温度。不同氮硫肥处理改变了小麦淀粉的粒度分布,进而影响淀粉的组成和糊化特性。在施氮(230kg.hm-2)条件下,强筋品种西农9718和中筋品种陕农138的A、B淀粉分别在硫肥施用量为46和56kg.hm-2时有较低的直链淀粉含量、较高的膨胀势及较好的糊化特性。陕农138淀粉的粒度分布、组成及糊化特性对氮硫肥的响应比西农9718更敏感。适当的氮、硫肥配施有利于改善小麦的淀粉品质。  相似文献   

18.
Distinct locations of starch granule-associated proteins were revealed using a protein-specific dye with confocal laser scanning microscopy (CLSM). The dye, 3-(4-carboxybenzoyl) quinoline-2-carboxaldehyde, fluoresces only after it reacts with primary amines in proteins, thereby removing background interference from residual dye. CLSM has the capability to discern fluorescence-labelled protein distribution in an optical slice of an intact starch granule while it is still in an intact state. With these techniques, starch granule proteins were revealed to be concentrated in internal concentric spheres in potato, maize, and wheat starches. Spheres were more distinct in potato starch than in other starches. Amylose-free potato and waxy maize starches showed no protein spheres, indicating that the internal protein spheres are composed of granule-bound starch synthase (GBSS). Identification of GBSS suggests the location of biosynthesis of amylose in starch granules, as well as spatial and temporal aspects of biosynthesis.  相似文献   

19.
为探明氮肥对小麦籽粒淀粉组分和理化特性的影响,采用田间试验,分析了4个施氮量(0、100、200、300kg·hm~(-2))对糯小麦(农大糯50222)和非糯小麦(轮选987)籽粒淀粉组分与理化特性的影响。结果表明,随施氮量的增加,小麦籽粒淀粉含量降低,轮选987籽粒中B型淀粉粒的数目占比增加,而农大糯50222籽粒的B型淀粉粒数目占比呈减少趋势;增施氮肥能显著提高小麦籽粒淀粉的峰值黏度和谷值黏度。相同施氮量处理下,轮选987淀粉的被测糊化特征参数(除谷值黏度外)均大于农大糯50222。施氮量不同,2个品种籽粒淀粉X-衍射图谱中各峰的位置和相对强度明显不同。随施氮量的增加,轮选987淀粉的相对结晶度增大,而农大糯50222淀粉的相对结晶度减小。相关分析表明,小麦籽粒的直链淀粉含量和直支比与最终黏度、稀澥值、反弹值、糊化温度和峰值时间呈显著正相关,与谷值黏度和相对结晶度呈显著负相关;支链淀粉含量反之。小麦籽粒的B型淀粉粒数目占比与峰值黏度、稀澥值呈显著负相关。综上所述,施氮量可影响小麦籽粒的淀粉含量和粒度分布,进而改变其糊化特性和晶体特征。  相似文献   

20.
Scanned electron microscopy results revealed that the ability of forming a hair-like network (protein-starch matrix) as well as its rigidity constitutes to the conveying of the net pasting viscosities of flour. The formation of such network contributed to protecting starch granules integrity, resulted in increasing the resistance of rice paste to shear and thus increasing rice flour paste viscosity. Results also suggest that protein structural integrity and the nature of starch-protein bonding affected rice flour pasting mechanism formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号