首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve the silage fermentation of stylo (Stylosanthes guianensis ) in tropical areas, stylo silages were prepared with commercial additives Lactobacillus plantarum Chikuso‐1 (CH 1), L. rhamnasus Snow Lact L (SN ), Acremonium cellulase (CE ) and their combination as SN +CE or CH 1 + CE , and the fermentation quality, chemical composition and ruminal degradation of these silages were studied. Stylo silages treated with lactic acid bacteria (LAB ) or cellulase, the pH value and NH 3‐N ? total‐N were significantly (<  0.05) decreased while the ruminal degradability of dry matter (DM ), crude protein (CP ), neutral detergent fiber (aNDF om) and acid detergent fiber (ADF om) were significantly (<  0.05) increased compared to control. Compared to LAB or cellulase‐treated silages, the DM , CP contents and relative feed value (RFV ), and the ruminal degradability in LAB plus cellulase‐treated silages were significantly (<  0.05) higher, but the aNDF om content was significantly (<  0.05) lower. CH 1 + CE treatment was more effective in silage fermentation and ruminal degradation than SN +CE treatment. The results confirmed that LAB or LAB plus cellulase treatment could improve the fermentation quality, chemical composition and ruminal degradation of stylo silage. Moreover, the combined treatment with LAB and cellulase may have beneficial synergistic effects on ruminal degradation.  相似文献   

2.
Strains TH 14, TH 21 and TH 64 were isolated from tropical silages, namely corn stover, sugar cane top and rice straw, respectively, prepared in Thailand. These strains were selected by low pH growth range and high lactic acid‐producing ability, similar to some commercial inoculants. Based on the analysis of 16S ribosomal RNA gene sequence and DNA‐DNA relatedness, strain TH 14 was identified as Lactobacillus casei, and strains TH 21 and TH 64 were identified as L. plantarum. Strains TH 14, TH 21, TH 64 and two commercial inoculants, CH (L. plantarum) and SN (L. rhamnosus), were used as additives to fresh and wilted purple Guinea and sorghum silages prepared using a small‐scale fermentation method. The number of epiphytic lactic acid bacteria (LAB) in the forages before ensilage was relatively low but the numbers of coliform and aerobic bacteria were higher. Sorghum silages at 30 days of fermentation were all well preserved with low pH (3.56) and high lactic acid production (72.86 g/kg dry matter). Purple Guinea silage inoculated with LAB exhibited reduced count levels of aerobic and coliform bacteria, lower pH, butyric acid and ammonia nitrogen and increased lactic acid concentration, compared with the control. Strain TH 14 more effectively improved lactic acid production compared with inoculants and other strains. © 2016 Japanese Society of Animal Science  相似文献   

3.
Effects of lactic acid bacteria (LAB) inoculants and cellulase additives on fermentation quality and chemical compositions of shrub silages were studied by using a small‐scale fermentation system. Two LAB inoculants of Qingbao (Lactobacillus plantarum, Pediococcus acidilacticii, Lactobacillus casei and Clostridium phage) and Caihe (Lactobacillus plantarum, Lactobacillus brevis and Pediococcus acidilactici) and a commercial cellulase made from Trichoderma reesei were used as additives for intermediate pea‐shrub, rush bushclover, arborescent ceratoides and shrubby silage preparation. The crude protein, neutral detergent fiber and water‐soluble carbohydrate contents of the four shrub materials were 10.1–14.2, 62.6–67.2 and 1.9–3.5% on a dry matter basis, respectively. All shrub silages had pH 3.40–4.43, ammonia‐N 0.1–0.2% g/kg and lactic acid 1.3–2.9% on a fresh matter basis. The silage quality of LAB‐inoculated silages did not have a greater effect than control silages, except shrubby silage preparation. Silages treated with the cellulase, the pH of rush bushclover and shrubby sweetvetch silage were significantly (P < 0.05) lower and the lactic acid content were significantly (P < 0.05) higher than the control silages. The results confirmed that shrub contained a relatively high content of crude protein; its silages can be preserved in good quality, and they are new potential resources for livestock feed.  相似文献   

4.
The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats‐common vetch mixed silage by using a small‐scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant + propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3‐N, and high lactic acid content and V‐scores. L and PL silages showed higher (P < 0.05) lactic acid and crude protein content than the control silage. P silage inhibited lactic acid production. Under aerobic conditions, L silage had similar yeast counts as the control silage (> 105 cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6 h. P and PL silages showed fewer yeasts (< 105 cfu/g FM) (P < 0.05) and markedly improved the aerobic stability (> 360 h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats‐common vetch mixed silage on the Tibetan plateau.  相似文献   

5.
Two experiments were conducted to investigate the bacterial community of fresh and ensiled paper mulberry prepared with or without lactic acid bacteria (LAB) inoculants in South China. In Experiment 1, the bacterial community, chemical composition, and fermentation products of paper mulberry were analyzed. The results showed that fresh paper mulberry had high crude protein content, buffering capacity value, and amounts of uncultured bacteria. Ensiled paper mulberry showed poor fermentation with high pH value, ammonia–N content, and butyric acid content. In addition, Enterobacter was the dominant genus in silage, followed by Lactobacillus and Enterococcus. Water-soluble carbohydrates, ammonia–N, propionic acid, pH, and lactic acid (LA) were the main factors affecting bacterial community of silage. In Experiment 2, the BP17 (Lactobacillus plantarum) from natural fermented paper mulberry silage and two commercial inoculants (Silage-help [SH] and Chikuso-1 [CH]) were used as additives. Compared with other treatments, BP17 inoculant decreased (p < 0.05) pH and ammonia–N content and increased (p < 0.05) LA content of silage. Inoculation of BP17 also increased the dominance of desirable Lactobacillus and inhibited the growth of harmful bacteria in silage. These results confirmed that paper mulberry could be ensiled and epiphytic LAB inoculant can improve its fermentation quality.  相似文献   

6.
This study investigated the effects of LAB inoculants (L) and molasses (M) on the microbial community and fermentation quality of cassava foliage (CF). The small segments (about 2–3 cm) CF were ensiled in plastic bags and incubated at normal temperature (25°C). Four treatments were carried out as follows: control (no additives, CK), LAB inoculants (Lactobacillus plantarum, L), molasses (M), and LAB in combination with molasses (LM). The LAB and molasses obviously altered the bacterial community structure of the CF silage and enhanced the fermentation quality. The combination addition could increase the abundance of Lactobacillus and reduce the Pseudomonas. The LAB and molasses also significantly elevated the lactic acid concentration (P < 0.001) and decreased the pH (P < 0.001), as well as the concentrations of acetic acid, propionic acid, butyric acid, and ammonia-N (P < 0.05). In addition, the combination treatment displayed more effective results on silage fermentation. The LAB and molasses improved the fermentation quality of the CF silage by altering the bacterial community structure. Furthermore, the bacterial community was significantly correlated with fermentation indexes.  相似文献   

7.
To investigate the effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage, first‐cut alfalfa was ensiled with or without two screened lactic acid bacteria (LAB) strains, Lactobacillus plantarum, LP, and Lactobacillus casei, LC. Each treatment was divided into three parts and stored at 20°C, 30°C, 40°C, respectively. After 60 days ensiling, fermentation characteristics were measured and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using Illumina MiSeq platform. LP and LC decreased pH, coliform bacteria counts and increased lactic acid content at 20°C, and the two strains decreased pH, ammonia‐N concentration, coliform bacteria counts at 30°C. When the environmental temperature was 40°C, silage treated with LC showed lower LAB and coliform bacteria counts and higher lactic acid content than the untreated and LP treated silages. Butyric acid mainly appeared in silages stored at 40°C. The relative abundance of Lactobacillus in alfalfa silages stored at 20°C and 30°C was highest and increased after LP and LC were added. Garciella was another dominant genus in silages stored at 40°C. In conclusion, LP and LC improved fermentation quality of alfalfa silage by increasing Lactobacillus proportions at 20°C and 30°C; ensiling alfalfa at 40°C was difficult because of Garciella.  相似文献   

8.
We studied silage fermentation of kudzu (KZ), sugarcane top (ST) and their mixtures treated with additives to be able to effectively use available local feed resources. The silages were prepared using KZ, ST, KZ 90% + ST 10%, KZ 80% + ST 20%, KZ 70% + ST 30% and KZ 60% + ST 40%, based on fresh matter (FM). These silages were treated with 108 colony‐forming units/g epiphytic lactic acid bacteria (LAB), 5% molasses and 0.02% cellulase of FM. The KZ contained higher crude protein (CP; 14.52%) content and lower levels of neutral detergent fiber (NDF; 62.15%) than those of ST (6.84% CP and 64.93% NDF) based on dry matter (DM). The KZ 60% + ST 40% silage fermented well with a higher (< 0.05) lactic acid content and lower (< 0.05) pH than those of the other mixed silages. Silages treated with molasses had lower (< 0.05) ammonia‐N, NDF, acid detergent fiber, and hemi‐cellulose contents as well as pH, but higher (< 0.05) DM, water‐soluble carbohydrate, and lactic acid contents, than those of the control, LAB and cellulase treatments. The results confirmed that KZ 60% + ST 40% was the best mixing ratio to prepare silage, and molasses improved silage fermentation and fiber degradation.  相似文献   

9.
Whole-crop barley harvested at the mid-dough stage was ensiled in 3-L laboratory silos either directly (at 30.7% DM) or after wilting (37.8% DM), and with or without application of Inoculant A, B, or D. Each inoculant contained multiple strains of Lactobacillus plantarum and Enterococcus faecium. Two silos per treatment were opened on d 1, 3, 7, 15, and 47 for silage analysis. Wilted silages had higher (P < 0.05) pH than unwilted silages, and Inoculant B (unwilted crop) and Inoculants A, B, and D (wilted crop) decreased (P < 0.05) silage pH compared to the controls. Reducing sugars concentration was 36% lower (P < 0.05), on average, in the wilted than in the unwilted silages. Silages prepared with Inoculants B or D had lower (P < 0.05) concentrations of reducing sugars than the control. Wilting of the barley crop further increased the difference between inoculated and control silages (wilting x inoculation P < 0.05). Neither wilting nor silage inoculants affected concentrations of nonprotein N, ammonia N, or free amino acid N in silage. Wilting did not affect the concentration of lactic acid bacteria (LAB) in the silages. Across DM levels, inoculant-treated silages had larger (P < 0.01) populations of LAB than did the uninoculated controls (7.1 x 10(9) vs 2.3 x 10(9) cfu/g silage DM). Wilting resulted in lesser (P < 0.05) silage lactic acid concentration than the directly ensiled crop. At both DM levels, lactic acid concentration was higher (P < 0.001) in inoculated silages than in controls. The in situ soluble and potentially degradable fractions of silage DM were not affected by wilting or inoculant treatment. The rate of degradation of the potentially degradable silage DM was 35% lower (P < 0.05) in wilted than in unwilted silage. As a result, the calculated effective degradability of silage DM was lower (P < 0.001) in wilted than in unwilted silage. Inoculants did not influence the rate of degradation or effective degradability of silage DM in the rumen. Whole-crop barley ensiled at approximately 30% DM (without wilting) contained higher concentrations of soluble sugars and lactic acid and had higher ruminal degradability of DM than wilted silage (38% DM). Although inoculants did not improve DM degradability of barley silage, lower terminal pH and increased concentrations of lactic acid may improve aerobic stability upon feed-out.  相似文献   

10.
为探讨不同发酵类型乳酸菌对低水分粳稻(Oryza saliva subsp keng)秸秆发酵品质和有氧稳定性的影响,本试验以稻秸(含水量50.47%)为青贮材料,设有4组,即对照组(CS),布氏乳杆菌H4001组(HS,5×10~6 cfu·g~(-1)FM),植物乳杆菌S2406组(SS,5×10~6 cfu·g~(-1) FM)及植物乳杆菌与布氏乳杆菌混合组(MS,5×10~6 cfu·g~(-1)FM),发酵时间60d,取青贮粳稻秸秆样品测定其青贮品质及有氧稳定性。结果表明:同型发酵乳酸菌植物乳杆菌S2409可显著降低青贮的pH值和氨态氮含量(P0.05),提高青贮的乳酸、粗蛋白和干物质含量(P0.05),而异型发酵乳酸菌布氏乳杆菌H4001可显著提高青贮的乙酸、水溶性碳水化合物和中性洗涤纤维的含量(P0.05)。同型发酵乳酸菌和异型发酵乳酸菌在青贮开窖后可分别延长青贮的有氧稳定性时间36h、65h。混合组发酵品质及有氧稳定性均显著优于对照组。结合不同情况单独或混合使用不同发酵类型乳酸菌可获得更加优质的青贮饲料。  相似文献   

11.
One hundred and twenty‐six strains were isolated from corn stover in Henan Province, China, of which 105 isolates were considered to be lactic acid bacteria (LAB) according to Gram‐positive, catalase‐negative and mainly metabolic lactic acid product. Analysis of the 16S ribosomal DNA sequence of 21 representative strains was used to confirm the presence of the predominant groups and to determine the phylogenetic affiliation of isolates. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank type strains between 99.4% and 100%. The prevalent LAB, predominantly Lactobacillus (85.6%), consisted of L. plantarum (33.3%), L. pentosus (28.6%) and L. brevis (23.7%). Other LAB species as Leuconostoc lactis (4.8%), Weissella cibaria (4.8%) and Enterococcus mundtii (4.8%) also presented in corn stover. The present study is the first to fully document corn stover‐associated LAB involved in the silage fermentation. The identification results revealed LAB composition inhabiting corn stover and enabling the future design of appropriate inoculants aimed at improving the fermentation quality of silage.  相似文献   

12.
This study investigated the effects of a mixed bacterial inoculant possessing ferulic acid esterase (FAE) activity on silage fermentation characteristics, aerobic stability, and growth performance of growing feedlot steers. Whole-crop barley (Hordeum vulgare L.) forage (35% DM) was chopped and ensiled without a silage inoculant (UN) or with a mixed bacterial culture containing 1.0 × 10(11) cfu/g of Lactobacillus buchneri LN4017 that produces FAE, 2.0 × 10(10) cfu/g of Lactobacillus plantarum LP7109, and 1.0 × 10(10) cfu/g of Lactobacillus casei LC3200 at a combined rate of 1.3 × 10(5) cfu/g of fresh forage (IN) in mini and Ag-Bag (Ag-Bag Int. Ltd., Warrenton, OR) silos. Silages from the mini silos were assessed for the effect of inoculation on fermentation characteristics and aerobic stability, whereas silages from Ag-Bags were used to formulate 2 barley silage-based total mixed rations (UN and IN) that were fed to growing feedlot steers for 112 d. The IN silage exhibited a homolactic fermentation during the first 7 d of ensiling as reflected by an increased (P ≤ 0.02) lactic acid concentration and an accelerated rate (P < 0.01) of pH decline. Thereafter, fermentation of IN silage became more heterolactic, resulting in greater concentrations of acetic acid (P < 0.01) and pH (P < 0.01) but less (P < 0.01) lactic acid than UN silage. Inoculation did not affect DM losses (P = 0.52) from mini silos. The IN silage remained stable during 21 d, but temperature and yeasts counts in the UN silage increased after 5 d of aerobic exposure. Growing steers fed the IN silage diet had superior (P = 0.03) feed conversion efficiency compared with those fed UN silage. Inoculation of whole-crop barley silage with a mixed culture of homolactic lactic acid-producing bacteria and FAE-producing L. buchneri at ensiling changed fermentation from a homolactic to a heterolactic form during ensiling and improved aerobic stability of the silage and efficiency of BW gain of growing feedlot steers.  相似文献   

13.
The objective of this study was to determine the effect of ensiling different ratios of whole crop oat to lucerne on fermentation quality, aerobic stability and in vitro digestibility of silage on the Tibetan plateau. Four experimental treatments were produced varying in the ratio of forages on a fresh matter (FM) basis: 1) 100% oat (control, dry matter (DM) content: 317 g/kg), 2) 90% oat + 10% lucerne (OL10, DM content: 316 g/kg), 3) 80% oat+ 20% lucerne (OL20, DM content: 317 g/kg) and 4) 70% oat+ 30% lucerne (OL30, DM content: 318 g/kg). All treatments were packed into laboratory‐scale silos and ensiled for 60 days and then subjected to an aerobic stability test for 15 days. Further, the four experimental treatments were incubated in vitro with buffered rumen fluid to study the nutrient digestibility. All silages were well preserved with low pH and NH3‐N contents, and high lactic acid contents and V‐scores (evaluation of silage quality). Increasing the lucerne proportion increased (p < 0.05) crude protein (CP) content of silage, whereas neutral (NDF) and acid (ADF) detergent fibre contents were not affected. Under aerobic conditions, the control silage showed higher (p < 0.05) yeast counts (>10cfu/g FM) followed by OL10 silage, and OL10 silage improved aerobic stability for 74 h. OL20 and OL30 silages showed fewer (p < 0.05) yeasts (<105 cfu/g FM) and markedly (p < 0.05) improved the aerobic stability (>360 h). After 48‐h incubation, OL30 silage increased (p < 0.05) in vitro dry matter digestibility (IVDMD) and neutral detergent fibre digestibility (IVNDFD) compared with the control silage. These results suggest that replacing oat with lucerne had no unfavourable effects on fermentation quality of silage, but improved CP content, aerobic stability IVDMD and IVNDFD. OL30 silage was the best among the three mixed silages.  相似文献   

14.
Twenty-three lactic acid bacteria (LAB) isolated from three cultivars (Akiaoba, Nagahahikari and Tachiwase) of Italian ryegrass (Lolium multiflorum Lam.) silage were precisely characterized by a combination of phenotypic tests, genotypic 16S ribosomal DNA sequencing and rapid PCR-based analyses, focusing on their useful phenotypes for silage preparation as inoculants. We successfully identified both at the species and subspecies levels: phenotypically novel Lactococcus lactis subsp. lactis, Lactobacillus brevis, Lactobacillus coryniformis subsp. torquens, Lactobacillus curvatus, Lactobacillus plantarum subsp. plantarum, Lactobacillus sakei subsp. carnosus, Leuconostoc mesenteroides subsp. dextranicum and Pediococcus parvulus. This is the first report to elucidate the presence of Lactobacillus coryniformis ssp. torquens and Leuconostoc mesenteroides subsp. dextranicum in Italian ryegrass silages. Physiological and biochemical tests revealed that phenotypic characteristics are different among the different strains of the same species and subspecies, and that the isolates show unique and diverse phenotypes related to fermentation factors, such as available carbohydrates, optimal growth pH and temperature. These results suggest that, for various well-preserved silage preparations, the isolates may be useful in producing novel inoculants corresponding to their optimally climatic and ecological niches.  相似文献   

15.
Two lactic acid bacteria (LAB) strains, Pediococcus pentosaceus SC1 and Lactobacillus paraplantarum SC2 isolated from king grass silage, were characterized and their effectiveness to improve the silage fermentation quality of stylo (Stylosanthes guianensis Sw.) was studied. Strain SC1 was able to grow at a high temperature of 45°C, while SC2 did not. SC2 normally grew at a low pH of 4.0, while SC1 could not. These two strains and a commercial inoculant of LAB (L. plantarum, LP) were used as additives to stylo silage preparation at various temperatures (20°C, 30°C and 40°C). All LAB inoculants significantly (P < 0.05) reduced the pH value and ammonia-N content, and increased the ratio of lactic acid to acetic acid and quality score compared with the control. In addition, inoculating LAB strains markedly (P < 0.05) reduced butyric acid content at the temperatures of 30°C and 40°C. Compared to SC2 and LP strains, strain SC1 was the most effective for improving stylo silage quality at 20°C, indicated by the increase in lactic acid, ratio of lactic acid to acetic acid and quality score. At 30°C and 40°C, there were no significant differences among SC1, SC2 and LP treatments in pH values, contents of acetic acid, butyric acid and ammonia-N (P > 0.05).  相似文献   

16.
To effectively use local available grass resources to cover the winter feed shortage on the Qinghai‐Tibetan Plateau, direct‐cut and wilted reed canary grass (RCG) silages were prepared by using a rolled‐bale system, and their ensiling characteristics and in vitro digestibility were studied. Silages were treated without (control) or with inoculants including LP (Lactobacillus plantarum), LPLB (L. plantarum, L. buchneri), and LPLBc (L. plantarum, L. buchneri, and cellulase), and were stored at ambient temperature (5.7–14.6°C) for 90 days. Compared with control, the inoculated silages increased (p < .05) lactic acid and acetic acid contents, and reduced (p < .05) final pH value and ammonia‐N ratio of total N. The highest WSC content (41.2 g/kg DM) occurred for LPLB‐inoculated silage, whereas LPLBc‐treated silage displayed the lowest contents of NDF (522.9 g/kg DM) and ADF (275.5 g/kg DM). In addition, LPLBc‐inoculated silage had the highest in vitro gas production (51.0 ml/g DM), in vitro DM digestibility (619.3 g/kg DM), and metabolic energy (9.6 kJ/kg DM). These results confirmed that treatments with inoculants at ensiling could improve silage fermentation and in vitro digestibility of RCG, and this could be a potential winter feed for animals on the Qinghai‐Tibetan Plateau.  相似文献   

17.
In order to assess the survival of lactic acid bacteria (LAB) in whole crop maize silage in the gut of dairy cows, one representative silage sample and three different feces samples were collected from dairy cows on three dairy farms in Hua Bei, China and three dairy farms in Kyushu, Japan. The composition of the bacterial community was examined by denaturing gradient gel electrophoresis and quantitative polymerase chain reaction. Lactobacillus acetotolerans was detected in all bunker‐made maize silage samples, regardless of the dairy farm or sampling region from which they were sourced. A total of eight LAB species were detected in the maize silage samples, of which three (L. acetotolerans, L. pontis and L. casei) appeared to survive digestion. The populations of L. acetotolerans in silage and feces were 106–7 and 103–4 copies/g, respectively, indicating that, even for the LAB species showing potential survival in the gut, competition in this niche may be harsh and the population may substantially decrease during the digestion process. It may be difficult for silage LAB to survive in the gut of silage‐fed dairy cows, because marked decrease in population can take place during the digestion process, even for surviving species.  相似文献   

18.
通过形态特征、生理生化特性及16S rRNA序列分析方法对玉米(Zea mays)秸秆和白菜(Brassica pekinensis)尾菜混贮料中的乳酸菌多样性进行分析,并以温度和p H为限制因素筛选优良乳酸菌菌株。结果表明,分离得到的12株乳酸菌分属于乳杆菌属(Lactobacillus)和片球菌属(Pediococcus)。其中,1株(LB-1)为植物乳杆菌(Lactobacillus plantarum),6株(LB-2、LB-4、LB-7、LB-8、LB-9和LB-11)为戊糖片球菌(Pediococcus pentosaceus),3株(LB-5、LB-6和LB-12)为短乳杆菌(Lactobacillus brevis),2株(LB-3和LB-10)为类干酪乳杆菌(Lactobacillus paracasei)。菌株LB-3和LB-8表现出优良的耐高温、耐酸碱特性,且具有较强的产乳酸能力,二者可作为青贮饲料的乳酸菌添加剂。  相似文献   

19.
The objective of this study was to evaluate the effect of grape pomace (GP) with different adding levels (0%, 5%, 10% and 15%, fresh matter basis), alone (GP‐LAB) or in combine with an inoculant LAB (GP+LAB), on the fermentation quality and aerobic stability of sweet sorghum silage. After 90 days of ensiling in vacuumized mini‐silos, silages were subject to a 7‐day aerobic stability test, in which chemical, microbial and polyphenol composition were measured. In the GP‐LAB group, adding GP decreased (< 0.05) concentrations of water‐soluble carbohydrate (WSC) and butyric acid in silage. In the GP+LAB group, adding GP increased (< 0.05) concentrations of lactic acid, WSC and crude protein, decreased (< 0.05) final pH value, NH3‐N ratio and butyric acid concentration in silage. Polyphenol level was reduced (< 0.05) after silage fermentation. During aerobic exposure, the fungi count, pH value and silage temperature increased (< 0.05), the levels of lactic acid, acetic acid and polyphenols (quercetin 3‐O‐glucoside and quercetin 3‐O‐glucuronid) decreased (< 0.05) in silage. GP+LAB treated silage had a lag phase for aerobic spoilage. When the fermentation products, microbial counts, chemical and polyphenol composition were considered, the use of 10% GP+LAB at ensiling could provide a valuable source for improved fermentation quality and aerobic stability of sweet sorghum silage.  相似文献   

20.
To study the microbial population and fermentation dynamics of large needlegrass (LN) and Chinese leymus (CL) during ensiling and subsequent exposure to air, silages were sampled and analyzed using culture‐based techniques and denaturing gradient gel electrophoresis (DGGE). A total of 112 lactic acid bacteria (LAB) strains were isolated and identified using the 16S rRNA sequencing method. Lactic acid was not detected in the first 20 days in LN silage and the pH decreased to 6.13 after 45 days of ensiling. The temperature of the LN silage increased after approximately 30 h of air exposure and the CL silage showed a slight temperature variation. Enterococcus spp. were mainly present in LN silage. The proportion of Lactobacillus brevis in CL silage increased after exposure to air. LN silage with a higher proportion of Enterococcus spp. and propionic acid concentration did not show higher fermentation quality or aerobic stability than CL silage, which had a higher concentration of acetic acid, butyric acid and increased proportion of L. brevis after exposure to air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号